Application
of Fracture Mechanics
to Composite
Materials
edited by K. Friedrich © Elsevier Science Publishers B.V., 1989
Chapter
1
Fracture Mechanics J.G.
of Anisotropic
Materials
WILLIAMS
Mechanical
Engineering Department,
Imperial College, London,
UK
Contents Abstract 3 1. Introduction 4 2. Basic considerations 5 3. G determinations 9 3.1. Method of analysis 10 3.2. Double cantilever beam ( D C B ) tests 12 3.3. A variable-ratio mixed-mode test 15 3.4. Large displacements in D C B tests 15 3.5. Transverse splitting from notches 18 3.6. Buckling under compression 20 4. Stability 22 5. Cracks in anisotropic sheets 25 5.1. Basic method 25 5.2. The crack problem 29 5.3. The calculation of G 32 5.4. The calculation of Κ 33 6. Damage zones 35 7. Conclusions 36 List of symbols 37 References 38
Abstract A r e v i e w o f t h e b a s i c e n e r g y r e l e a s e r a t e , G, a n a l y s i s for l i n e a r b u t a n i s o t r o p i c e l a s t i c m a t e r i a l s is g i v e n i n c l u d i n g t h e d e f i n i t i o n in t e r m s o f c o n t o u r s . F o r m a n y c o m p o s i t e s it is n o t e d t h a t c r a c k g r o w t h is s e l f - s i m i l a r b e c a u s e o f d e l a m i n a t i o n a n d t h i s l e a d s t o a r a t h e r s i m p l e g e n e r a l s c h e m e o f d e t e r m i n i n g G via l o c a l m o m e n t s a n d f o r c e s . I n a d d i t i o n , it is p o s s i b l e t o p a r t i t i o n t h i s G v a l u e i n t o m o d e s I a n d II in a s i m p l e b u t r i g o r o u s m a n n e r . S e v e r a l s o l u t i o n s a r e g i v e n for t e s t s p e c i m e n s which give v a r i o u s forms of m i x e d - m o d e l o a d i n g , i n c l u d i n g c o n s t a n t a n d variable r a t i o s . S o m e d i s c u s s i o n o f t h e r a t h e r c o m p l i c a t e d c a s e of G for b u c k l e d l a m i n a t e s 3
4
J.G.
Williams
u n d e r c o m p r e s s i o n is a l s o g i v e n . F o r c r a c k e d p l a t e s it is n e c e s s a r y t o r e s o r t t o t h e stress i n t e n s i t y f a c t o r , K, s o l u t i o n s v i a c o m p l e x - f u n c t i o n a n a l y s i s a n d t h i s is d e v e l o p e d in s o m e d e t a i l t o r e n d e r it a c c e s s i b l e t o t h e g e n e r a l r e a d e r a n d t h e relationships b e t w e e n G a n d Κ for t h e a n i s o t r o p i c case are derived. T h e very i m p o r t a n t r e s u l t t h a t Κ is a l m o s t t h e s a m e for a n i s o t r o p i c a n d i s o t r o p i c m a t e r i a l s is d e r i v e d a n d d e m o n s t r a t e d v i a n u m e r i c a l r e s u l t s . S o m e d i s c u s s i o n o f d a m a g e z o n e sizes is a l s o g i v e n .
1. Introduction Conventional fracture mechanics deals with h o m o g e n e o u s , isotropic materials a n d has b e e n highly successful b e c a u s e so m a n y practically useful materials are r e a s o n a b l e a p p r o x i m a t i o n s t o t h e s e a s s u m p t i o n s . T h e s a m e is t r u e , o f c o u r s e , for stress a n a l y s i s in g e n e r a l , a n d m o s t e l a s t i c i t y t e x t s c o n t a i n o n l y a p a s s i n g r e f e r e n c e t o a n i s o t r o p y . T h e n o t a b l e e x c e p t i o n s t o t h i s h a v e b e e n w o r k g e n e r a t e d as a r e s u l t of efforts t o d e s i g n l o a d b e a r i n g s t r u c t u r e s in w o o d [ 1 ] . I n p a r t i c u l a r e a r l y a i r c r a f t s t r u c t u r e s e m p l o y e d w o o d a n d t h e r e w a s m u c h i n t e r e s t in c a l c u l a t i n g s t r e s s c o n c e n t r a t i o n f a c t o r s a r o u n d h o l e s [ 2 , 3 ] . T h e u s e o f fibre c o m p o s i t e s t o m a k e l a m i n a t e s a n d a l s o t h e d e s i g n of p l y w o o d h a s p r o d u c e d a c o n s i d e r a b l e l i t e r a t u r e a n d in p a r t i c u l a r t h e t e x t b y L e k h n i t s k i i [ 4 , 5 ] w h i c h e m p l o y e d a d e v e l o p m e n t of t h e w e l l - k n o w n M u s k h e l i s h v i l i [ 6 ] c o m p l e x - n u m b e r f o r m of s t r e s s f u n c t i o n a n a l y s i s t o p r o d u c e a w i d e r a n g e of s o l u t i o n s t o p r o b l e m s o f p r a c t i c a l i m p o r t a n c e . In m o r e r e c e n t t i m e s , m a n y c o m p u t e r c o d e s h a v e b e e n d e v e l o p e d e m p l o y i n g finite e l e m e n t s a n d b o u n d a r y i n t e g r a l s w h i c h will give s o l u t i o n s for a n i s o t r o p i c m a t e r i a l s . F r a c t u r e m e c h a n i c s h a s b e e n i n v e s t i g a t e d in s o m e d e t a i l for w o o d [ 7 - 9 ] a n d f o u n d t o b e a v e r y u s e f u l t o o l for d e s i g n p u r p o s e s . It is i n t e r e s t i n g t o n o t e t h a t m a t e r i a l v a r i a b i l i t y is l a r g e for w o o d , e v e n b y c o m p o s i t e s s t a n d a r d s , a n d yet t h e m e t h o d p r o v e d u s e f u l . I n s p i t e o f t h i s , t h e u s e o f f r a c t u r e m e c h a n i c a n a l y s i s for composites has been rather limited. This w o u l d a p p e a r to stem from a suspicion that conventional analysis could not c o p e with the anisotropy a n d i n h o m o g e n e i t y of c o m p o s i t e s a n d t h a t s o m e o t h e r s c h e m e w a s n e c e s s a r y . A n i s o t r o p y c a n b e i n c l u d e d in t h e a n a l y s i s b y e m p l o y i n g t h e a p p r o p r i a t e m e t h o d s a n d , a l t h o u g h i n h o m o g e n e i t y is a l w a y s a p r o b l e m , it c a n b e d e a l t w i t h via size p a r a m e t e r s . F r a c t u r e m e c h a n i c s is a macro t h e o r y a n d d e f i n e s p a r a m e t e r s w h i c h c h a r a c t e r i z e f a i l u r e o v e r r e g i m e s of k n o w n size. T h e p a r t i c u l a r p r o b l e m o f c o m p o s i t e s is t h a t t h e sizes m a y b e l a r g e a n d r a t h e r c a r e f u l d e v e l o p m e n t o f t h e m e t h o d s is n e c e s s a r y . T h u s w h a t is r e q u i r e d is t h e development of t h e b a s i c m e t h o d s a n d n o t t h e i r a b a n d o n m e n t . T h i s h a s b e e n r e c o g n i z e d in a g r o w i n g i n t e r e s t a n d l i t e r a t u r e in r e c e n t y e a r s , a n d is reflected in this v o l u m e . W h i l e m u c h r e m a i n s t o b e d o n e in t h i s d e v e l o p m e n t t h e r e is a l a r g e useful analysis available via a n i s o t r o p i c elasticity a n d fracture m e c h a n i c s M a n y rather daunting p r o b l e m s lead to surprisingly simple solutions, a n d a w i d e b a s e f r o m w h i c h t o t a c k l e t h o s e e s p e c i a l l y difficult p r o b l e m s , i n h o m o g e n e i t y , i n h e r e n t in c o m p o s i t e s . T h i s c h a p t e r will give a r e v i e w
b o d y of analysis. provide such as of t h e s e
Fracture mechanics of anisotropic
5
materials
a v a i l a b l e r e s u l t s a n d m e t h o d s . M o s t of t h e a n a l y s i s will a s s u m e l i n e a r , e l a s t i c a n d h o m o g e n e o u s b e h a v i o u r s o t h a t t h e r e s u l t s m a y b e d e s c r i b e d as l i n e a r e l a s t i c f r a c t u r e m e c h a n i c s ( L E F M ) b u t for a n i s o t r o p i c m a t e r i a l s . T h e f r a c t u r e s a n a l y z e d a r e t h u s b r i t t l e in c h a r a c t e r h a v i n g s m a l l d a m a g e z o n e s in c o m p a r i s o n w i t h o t h e r d i m e n s i o n s in a c c o r d a n c e w i t h L E F M . A s in L E F M , s o m e c o n s i d e r a t i o n will b e g i v e n t o c r a c k tip z o n e sizes.
2. Basic considerations W e s h a l l e m p l o y t h e s c h e m e for d e v e l o p i n g f r a c t u r e m e c h a n i c s d e s c r i b e d in ref. [ 1 0 ] in w h i c h t w o a s s u m p t i o n s a r e m a d e : (1) All b o d i e s c o n t a i n c r a c k s o r flaws, a n d f r a c t u r e m e c h a n i c s is c o n c e r n e d w i t h a n a l y s i n g t h e g r o w t h of s u c h c r a c k s ; a n d (2) T h e c r a c k g r o w t h m a y b e c h a r a c t e r i z e d in t e r m s of t h e e n e r g y p e r u n i t a r e a n e c e s s a r y t o c r e a t e n e w s u r f a c e a r e a , t h e c r a c k r e s i s t a n c e R. T h e first a s s u m p t i o n p r e c l u d e s all d i s c u s s i o n of c r e a t i n g flaws in o t h e r w i s e p e r f e c t b o d i e s w h i c h is n o t a s e r i o u s r e s t r i c t i o n in c o m p o s i t e s a n d is a r g u a b l y n o r e s t r i c t i o n at all for r e a l m a t e r i a l s . T h e s e c o n d a s s u m p t i o n d o e s n o t i m p l y t h a t R is a c o n s t a n t b u t m a y v a r y w i t h a n y n u m b e r of v a r i a b l e s . F o r s i m p l i c i t y of p r e s e n t a t i o n w e s h a l l c o n s i d e r a c r a c k of l e n g t h α in a s h e e t of u n i f o r m t h i c k n e s s Β u n d e r g o i n g s e l f - s i m i l a r p r o p a g a t i o n s o t h a t t h e c h a n g e of c r a c k a r e a is g i v e n b y dA =
Bda.
T h e a n a l y s i s is b a s e d u p o n t h e e n e r g y b a l a n c e d u r i n g a t i m e i n t e r v a l at for a c r a c k m o v i n g at v e l o c i t y à fo r w h i c h w e c a n w r i t e U =U +U +U +BRa c
d
s
k
(1)
9
where U i s th e externa l wor k performed , U th e energ y dissipation , U th e store d e l a s t i c e n e r g y a n d U t h e k i n e t i c e n e r g y . S u c h a r e l a t i o n s h i p e n a b l e s al l s i t u a t i o n s to b e analyze d includin g thos e involvin g visco-elasti c dissipatio n ( U ) a n d high-rat e p r o c e s s e s (U ). H e r e w e s h a l l a d o p t t h e u s u a l s t a t i c L E F M a s s u m p t i o n s t h a t al l d i s s i p a t i o n i s e m b o d i e d i n R, a n d a l s o i g n o r e k i n e t i c e n e r g y . W e s h a l l t h e n defin e the paramete r "energ y releas e rate " G whic h i s writte n a s e
d
s
k
d
k
(2) a n d m a y b e regarde d a s th e crac k drivin g forc e sinc e w e m a y write , a t fracture , f r o m e q . (1 )
BGa= Ù -Ù = BRa, c
s
i.e. , G = R.
It i s u s u a l t o d e r i v e G s e p a r a t e l y a n d t h e n d e f i n e G = R a s f r a c t u r e b u t t h e n t o n o t e t h a t i f G> R t h e s y s t e m i s u n s t a b l e s i n c e U wil l i n c r e a s e . E n e r g y b a l a n c e is , of c o u r s e , a l w a y s m a i n t a i n e d vi a eq . ( 1 ) . G m a y b e d e r i v e d fo r a g e n e r a l b o d y c o n t a i n i n g a c r a c k o f l e n g t h a a s s h o w n i n fig. 1 w h i c h h a s a l o a d Ρ a p p l i e d g i v i n g k
a d e f l e c t i o n u. T h e l o a d - d e f l e c t i o n d i a g r a m , s h o w n in fig. 2, for t h e c r a c k l e n g t h a is O A a n d n e e d n o t b e l i n e a r , e v e n for l i n e a r e l a s t i c m a t e r i a l s , s i n c e l a r g e d i s p l a c e m e n t s m a y o c c u r . If w e n o w s t a t e t h a t at A t h e c r a c k i n c r e a s e s b y da s o t h a t b o t h t h e l o a d a n d t h e d i s p l a c e m e n t c h a n g e g i v i n g p o i n t A'. S i n c e t h e b o d y is e l a s t i c , t h e u n l o a d i n g l i n e for a + da is O A ' . N o w f r o m e q . ( 2 ) , BGda
=
dU -dU , e
s
a n d f r o m fig. 2, d(7 = O A ' B ' - O A B s
and
dU
e
= BAA'B',
i.e.,
BG da = ( O A B + Β Α Α ' Β ' ) - O A ' B ' , w h i c h is t h e s h a d e d a r e a in fig. 2. T h i s is a n i m p o r t a n t r e s u l t p r a c t i c a l l y s i n c e G c a n b e f o u n d g r a p h i c a l l y if s u c h a d i a g r a m is m e a s u r e d . T h e r e s u l t m a y b e w r i t t e n
A
Fig. 2. The load-deflection curve.
Fracture mechanics of anisotropic
materials
7
as d f — Pau, da J
iu
BG = P
\a
and
U = s
Γ J
Ρ du.
(3)
T w o o t h e r f o r m s of t h i s e q u a t i o n a r e a l s o o f v a l u e , dU^ BG = — da
(4)
a n d s i n c e U = \u
d P , the c o m p l e m e n t a r y energy, we m a y write
c
dU +— c
U =Pu-U , c
i.e.,
s
BG =
1
da a n d n o t e t h a t for a linear system U = U , c
BG = +-
s
giving (5)
dda l/ P const.
T h e loads Ρ on the b o u n d a r y , m a y be t r a n s p o s e d to a n y c o n t o u r Γ a r o u n d the c r a c k t i p , a s s h o w n in fig. 3 , s i n c e t h e i n t e r v e n i n g m a t e r i a l is a s i m p l e e l a s t i c , n o n - s i n g u l a r , s t r e s s s y s t e m . T h u s , for t h e c o n t o u r l e n g t h Γ w e m a y w r i t e 1
dU
Β
da
l
e
du
dw \ s
w h e r e σ , a, u , w are, respectively, the n o r m a l a n d shear stresses a n d d i s p l a c e m e n t s η
s
n
s
o n t h e b o u n d a r y . U m a y b e w r i t t e n in t e r m s of t h e s t r a i n e n e r g y d e n s i t y f u n c t i o n s
W, s
and 1 dl/ Β
da
s
d da J
WLdA r
N o w if w e l o c a t e a c o o r d i n a t e s y s t e m at t h e c r a c k t i p as s h o w n in fig. 3 , t h e n at
Fig. 3. General crack tip contour.
J.G.
8
Williams
y
Fig. 4. Circular contour.
c r a c k g r o w t h for a n y p o i n t ; dx = -da, f o l l o w i n g e x p r e s s i o n for
a n d dA = dx dy = -da
dy, a n d w e h a v e t h e
G,
(6)
T h i s is t h e w e l l - k n o w n c o n t o u r i n t e g r a l e x p r e s s i o n for
[ 1 1 ] a n d is t r u e for a n y
elastic system. T w o i m p o r t a n t results arise directly from this expression w h e n we a n a l y z e t h e l o c a l c r a c k t i p s t r e s s e s . If w e u s e t h e p o l a r c o o r d i n a t e s y s t e m s h o w n in fig. 4, t h e n t h e s i n g u l a r s t r e s s field at t h e c r a c k t i p is σ*Γ-"/(0). N o w for a l i n e a r e l a s t i c m a t e r i a l b o t h W a n d σ d w / d r t a r e p r o p o r t i o n a l t o σ
and
1
s
t h u s t o r~ ". 2
If w e n o w c o n s i d e r a c i r c u l a r c o n t o u r as s h o w n in fig. 4 , t h e n
dy = r c o s θ dd a n d ds = r dd, a n d e q . (6) t a k e s t h e f o r m
N o w G c a n n o t d e p e n d o n t h e v a l u e o f r c h o s e n , i.e., b e p a t h d e p e n d e n t , s i n c e G m u s t b e s i n g l e v a l u e d , a n d h e n c e (1 —2n) = 0 a n d
Η(θ)άθ
m u s t b e finite. T h u s η = \ for l i n e a r l y e l a s t i c m a t e r i a l s , i n c l u d i n g a n i s o t r o p i c o n e s . T h e c o m p u t a t i o n o f G f r o m a l o c a l field is g r e a t l y s i m p l i f i e d b y c o l l a p s i n g t h e c o n t o u r o n t o t h e c r a c k m o v e m e n t as s h o w n in fig. 5, dy = 0, a n d s o t h e r e is n o s t o r e d - e n e r g y c o n t r i b u t i o n , b u t t h e r e a r e l a r g e c h a n g e s i n , for e x a m p l e , cr a n d n
I n i t i a l l y , for s o m e p o i n t a d i s t a n c e S f r o m
the e n d of the g r o w t h , the
o- (r,e)
cr = 0 a n d u = u (S,
n
= a (ka-S,0) n
w i t h u = 0, b u t n
m a t e r i a l is l i n e a r , t h e w o r k d o n e is \σ (Δα η
finally
n
n
- S, 0) u (S, n
n
π).
u. n
stress
Since the
π) a n d w e m a y w r i t e e q . (6)
Fracture mechanics of anisotropic
materials
9
as \[a (Aa n
Δα
- S, 0) w ( S , ττ) + σ ( Δ α - 5 , 0) w ( S , ττ)] d & n
5
s
T h i s is e q u i v a l e n t t o c o n s i d e r i n g t h e m o v e d c r a c k profile a n d a p p l y i n g t h e initial s t r e s s e s t o r e s t o r e t h e g r o w t h ; o f t e n r e f e r r e d t o a s c r a c k c l o s u r e f o r c e s . N o w for a linear system we have
so we m a y write 1/2
G =
. Δid α Jo Jo
\ Δ α\Aa-S
a n d u s i n g ξ = S/Δα "I /
r
dS
[/n(0) g n ( ^ ) + / ( 0 ) s
g (7T)], s
t h e first t e r m b e c o m e s
\ 1/2
T h e s e c o n d t e r m c a n b e c o n s i d e r e d as m a d e u p of t h e o p e n i n g , or m o d e - I , p a r t a n d s l i d i n g , o r m o d e - I I , p a r t a n d w e h a v e finally,
G = G, + G „ , G, = k / n ( 0 )
g (ir), n
(7)
It s h o u l d b e n o t e d t h a t e q s . (6) a n d (7) a s s u m e c o l l i n e a r c r a c k e x t e n s i o n u n d e r general l o a d i n g . F o r h o m o g e n e o u s materials this d o e s n o t often occur, b u t for highly a n i s o t r o p i c f r a c t u r e b e h a v i o u r , a s in l a m i n a t e s , it u s u a l l y d o e s , l e a d i n g t o c o n s i d e r able simplification of t h e analysis. 3. G determinations S i n c e a b a s i c a s s u m p t i o n o f f r a c t u r e m e c h a n i c s is t h a t t o u g h n e s s is d e f i n e d b y R a n d t h a t f r a c t u r e o c c u r s w h e n G = R, it is i m p o r t a n t t o h a v e c o n v e n i e n t s c h e m e s
10
J.G.
Williams
Fig. 6. Delamination.
for t h e d e t e r m i n a t i o n o f G I n s o m e c a s e s it is p o s s i b l e t o d e t e r m i n e G w i t h o u t r e c o u r s e t o t h e l o c a l s t r e s s field a n d o n l y r e m o t e f o r c e s n e e d b e c o n s i d e r e d . M o s t l o a d i n g s o n d e l a m i n a t i o n s in t h i n s h e e t s a r e o f t h i s f o r m a n d it is p o s s i b l e t o d e r i v e a g e n e r a l r e s u l t for all f o r m s o f l o a d i n g , w h i c h is u s e f u l in b o t h t e s t i n g a n d p r o d u c t design [12]. 3.1.
Method
of
analysis
F i g u r e 6 s h o w s s u c h a d e l a m i n a t i o n in a s h e e t o f t h i c k n e s s 2h w h i c h is l o c a t e d a d i s t a n c e h f r o m o n e s u r f a c e a n d h f r o m t h e o t h e r . It will b e a s s u m e d t h a t t h e p r o p a g a t i o n of t h e d e l a m i n a t i o n will b e s e l f - s i m i l a r a n d t h u s c o n s i d e r a b l e s i m p l i f i c a t i o n is p o s s i b l e . W e will a l s o l i m i t o u r a t t e n t i o n t o a u n i f o r m d e l a m i n a t i o n of w i d t h Β s o t h a t all p o s s i b l e l o a d i n g s a r e s h o w n in fig. 7 w h e r e t h e u n c r a c k e d p o r t i o n h a s a b e n d i n g m o m e n t M + M , a n a x i a l f o r c e P +P * a n d a s h e a r f o r c e Q + Q . In the cracked portion, these b e c o m e M P a n d Q o n t h e u p p e r (h ) s e c t i o n a n d M , P a n d Q o n t h e l o w e r (h ). C o n s i d e r i n g first t h e m o m e n t s a l o n e w e c o n s i d e r t h e c o n t o u r A B C D at t h e t i p o f t h e c r a c k Ο w h i c h m o v e s da t o C V F o r a n y b e a m w i t h a n a x i a l m o d u l u s E a n d a s e c o n d m o m e n t of a r e a I , t h e e n e r g y p e r u n i t l e n g t h of b e a m is x
2
x
x
2
x
2
1 ?
2
2
2
M
2
EI
2
x
x
2
x
1
x
x
2
X
X
F o r t h e m a t e r i a l w i t h i n t h e c o n t o u r w e m a y t h u s c a l c u l a t e t h e c h a n g e in s t o r e d e n e r g y w h e n t h e c r a c k m o v e s , as dU
=
M
M\
_2E l
2E I
xx x
XX
(M
+
x
M)
2
2
da.
2E I
2
XX
0
W e m a y n o w u s e e q . (5) d i r e c t l y s i n c e t h i s is a l i n e a r s y s t e m , a n d w r i t e ~
1
dU
Β
da
a
\M
M\
2
xx
X
(8)
I M const.
* P, + P is applied at h ( = h + [PJ(P, + P )]hi) general loads, there are interactions of Ρ and M. 2
l
2
t 0
gi
y e
z e r o
moments, arising from axial loads. For
Fracture mechanics of anisotropic
C
materials
11
Β
Fig. 7. Loadings on a delamination.
where I = hB(2hf
= $1,
0
1 = ±Bh\
I = &Bh\ = f x
/,
I =hBh\ 2
= {\-ξγΐ
N o t e t h a t a l t h o u g h t h i s is a n a n i s o t r o p i c m a t e r i a l , t h e s i m p l e stress s t a t e o n l y r e q u i r e s the modulus along the crack direction E = α ( s e e sect. 5.1). A s i m i l a r a n a l y s i s for t h e f o r c e s gives λ
n
η
•(ΡΛΡ2)
2
(9)
w h e r e A = Bh. T h e s h e a r f o r c e s r e q u i r e t h e c o n s i d e r a t i o n of t h e s h e a r s t r e s s d i s t r i b u t i o n a n d s i n c e t h e s e u s u a l l y a r i s e f r o m t h e m o m e n t g r a d i e n t s , i.e., dM da we can use a p a r a b o l i c distribution, giving G =
3
q
6 6
ri/dMA
105 Α [ ξ \ ά α )
2
1 (1-ξ)\άα)
/dM \ 2
2
/dM,
dM \ l
\âa
d a ) ]
2
2
9
1
j
w h e r e a is t h e s h e a r c o m p l i a n c e ( s e e sect. 5.1). A l t h o u g h R is t a k e n a s t h e b a s i c c r i t e r i o n o f f r a c t u r e , h e r e t h e r e is e v i d e n c e t h a t it is different u n d e r m o d e - I a n d m o d e - I I l o a d i n g . It is t h u s i m p o r t a n t t o s e p a r a t e o r p a r t i t i o n G i n t o t h e t w o c o m p o n e n t s . I n i s o t r o p i c m a t e r i a l s t h i s is m u c h less i m p o r t a n t s i n c e a n y t h i n g o t h e r t h a n m o d e - I is r a r e l y c o l l i n e a r . I n b e n d i n g , p u r e m o d e II o n l y o c c u r s w h e n t h e t w o a r m s h a v e t h e s a m e r a d i u s o f c u r v a t u r e in t h e s a m e d i r e c t i o n . N o w t h e r a d i u s of c u r v a t u r e of a b e a m ρ is g i v e n b y ( M / £ J ) so if w e h a v e a m o m e n t M „ o n t h e u p p e r a r m , w e h a v e 66
- 1
_ Ε , Iχ _ λ
EI
U 2
12
J.G.
w h e r e ψΜ
is t h e m o m e n t o n t h e l o w e r a r m for t h i s e q u a l i t y , i.e.,
η
3
(V)
ί
ψ-
Williams
M o d e I is m a d e u p of e q u a l m o m e n t s in o p p o s i t e s e n s e s o n t h e t w o a r m s , s o w e h a v e M = M]
Mj
u
and
Μ -ψΜ 2
Mi =
χ
M
= ψΜ
2
and
λΧ
+M \ M +M 2
M„ =
x
If w e s u b s t i t u t e t h e s e e x p r e s s i o n s for M
.
(11)
and M
x
in e q s . (8) w e h a v e
2
(l-ξ)
ξ
3
165/L
i.e.,
x
J
On expanding, the cross-product term becomes M,M„
1
2
= 0,
ψ
1(1- •ξΥ ξ
as r e q u i r e d b y p a r t i t i o n i n g , a n d _a M\
l +ψ
u
'
β/
_a„
16(l-£)
o X 3
1-f
° " ™ Κ 7
(
{Μζ-ψΜ,)
2
β / 16(1-^) (1 + ^ ) '
3
3
a„ 3 ( l - g ) ( M + M , )
2
2
1
+
*
)
=
Λ?
16^(1 + ^)
·
( 1 2 )
with G = G + G . F o r a x i a l l o a d s , p a r t i t i o n i n g is effected b y x
u
P = P +P X
U
X
and
p = p 2
n
+
f r o m w h i c h G = 0, a n d G is f o u n d d i r e c t l y f r o m e q . ( 9 ) . F o r s h e a r f o r c e s , G „ = 0 a n d Gi is f o u n d d i r e c t l y f r o m e q . ( 1 0 ) * . x
n
These results are of particular i m p o r t a n c e since they enable G to be d e t e r m i n e d s o l e l y f r o m t h e l o c a l m o m e n t s a n d l o a d s at t h e c r a c k e d s e c t i o n . T h u s o n l y a c o n v e n t i o n a l - b e a m t y p e o f a n a l y s i s is r e q u i r e d t o find t h e s e q u a n t i t i e s a n d n o r e c o u r s e t o e n e r g i e s is n e c e s s a r y . T h e a p p l i c a t i o n of t h e m e t h o d will n o w b e i l l u s t r a t e d b y a n u m b e r of e x a m p l e s . 3.2. Double
cantilever
beam
(DCB)
tests
T h e d o u b l e c a n t i l e v e r b e a m m e t h o d t e s t c o n f i g u r a t i o n s h o w n in fig. 8 is t h e m o s t c o m m o n l y u s e d for m o d e - I t e s t s w h e n s y m m e t r i c a l l o a d s a r e a p p l i e d , as in fig. 8a. We thus have M
2
= -M
x
= Pa,
* Global partitioning can give non-symmetric deformations which are not compatible with local solutions.
Fracture mechanics of anisotropic
a) mode I
materials
13
b) mode II
a
c) mixed mode
^
Fig. 8. The double cantilever beam (DCB) test.
a n d h e n c e f r o m e q s . (12) G„ = 0
and
1 + tft
^P'a BI
G,
2
16(1
~ξ)
3
i.e., p u r e m o d e I for all v a l u e s of ξ. F o r t h e u s u a l c a s e of ξ = \, ψ = 1, t h i s b e c o m e s the well-known result
«
p 2 c
2
(13)
ΒΕ Γ
1
η
T h e shear correction m a y be found, since dM
dM,
2
£
=
=
da
ρ
da
a n d f r o m e q . (10) w e h a v e ~
l3O α^ f ( l -Pf ) ' 2
6 6
a n d for ξ = \ w e h a v e a t o t a l G v a l u e g i v e n b y T
12PV BEhl 2
3
u
14-
10 loUii/U/
(14)
-
It s h o u l d b e n o t e d t h a t t h i s r e s u l t is t r u e for a n y profile of b e a m , a n d n o t j u s t t h e p a r a l l e l v e r s i o n s h o w n , s i n c e it is t h e local v a l u e s of B, E a n d h w h i c h a r e r e q u i r e d . u
J.G. Williams
14
If parallel beams are used and the total deflection at the load point, 8, is measured then from simple beam theory, Pa 3
18--2
-3E 11 / '
and Ell/can be found from the slope of the loading diagram prior to fracture, P / 8. This may be used in G calculations, so no separate modulus measurements are needed. Alternatively, eq. (13) may be written as 3 P8 G I =="2 Ba·
(15)
Corrections are needed for end rotations by adding J a 66 / 11 all h to the crack lengths [13]. Both this and the shear correction are sometimes approximated by using an empirical compliance oc an, n < 3. Even for slender beams the effects of these corrections can be significant, particularly on apparent modulus values. Figure 8b shows the same specimen in pure mode-II loading since
for
g ==!
and from eqs. (12),
G I == 0
and
p 2a2 h3 ° ll
9
Gil
=4
(16)
B2E
Note that this test is always in pure mode II, whatever the value of 1 M ==Pa-1 1+l/J
and
M 2 -l/JM1 == 0
giving
M
2
==Pa~·
1 + l/J'
g,
since
and
G I == o.
This is self-evident since the common boundary conditions for each arm lead to equal curvatures and GIl is given by the total moment M 1 + M 2 • Care must be taken in the test to ensure free sliding at the load-point interface by using a lubricant or small roller. A mixed-mode version of the DCB test is shown in fig. 8c in which an off-centre crack is used but with an unloaded upper arm so that, M 1 == 0
and
M 2 == Pa,
and from eqs. (12) 2
2
a 11_ p _ a - - -1- - G __ 1B/ 16(I-g)3(1+l/J)'
(17)
giving a fixed-ratio test in which, GIl == 3(1- g)4 GI g2
(18)
Fracture mechanics of anisotropic
15
materials
P(l-1/L)
Pl/L Fig. 9. Variable-ratio mixed-mode test.
A similar test m a y be d e s i g n e d using e n d - n o t c h e d t h r e e - p o i n t b e n d s p e c i m e n s to which a similar analysis can be applied. A s a f o o t n o t e it is w o r t h n o t i n g t h a t c o r r e c t i o n s for r e s i d u a l s t r e s s e s c a n b e m a d e via t h e s e m e t h o d s b y o b s e r v i n g a n y i n i t i a l d i s p l a c e m e n t s o r c u r v a t u r e i n c r a c k e d s e c t i o n s , c a l c u l a t i n g t h e m o m e n t s c a u s i n g t h e m , a n d t h e n i n c l u d i n g t h e m in t h e G calculations. 3.3.
A variable-ratio
mixed-mode
test
Figure 9 s h o w s a testing configuration w h i c h gives a c o n t i n u o u s l y varying ratio of G / u
G , f o r / < a < L. F o r 0
t h e t e s t is p u r e m o d e I I , b u t t h e r e a f t e r t h e r e
a r e different m o m e n t s o n t h e u p p e r a n d l o w e r a r m s . If w e c a l c u l a t e t h e f o r c e
P
x
b e t w e e n t h e t w o b e a m s at t h e r i g h t h a n d , w e h a v e
_2 a
2\a)
LJ '
giving the b e n d i n g m o m e n t s M, =
M =P,a,
P/(l-f)-P,a,
2
a n d , from eqs. (12), Pl
2 2
3Γ
(l\ V 2
^
Pl
2 2
9Γ
/a\1
2
T h u s , t h e t e s t c o n d i t i o n s c h a n g e f r o m p u r e m o d e II w h e n a = I t o p u r e m o d e I w h e n a = L. 3.4.
Large
displacements
in DCB
tests
In t e s t i n g t h i n l a m i n a t e s w i t h t o u g h m a t r i c e s , t h e d i s p l a c e m e n t s s o m e t i m e s b e c o m e l a r g e in c o m p a r i s o n w i t h a, as s h o w n in fig. 10, w h i c h c a n g i v e rise t o n o n - l i n e a r
J.G.
16
Williams
Fig. 10. Large displacements in the mode-I DCB test.
l o a d - d i s p l a c e m e n t d i a g r a m s o f t h e f o r m s h o w n in fig. 2. T h e a n a l y s i s m a y b e c o n d u c t e d in t e r m s o f local m o m e n t s a g a i n , a n d G , is g i v e n e x a c t l y b y e q . (13) b u t i n s t e a d of a w e h a v e x, t h e d i s t a n c e f r o m t h e c r a c k t i p t o t h e l i n e of a c t i o n of P, i.e., ϋ
λ 1
= - ^ - . BE I
(20)
U
A s δ i n c r e a s e s , χ < a, a n d s o Ρ m u s t i n c r e a s e t o give t h e s a m e G a n d h e n c e t h e u p w a r d c u r v a t u r e of t h e l i n e , χ c a n b e m e a s u r e d d i r e c t l y d u r i n g t h e t e s t , o r t h e i n c r e m e n t a l a r e a m e t h o d m a y b e u s e d t o find G b u t n e i t h e r m e t h o d is p a r t i c u l a r l y e a s y . I n p r a c t i c e , it is e a s i e r t o m e a s u r e 8 a n d a a n d h e n c e c a l c u l a t e x. T h i s m a y be done using a finite-displacement a n a l y s i s for b e a m s u s i n g t h e a n g l e s o f r o t a t i o n [ 1 4 ] in t e r m s of t h a t a t t h e l o a d p o i n t a , as s h o w n in fig. 10, s u c h t h a t , {
V
2a
3E I
= -J
χ =——-sin
u
a,
U
where Ιι=
f
άφ ι . . = Jo V s i n a - sin φ a
F o r s m a l l a , l =2a x
δ 2fl
? J
=
Pa 3£„7
1
and 7 and
[
a
and = 2
3
I= 2
a
χ = a,
Jo
sin>d> - = = = = = . vsina-sin>
» giving
( Ί Λ λ
(21)
Fracture mechanics of anisotropic
materials
17
TABLE 1 a
(rad)
hi
h
0.066 0.133 0.198 0.263 0.326 0.387 0.446 0.504 0.558 0.610 0.660 0.707 0.752
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
*Ί
cos a
0.994 0.977 0.953 0.914 0.869 0.815 0.755 0.688 0.617 0.542 0.464 0.385 0.304
0.990 0.961 0.913 0.848 0.770 0.681 0.585 0.485 0.386 0.292 0.206 0.131 0.072
2
the usual result. F o r large a, I a n d I m u s t b e evaluated numerically (or via elliptic x
2
integral tables) a n d we m a y express the result as a correction factor o n the smalld i s p l a c e m e n t v a l u e , i.e., 4 suna in a
Gi
?2 2
/
P V \
8
I
2
T a b l e 1 g i v e s t h e s e f u n c t i o n s for a r a n g e o f a v a l u e s s o t h a t if 8/2a in a t e s t , F
x
may be found and hence G
x
is m e a s u r e d
d e t e r m i n e d . E n d b l o c k s c a n affect t h e s e
c o r r e c t i o n s a n d c a n b e i n c l u d e d [ 1 4 ] . A u s e f u l a p p r o x i m a t i o n for m o d e r a t e (8/a
8/a
< 1) v a l u e s is, F =
\ - U 8 / a ) \
x
I n m o d e I I , t h e a n a l y s i s is s o m e w h a t m o r e c o m p l i c a t e d b e c a u s e o f t h e c h a n g e in J at t h e c r a c k e d s e c t i o n , a s s h o w n in fig. 1 1 . H e r e w e m u s t i n c l u d e t h e a n g l e a
x
at
this point, a n d the results are [16]
αφ {
Vsin a - sin φ
^ - Ι ^ Γ ' . ^
h Jo
8_]_[ a
C
a
4
ά
.
φ
,
ν sin a Η- 3 s i n a —4 s i n φ
and
x
sin(/>d>
(
{
J L J «, V s i n a — s i n φ
J
3
4 sin φ
a
άφ
Vsin a + 3 sin a — 4 sin φ x
0
a n d t h e c o r r e c t i o n f a c t o r is G„
gT
4(sina-sina )
^
ï
71
-
F l
^
"
3
P a 2
2
°·"Ϊ6Ϊ3Ε^7·
T h i s is a r a t h e r c o m p l i c a t e d p r o c e d u r e s i n c e a
x
( 2 3 )
must be found; however, a good
J.G.
18
Williams
γ /
V / V
•L-
δ
_t
Fig. 11. Large displacements in mode II.
a p p r o x i m a t i o n m a y b e f o u n d if a
x
is s m a l l , w h i c h is t r u e a s a/L^>
1 [ 1 5 ] , in w h i c h
case, (24) As a / 0 ,
F
computed F
u
3.5.
-» c o s a ( s h o w n in t a b l e 1) a n d t h i s s h o u l d b e u s e d if t h e a p p r o x i m a t e 2
u
< cos
Transverse
2
a.
splitting
from
notches
The general m e t h o d developed here may be applied to the situation illustrated in fig. 12 in w h i c h a s p e c i m e n w i t h a n o t c h l e n g t h α in a w i d t h w fails s u c h t h a t a c r a c k C r u n s n o r m a l t o t h e n o t c h . S u c h f a i l u r e s o c c u r in c o m p o s i t e s w h e n t h e r e a r e n o t c h e s n o r m a l t o t h e fibre d i r e c t i o n . If w e a s s u m e t h a t t h e s p l i t C is o u t s i d e t h e l o c a l s t r e s s field o f t h e n o t c h t h e n w e m a y u s e t h e l a m i n a t e a n a l y s i s a n d w r i t e a = h,
w = 2/ï ,
}
w-a
=
h . 2
F o r t h e t e n s i o n c a s e , s h o w n i n fig. 12a , w e h a v e P = 0 a n d P = Ρ a n d if w e a s s u m e x
2
parallel grips with n o i n d u c e d m o m e n t s then, from eq. (9),
w i t h ξ= a/w.
T h i s m a y b e w r i t t e n in t e r m s o f t h e n o r m a l f r a c t u r e m e c h a n i c s f o r m ,
E G= XX
U
w h e r e cr = P/2hB
Υ σ α, 2
2
is t h e g r o s s s t r e s s a n d Y (a/w) 2
is a c a l i b r a t i o n f a c t o r . ( N o t e t h a t
Fracture mechanics of anisotropic
2h
materials
19
ι
—w
κ hi h
Ρ/2
Ρ/2 b) Three point bending
a) Tension Fig. 12. Transverse splitting from notches.
E
is t h e m o d u l u s in t h e c r a c k d i r e c t i o n a n d n o t in t h e d i r e c t i o n o f t h e n o t c h . )
u
Thus we have EG n
=
u
1
Υ σ α, 2
2
η
(25)
2(1-a/w)'
R e f e r e n c e [ 1 6 ] gives a s o l u t i o n for t h i s c a s e d e r i v e d f r o m t h e s h e a r l a g m o d e l w h i c h i n c l u d e s a c o r r e c t i o n f o r t h e l o c a l s t r e s s field effects, a n d t e n d s t o e q . (25) for l a r g e C. For pin loading on the central axis, m o m e n t s are i n d u c e d o n h giving Μ , = 0 a n d M = Ρηξ a n d w e n o w h a v e a m o d e - I c o m p o n e n t a s w e l l a s a m o d e - I I c o m p o n e n t . W e can n o w write 2
2
EG U
=
U
Υ σ α, 2
2
ητ
where
_(
2
3
Y
I T
2 I I T
a
/
w
y
g
2\\-a/w) 1 2 ( 1 - a/w)
/
w d
(a/w) + ( l - a / w ) ' 3
3
Γ L
™
3(l-a/w)(a/w) (a/w)
3
+
(26)
(l-a/w)
F o r t h r e e - p o i n t b e n d i n g , s h o w n in fig. 1 2 b , w e h a v e n o a x i a l l o a d s a n d M M = P/4(LC). If w e n o w u s e t h e l o c a l b e n d i n g s t r e s s ,
x
2
3 σ = 8
P(L-C) BW{\-a/wY
= 0 with
J.G.
20
TABLE 2 Calibration factors for transverse splitting, EG Y
Y
2
0.500 0.555 0.625 0.714 0.833 1.000 1.250 1.667 2.500 5.000
σ α. 2
η
Y
2
2
1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
= Υ
2
X
a/w
Williams
0.0 0.0 0.009 0.096 0.635 3.0 10.84 36.05 147.7 1348.0
II
^11 Β
τ
0.500
0.0
0.500
0.761 1.202 1.931 2.976 4.000 4.464 4.505 4.808 6.849
0.003 0.025 0.118 0.441 1.333 3.348 8.175 25.64 184.9
0.616 0.769 0.946 1.071 1.000 0.714 0.405 0.192 0.069
then
1
(a/w)
2
6 (\ -a/w)\(a/wf
Y 1
II Β
-a/wfY (27)
l — a/w
1
2
+ (\
"2 (a/w)
+
3
(l-a/w) ' 3
T h e s e c a l i b r a t i o n f a c t o r s a r e g i v e n in t a b l e 2. 3.6.
Buckling
under
compression
F i g u r e 13 s h o w s a c r a c k e d s e c t i o n u n d e r c o m p r e s s i o n a n d s e r v e s as a useful v e h i c l e for i n d i c a t i n g h o w t h e G a n a l y s i s m a y b e useful in d e s i g n . If w e c o n s i d e r t h e c a s e o f a d e l a m i n a t i o n v e r y c l o s e t o t h e s u r f a c e s o t h a t ξ = h /2h < 1, t h e n w e m a y c o n s i d e r t w o p o s s i b l e f o r m s of b u c k l i n g b e h a v i o u r : g l o b a l a n d l o c a l (as s h o w n ) . T h e r e is a l s o a t h i r d p o s s i b i l i t y of a l o c a l b u c k l i n g s u p e r i m p o s e d o n t h e c o m p r e s s i o n s i d e . T h i s is s i m p l y t h e s t r u c t u r a l b e h a v i o u r w h i c h m a y b e a n a l y z e d v i a t h e u s u a l x
Local
S
^
ItI
.r-'
$ S
S
Buckling
v
-χ
v
L
L...
•
•
...
X Global
Fig. 13. Laminate under compression.
Buckling
Fracture mechanics of anisotropic
materials
21
E u l e r s t r u t t h e o r y . S i n c e / is a p p r o x i m a t e l y c o n s t a n t a l o n g t h e s e c t i o n (ξ < 1), t h e g l o b a l b u c k l i n g l o a d for t h i s b u i l t - i n e n d c a s e is .
2TT
E Bh
2
3
n
3
c
L
(28)
2
w h i l s t for l o c a l b u c k l i n g ^
p
E
^
6
__
( 2 9 )
1
a
1
T h u s , for l o c a l b u c k l i n g t o p r e c e d e g l o b a l b u c k l i n g w e h a v e P
and
C
£= ^ < f 2h L
(30)
P r i o r t o b u c k l i n g t h e r e is n o e n e r g y r e l e a s e s i n c e t h e r e is u n i f o r m s t r e s s i n g b u t in the b u c k l e d states G exists. F o r simple global buckling we m u s t c o m p u t e the m o m e n t at t h e c r a c k e n d s . If M
0
is t h e m o m e n t at t h e b e a m e n d , t h e n t h e b e a m e q u a t i o n
for t h i s c a s e is ά ν
M -P v
2
0
dx "
c
E SI
2
'
U
w h e r e ν is t h e d i s p l a c e m e n t of t h e b e a m ( s e e fig. 13) a n d t h e b o u n d a r y c o n d i t i o n s are df ν -= — = 0 dx
at
χ = 0
du ^ — = 0 dx
at
χ = L,
and
giving a m o m e n t d i s t r i b u t i o n of M = M
0
c o s ax.
Eu%I
A l s o , w e h a v e sin aL = 0 g i v i n g a l o w e s t b u c k l i n g m o d e o f aL=n and thus the s o l u t i o n for P in e q . ( 2 8 ) . T h e m o m e n t at t h e c r a c k e n d is g i v e n w h e n x = ( L - a ) , i.e., M = M COS π ( 1 - a/L) = - M c o s πα/L. M is d e t e r m i n e d b y t h e d i s p l a c e m e n t after b u c k l i n g , δ , a n d m a y b e f o u n d via energy, since c
a
0
0
0
Β
, . 8 P=2 = 2 [ Jo 2 L
n
F o r ξ<1,
M — Efilt 2
LM
2
dx = -
u
e q s . (12) g i v e s ^
0 0
E 16I U
= 0, a n d
J.G.
22
Williams
This may be rewritten as, G„ = G „ ( | - l ) ,
(31)
where 2ττ _
(h h \
4
n
A
x
8
c
~
3
L
F o r l o c a l b u c k l i n g t h e r e is a m o d e - I c o n t r i b u t i o n f r o m b e n d i n g t h a t m a y b e c o m p u t e d as in t h e p r e v i o u s c a s e a n d a l s o a m o d e - I I c o n t r i b u t i o n f r o m t h e m i s m a t c h of a x i a l l o a d s s i n c e t h a t in t h e b u c k l e d s e c t i o n r e m a i n s c o n s t a n t w h i l e t h a t in t h e t h i c k e r section rises. T h e results are
G^G l
and
~ y ( \ - a / L )
0
Or
J
(32)
4-
nil
G =
where
u
G ^\j-y(l-a/L) 0
Va 2 f t / T h u s for γ < 1 , l o c a l b u c k l i n g will p r e c e d e g l o b a l b u c k l i n g , a n d G a n d G will rise u n t i l 8/8 = 1. At t h i s p o i n t g l o b a l b u c k l i n g will t a k e o v e r a n d e q . (31) p e r t a i n s , g i v i n g a l i n e a r i n c r e a s e in G w i t h δ, b u t r e s t a r t i n g a t z e r o for 8/8 = 1. If t h e l o c a l b u c k l i n g p e r s i s t s o n t h e c o m p r e s s i o n s i d e o f t h e g l o b a l d e f o r m a t i o n t h e n its c o n t r i b u t i o n t o G r e m a i n s at t h e 8/8 =l value. T h e n a t u r e of b o t h l o a d a n d total G b e h a v i o u r for t h e s e t h r e e c a s e s is i l l u s t r a t e d in fig. 14 a n d s e r v e s t o e m p h a s i z e t h a t t h e b e h a v i o u r o f s u c h a s t r u c t u r e is q u i t e c o m p l i c a t e d , e v e n for t h i s v e r y s i m p l e s y s t e m . T h e b u c k l i n g c o n t r o l s t h e c h a n g e s in G a n d t h i s in t u r n is d e t e r m i n e d b y t h e g e o m e t r y of t h e s y s t e m . A x i a l s p l i t t i n g o c c u r s w h e n G r e a c h e s s o m e critical c o n d i t i o n a n d t h i s c a n b e in a n y of t h r e e m o d e s of b u c k l i n g . x
u
C
u
c
c
4.
Stability
T h e s t a b i l i t y o f a c r a c k is i m p o r t a n t in b o t h t e s t i n g a n d d e s i g n , s i n c e c r a c k s w h i c h " j u m p " a r e u n d e s i r a b l e in b o t h c a s e s . A s m e n t i o n e d in sect. 2, w e s h a l l d e f i n e u n s t a b l e h e r e as t h e c o n d i t i o n w h e n G > R s o t h a t t h e k i n e t i c e n e r g y o f t h e s y s t e m i n c r e a s e s v i a a n i n c r e a s e in c r a c k s p e e d . T h e i n s t a b i l i t y c o n d i t i o n m a y b e w r i t t e n as [ 1 2 ] dG Tda"
dR >
T "da-
If R is c o n s t a n t t h e n dR/da
(
3
3
)
= 0, b u t w h e n R i n c r e a s e s w i t h c r a c k g r o w t h , t h e
" i n c u r v e effect", t h e n t h e s y s t e m is m o r e likely t o b e s t a b l e . I n a n y r e a l s i t u a t i o n ,
Fracture mechanics of anisotropic
materials
23
p r e d i c t i o n c a n o n l y b e m a d e p r e c i s e l y if R(a) a n d G(a) a r e k n o w n ; h o w e v e r , a useful p r a c t i c a l g u i d e t o c r a c k b e h a v i o u r c a n b e o b t a i n e d q u i t e s i m p l y b y c o n s i d e r i n g t h e l i m i t i n g c a s e of dR/da =0 a n d d e f i n i n g G u n d e r c o n s t a n t d i s p l a c e m e n t c o n d i t i o n s . I n t h i s c a s e , t h e r e is n o e x t e r n a l w o r k p e r f o r m e d s o it is a b e s t c a s e in t h a t o t h e r l o a d i n g s y s t e m s a r e l i k e l y t o b e m o r e u n s t a b l e . I n t e s t i n g w i t h stiff m a c h i n e s , c r a c k g r o w t h is effectively a t fixed d i s p l a c e m e n t s o t h e c o n d i t i o n is h e l p f u l in d e s c r i b i n g s u c h t e s t s . W e s h a l l t h u s d e f i n e a s y s t e m a s stable w h e n , dG da
^0,
(34)
u const.
b u t r e c o g n i z e t h a t c h a n g e s o f l o a d i n g o r R(a)
m a y c h a n g e this condition.
24
J.G.
Williams
T h e a n a l y s i s is b e s t c o n d u c t e d in t e r m s o f t h e c o m p l i a n c e C o f t h e b o d y C(a)
= u/P,
(35)
w h e r e w e a s s u m e l i n e a r l o a d - d e f l e c t i o n b e h a v i o u r (i.e., i g n o r i n g l a r g e - d i s p l a c e m e n t effects). If w e r e t u r n t o e q . ( 3 ) w e h a v e BG = P-
d Γ — P du, da J
du da
a n d on substituting for Ρ w e have _ u du d u BG = —-—--— C da da J C
u
dC
2C
da
T h e stability c o n d i t i o n , eq. (3), m a y n o w b e written as dG
u(
C"
2
da ~ 2
2C'
\BC
B'C
2
2
BC
BC
3
2
w h e r e t h e p r i m e s d e n o t e d i f f e r e n t i a t i o n w i t h r e s p e c t t o a. T h i s c o n d i t i o n m a y b e written as ^
C(a)
C (C"
B'\
,
x
m a y b e f o u n d f r o m t h e u s u a l a n a l y s i s o f t h e g e o m e t r y u s e d , b u t it is o f t e n
m o r e c o n v e n i e n t t o p r o c e e d f r o m t h e G s o l u t i o n . If w e r e t u r n t o e q . (36) a n d s u b s t i t u t e f o r u in t e r m s o f Ρ w e h a v e P
dC , da'
2
BG =
2
and, hence, [ 2BG a
C=
—T-da + C
where C
0
0
is t h e c o m p l i a n c e f o r α = 0.
If w e c o n s i d e r t h e D C B i n m o d e - I l o a d i n g , t h e n f r o m e q . ( 1 3 ) w e h a v e Pa 2
G\ —
2
ΒΕ Ι' η
a n d , h e n c e , for c o n s t a n t Β a n d h values, 2a ~3E I~ U
3
8a
3
E Bh
39
u
s i n c e C = 0 for t h i s c a s e . T h u s , o
Fracture mechanics of anisotropic
materials
i.e., s t a b l e b e h a v i o u r . F o r t h e c a s e of t h e p r o f i l e d s e c t i o n w i t h Β c o n s t a n t hoca ,
C
2/3
25
and
is c o n s t a n t a n d B' = C " = 0, g i v i n g Γ = 0 a n d s t a b l e b e h a v i o u r ( d G / d a
is z e r o for fixed l o a d in t h i s c a s e ) . If h is c o n s t a n t a n d B oc α a s u s e d in s o m e l a m i n a t e t e s t s , t h e n B'/ Β = C"/ C = 1/ a a n d Γ = 0 a g a i n , a n d d G / d a = 0 for c o n s t a n t load. F o r t h e m o d e - I I t e s t , e q . (16) gives 2BG
9a
2
U
C
'
P
~2E Bh '
2
3
u
and, hence, C
_ 3 a
3
+ L
3
24EI for a u n i f o r m s e c t i o n , g i v i n g
a n d h e n c e for 0
unstable,
Γ>1;
0.55
stable,
Γ<1.
F o r t h e t a p e r e d c a s e , Boca,
G „ is c o n s t a n t at c o n s t a n t l o a d a s in m o d e I, a n d a g a i n
Γ = 0, i n d i c a t i n g s t a b l e b e h a v i o u r .
5. Cracks in anisotropic sheets C e r t a i n configurations of cracks a n d l o a d i n g s d o n o t l e n d t h e m s e l v e s to analysis via t h e m e t h o d s d i s c u s s e d p r e v i o u s l y a n d it is m o r e c o n v e n i e n t t o p r o c e e d via l o c a l stress fields at t h e c r a c k t i p . T h i s is, of c o u r s e , t r u e for i s o t r o p i c m a t e r i a l s a l s o a n d l e a d s t o t h e stress i n t e n s i t y f a c t o r a n a l y s i s . I n o r d e r t o p r o c e e d w i t h t h i s a p p r o a c h h e r e w e m u s t b e a b l e t o s o l v e stress-field p r o b l e m s in a n i s o t r o p i c m e d i a a n d t h e s e c a n b e v e r y difficult. T h e o n l y v i a b l e m e t h o d is u s i n g c o m p l e x a n a l y t i c f u n c t i o n t h e o r y , w h i c h is d i s c u s s e d i n g r e a t d e t a i l b y L e k h n i t s k i i [ 4 ] . H e r e , w e will c o n f i n e o u r s e l v e s t o j u s t t h o s e p a r t s n e e d e d for t h e c r a c k p r o b l e m a n d d e r i v e t h e r e s u l t s g i v e n b y S i h et al. [ 1 7 , 1 8 ] . 5.1.
Basic
method
C o n s i d e r first a s t a t e o f p l a n e stress d e s c r i b e d w i t h c a r t e s i a n c o o r d i n a t e s c o m p o n e n t s σ , σ a n d τ . In the a b s e n c e of b o d y forces the e q u i l i b r i u m r e l a t i o n s h i p s are χ
ν
χν
J.G.
26
Williams
T h e s e m a y b e satisfied in t h e u s u a l w a y b y u s i n g t h e A i r y s t r e s s f u n c t i o n ψ(χ, defined such that
dx
dx
y),
dy
The strains e , e a n d y a r e d e f i n e d in t e r m s o f t h e d i s p l a c e m e n t s in t h e χ a n d y o f d i r e c t i o n s , u a n d v, r e s p e c t i v e l y , x
y
xy
du
dv
du
dV
Θλ:
3_y
dy
dx
E l i m i n a t i o n of the d i s p l a c e m e n t s leads to the compatibility c o n d i t i o n ,
8 ^
3 ^
+
dy
dx
=
a ^ dx
H o o k e ' s l a w for compliances, e = a a x
u
e = ασ y
2ι
χ
x
(41)
dy
a general
+ a (r
+
+ α σ,
+ ατ,
l2
22
y
}
isotropic material
may
be written
in t e r m s
of
ar, l6
26
xy
(42)
χν
Jxy = «61 ^ + «62^ + α Τ . 66
χν
S y m m e t r y r e q u i r e s t h a t a = « 2 1 a n d α = α , s o t h e r e a r e six i n d e p e n d e n t c o n s t a n t s . A n i m p o r t a n t p r a c t i c a l c a s e is t h a t of o r t h o t r o p y in w h i c h t h e p r i n c i p a l e l a s t i c d i r e c t i o n s a r e o r t h o g o n a l , a n d if t h e y c o i n c i d e w i t h t h e c o o r d i n a t e d i r e c t o r s , t h e n « 1 6 « 2 6 0, a n d t h e r e is n o i n t e r a c t i o n o f s h e a r a n d t e n s i o n w i t h o n l y four c o n s t a n t s . T h e six c o n s t a n t s for a n o r t h o t r o p i c m a t e r i a l in a c o o r d i n a t e s y s t e m r o t a t e d t h r o u g h a n a n g l e 0 m a y b e e x p r e s s e d as 1 2
=
1 6
6 2
=
C
1 1
= a
+ Zl(l-cos20) +
r(l-cos40),
C
2 2
= «22-4(l-cos20)+
r(l-cos40),
1 1
C =a
-4r(l-cos40),
C
-
66
66
(43) = a
l2
C
l2
1 6
=
C= 26
r(l-cos40),
4 sin 2 0
+2rsin40,
4 sin 2 0
+2rsin40,
where Δ =\{a -a ) 22
u
and
Γ = |(2α
1 2
+ a
6
6
-a
2
2
-a ). u
T h e o r t h o t r o p i c coefficients a r e o f t e n e x p r e s s e d a s m o d u l i a n d P o i s s o n ' s r a t i o s ,
Fracture mechanics of anisotropic
materials
27
F o r t h e i s o t r o p i c c a s e , t h e n u m b e r of c o n s t a n t s r e d u c e s t o t w o , s i n c e a
22 = —
a
=
n
,
= 2—^r-
a
66
and
a
l 2
= - — .
(45)
I n t h e s u b s e q u e n t a n a l y s i s w e u s e t h e p a r a m e t e r s for a n o r t h o t r o p i c m a t e r i a l ,2
λ
22
,
= —
and
a
2012+066
χ =—-
,
(46)
w h i c h m a y b e c a l c u l a t e d d i r e c t l y f r o m t h e v a l u e s o f a, o r v i a a 2 a n d a , a n d t h e 2
c o m p l i a n c e a t ±\ττ Cu(W)
u
is C (\n),
=
22
since, from eq. (43),
C (W)
= C (W)
n
4
=\(a
22
—
=
l
l
+α
λ
+ 2α
22
1 2
+ α ), 6 6
i.e.,
+ À + 2^. 2
«11 T h e s o l u t i o n for t h e g e n e r a l c a s e m a y b e d e d u c e d b y s u b s t i t u t i n g e q s . ( 4 2 ) i n t o e q . (41) a n d t h e n r e p l a c i n g t h e s t r e s s e s b y t h e e x p r e s s i o n s in t e r m s o f φ
from
eqs. (39), giving
aV
0ii—z~2a 3 /
1 6
aV a/ax
—-,
,
h(2a
1 2
+ a
x 6 6
aV ay ax
) — 52 — 2 - 2 a 2
2 6
aV aV ^+0 2—z ay ax ax 3
2
4
= 0.
,
x
(47)
For the isotropic case, this reduces to —
+2
Α
a/
+ - ^ = 0,
Ψ 2
2
ay ax 2
ax
2
V V = 0,
i.e.,
4
the b i h a r m o n i c e q u a t i o n of c o n v e n t i o n a l elasticity t h e o r y . S o l u t i o n s of eq. (47) c a n b e c o n v e n i e n t l y e x p r e s s e d in t e r m s of f u n c t i o n s o f t h e c o m p l e x v a r i a b l e ζ = χ +
μγ,
w h e r e μ = a + i/3, a a n d β a r e r e a l c o n s t a n t s a n d i =
>/ T. =
T h i s c a n b e s e e n b y r e c o u c h i n g t h e v a r i o u s d e r i v a t i v e s , i.e.,
aψ ay 4
dV az
τ—4 = μ τ 4 4
-
_
4.1V
— m
a n d eq. (47) b e c o m e s ψ
1 ν
[α μ -2α 4
η
1 6
μ
3
+ (2α
+ α )μ -2α μ
+ α]
2
12
66
26
22
T h u s t h e s o l u t i o n m a y b e e x p r e s s e d a s any
= 0.
(48)
f u n c t i o n o f ζ for w h i c h μ t a k e s t h e
f o u r r o o t s o f t h e c h a r a c t e r i s t i c e q u a t i o n in b r a c k e t s in e q . ( 4 8 ) . It h a s b e e n s h o w n in ref. [ 4 ] t h a t t h e s e r o o t s a r e e i t h e r c o m p l e x o r p u r e l y i m a g i n a r y a n d o c c u r as t w o conjugate pairs, ζ = α + \β Χ
λ
ΐ9
ζ = α -\β Χ
Χ
λ >
ζ = α + \β , 2
2
2
ζ = 2
α -[β, 2
28
J.G.
Williams
a n d t h e s o l u t i o n is ψ = ψ (ζ ) λ
+ ψ (ζ )
γ
χ
+ φ (ζ )
χ
2
+
2
ψ (ζ ). 2
2
N o w it c a n b e s h o w n b y c o n s i d e r i n g a n y p o l y n o m i a l f u n c t i o n of ζ t h a t for a n a n a l y t i c f u n c t i o n (i.e., a f u n c t i o n of w h i c h all d e r i v a t i v e s exist) w e h a v e t h a t ^(z ) + ^(z ) = 2 R e ^ ( z ) , I
1
1
so the solution r e d u c e s to ψ = 2Κε[ψ (ζ ) χ
+ ψ (ζ )1
χ
2
(49)
2
w h e r e R e m e a n s t h e r e a l p a r t of. For the special case of isotropy there are equal roots, μ specific f o r m of eq. ( 4 9 ) ,
χ
ψ = 2Κ^[ζψ\(ζ)
+
= μ = i, a n d w e h a v e a 2
φ (ζ)], 2
w h i c h is t h e b a s i c r e s u l t u s e d b y M u s k h e l i s h v i l i [ 6 ] . T h e e x p r e s s i o n s for s t r e s s e s in e q s . (39) m a y n o w b e r e w r i t t e n , e.g., d \b 2
ο- =-
1
χ
2
dy
= 2Κε[μ ψ';(ζ )
+
2
χ
χ
μ\φ' \ζ )\ 2
2
a n d t h e d i s p l a c e m e n t s f r o m e q . (40) b e c o m e , e.g., du
du dz
du
dx
dz dx
dz
•a a xx
+aa
x
x2
+
y
ar, X6
xy
and on substituting and integrating we have w-2Re[(^ a
+ a -^ a )iA (z ) + (^^a
2
,
n
1 2
1
1 6
1
1
ignoring rigid-body rotations. It is c o n v e n t i o n a l t o r e p l a c e ψ'(ζ) σ=
2Κε[μ φ[(ζ )
a =
2Κϊ[φ' (ζ )
χ
χ
y
r
xy
+
2
χ
χ
+
χ
= -2 Κ^[μ φί(ζ ) ι
w i t h φ(ζ),
2
2
2
1 6
)^ (z )], 2
2
s o w e h a v e t h e final e x p r e s s i o n s
φ' {ζ )1 2
2
2
2
2
(50)
9
ρ φ (ζ )]
ν=
2 Re[g,0 (z ) + g 0 (z )],
χ
1
-/x a
2
2 Κε[ρ φ (ζ )+ χ
1 2
μ φ' (ζ )1
u =
χ
+ a
2
+ μ φ (ζ )]
ι
u
2
1
2
2
2
2
9
2
where Pl,2 = Μ 1,2^11 + ^ 1 2 - ^ 1 , 2 ^ 1 6 , «1,2 = Μΐ,2«12 + « 2 2 / Μ 1,2 ~ «26 ·
T h e f o r m s of φ c a n b e d e d u c e d b y v a r i o u s m e t h o d s , a n d a w i d e v a r i e t y of s o l u t i o n s a r e g i v e n in ref. [ 4 ] ( a l t h o u g h n o t for t h e c r a c k p r o b l e m ) . E v a l u a t i n g t h e c o m p l e x e x p r e s s i o n c a n b e q u i t e l e n g t h y s i n c e , in g e n e r a l , t h e c o m p l e x v a l u e s of μ m u s t b e
Fracture mechanics of anisotropic
materials
29
f o u n d . T h i s p r o c e s s is c o n s i d e r a b l y e a s e d b y t h e u s e o f c o m p l e x - n u m b e r facilities in s o m e c o m p u t e r c o d e s . T h e i m p o r t a n t o r t h o t r o p i c c a s e is m o r e t r a c t a b l e s i n c e eq. (48) b e c o m e s + 2 * μ + λ = 0.
4
2
μ
(51)
2
Thus μι,2 = ^ = [ ( ^ + λ )
±( τ-λ)
1 / 2
] = ω , ί,
1 / 2
Λ
1
χ>λ,
2
and (52)
Mi,2 = ^ U - ^ )
1
/
+ i(^+ A)
2
1 / 2
],
*<λ.
For both conditions, Mi + / * 2 5.2.
i>/2(* + λ )
=
The crack
and
1 / 2
μμ ι
=
2
-λ.
problem
C o n s i d e r a t i o n s of p a t h i n d e p e n d e n c e of G for linear elastic materials, including the general a n i s o t r o p i c case, r e q u i r e (see sect. 2) t h a t in t h e region of t h e crack t i p t h e s t r e s s field will h a v e t h e f o r m r
- 1 / 2
w h e r e r is t h e r a d i a l d i s t a n c e f r o m t h e c r a c k
tip. Since t h e c o m p l e x variable h a s t h e form ζ = x + μγ, w e c a n w r i t e t h i s i n t e r m s o f p o l a r c o o r d i n a t e s , s e e fig. 4 , a s ζ = r ( c o s θ + μ s i n Θ), so that w e w o u l d expect a stress function of t h e form φ'(ζ)
= Αζ'
ι /
\
w h e r e Λ is a c o m p l e x c o n s t a n t . If w e w r i t e F
= (cos θ + μ
l i 2
ι
sin 0 ) ~
α
1 / 2
,
then t h e stresses b e c o m e 2 v r
a =-^Re[A F v
i
l
+
AF] 2
2
9
2 r
x v
= - - = Re[/X! A
Vr
x
F, + /x i4 F ]. 2
2
2
T h e constants a r e defined b y t h e stress-free crack face c o n d i t i o n s , 0 =
±7f,
σ> = τ
χ > ;
= 0,
F
1
2
= -i,
30
J.G.
Williams
a n d t h e stress i n t e n s i t y f a c t o r s a r e d e f i n e d a s in t h e i s o t r o p i c c a s e , i.e., 0 = 0,
K
= a yj27rr
{
and
y
Κ
= r
χι
\ 2πτ,
F
/
xy
x2
= 1,
giving the conditions
0 = Im04, + A ), 2
0 = Im( μΑ χ
K /2V2^
+
χ
μ Α ), 2
= Re(A
X
+ A) = A +
x
-K /2\Î2tt
2
2
A,
x
2
= R e ( μ A + μ A ) = μΑ
u
1
1
2
2
χ
χ
+
μΑ, 2
2
w h e r e I m m e a n s i m a g i n a r y p a r t of. T h u s ,
Α = λ 1
-^2
2V27r(^ -/x ) ( K , + W / * ) , 2
l
A
2
=
2
2V2TT(^ -/X ) 1
(Κ, + Χ , , / μ ι ) ,
2
(note that Α are complex). T h e s t r e s s e s m a y t h e n b e d i v i d e d i n t o s y m m e t r i c (K ) parts, 1 > 2
x
and skew symmetric
(K ) u
(μ Ρ -μ Ρ ) χ
2
2
χ
.μι - μ 2 1
(μ Ρ -μ Ρ ) χ
2
2
χ
.μι - μ 2 μιμ2
(F,-F )
and
2
.μι - μ 2
(53)
1 (
μι - μ 2 1
(
μ ι -μι 1 y/Znr
(μχΡχ-μιΡι)
Ιμ\~μι
T h e d i s p l a c e m e n t s a r e in t e r m s of φ(ζ) u=:4V~rRe[p (A /F ) x
x
x
+
= 2Az
p (A /F )l 2
2
2
a n d a g a i n w e m a y w r i t e t h e s e in t w o p a r t s 1 />ι/>2 μ Ρι\ Re ^ λ / ^ τ γ γ „ J . μ ι l- μ \/ μ ιPi /? μF2/>Γ /, 2
2
2
x
1 / 2
s o t h a t , e.g.,
Fracture mechanics of anisotropic
,
Γ
77
materials
31
and (54)
\ίϊτη
λ
^1 7Γ
T h e b o u n d a r y c o n d i t i o n s a r e , of c o u r s e , m e t b y t h e s e r e l a t i o n s h i p s . I n m o d e I, e.g., at 0 = 0, F = F = 1, a n d {
2
Κε(-μ μ ), ι
r
2
= 0,
xy
a n d at 0 = π, F = F = - i , x
^
2
Κ, σ =~ϊ=Κφμ μ ),
= - ^ = R e ( - i ) = 0,
χ
ι
r
2
xy
= 0,
i.e., s t r e s s - f r e e c r a c k f a c e s . T h e f o r m o f t h e s t r e s s d i s t r i b u t i o n m a y b e w r i t t e n in r e a l f u n c t i o n s for t h e o r t h o t o p i c c a s e (χ> λ ) , e q . ( 5 2 ) , s i n c e ^
/
.
F = (cos
.
Λ
ν _
0 + ιω sin 0)
a n d if ( c o s 0 - ί ω sin 0 )
1
/
7
2
= -
(cos
θ-ϊω
52
sin 9
.
0)
(cos 0 4 - ω sin
2
1 / 2
—-rrr, 1 / 2
7
0)
'
= a + i6, t h e n
1 / 2
a = - ^ [ c o s 0 + Vcos 0 + w s i n 2
2
1 6=-^[-cos 0Wcos
2
2
0]
2
0 + w sin 2
1 / 2
,
0],
2
a n d h e n c e w e h a v e , for e x a m p l e , Κ
1
λ
~V2^?
[^(cos 0+ // )
c u ( c o s 0 + H ) /2'
1 / 2
1
2
ν 2(ω -ω )ί
ay
H
/
1
2
2
2
~
where //
= (cos 0 + ω , sin 2
1 2
2
2
2
0)
1 / 2
.
F o r a slightly a n i s o t r o p i c material we c a n write ω ~\ λ
— δ,
ω = 1 + δ, 2
and Η -> 1 - δ s i n 0, 2
λ
Η ^ 1 + δ s i n 0, 2
2
1
//,
J.G.
32
Williams
and we have K,
/ l + c o s îy 0\
ΓίττΛ κ, "
1 / 2
Γ
2
sin 0 2
2 1 + co s 0 cos 50[ 1+ sin(§0 ) - s i n ( £ 0 ) ] ,
c o s ( | 0 ) [ l + s i n 0 - s i n Q 0 ) ]= 2
V 2OT
1
1+ s i i r 0
2
the isotropi c solution . 5.3. 77i e calculation
of G
G m a y b e f o u n d u s i n g e q . (7 ) a n d t h e r e l a t i o n s h i p s fo r / a n d g f r o m e q s . (53 ) a n d ( 5 4 ) . F o r m o d e I , fo r e x a m p l e ,
y
n
/ (0) = Κ,/ν^τ", n
and /2τγ
J g . I m ^ - ^
\
μ>\-μ2
)
\
μ\~μ2
I
+ J g n l m f - ^ - ) '
\μι-μ2/.
a n d , s i m i l a r l y , for m o d e II / (0) s
= K„/V2T7,
and /2TT|
π
L
\μ\-μ2/
O n s u b s t i t u t i n g for ρ a n d g w e h a v e 2TT
gn(^)=
gsW
= +
1
2
2
77
fïïr
^ ι ( μ + μ ) + Κι ^ιι" Ι" Κι(/*ι α 2 1 niι L I —J, μι^2
a
Im [ Κ„(μ,, + μ ) + Ki/Xi/x ]-
u
2
2
77
F r o m e q . (7) w e h a v e
Ο = -α ΚΑΐΑ
Κλ{μΧ
λ
+
μ 2 )
+
Κ
\
η
22
L
MlM2
J
and G „ = + a X n \\m[K ( n
μ + μ ) + Κ μ
u
χ
2
λ
λ
μ ]. 2
F o r t h e o r t h o t r o p i c c a s e w e m a y u s e e q s . (52) A t i + A t = iV2 ( * + λ )
1 / 2
2
"(^ + A)' _j /2λ /2
and and
μμ ι
2
=
-λ,
G „ = /£„
1/2'
(55)
Fracture mechanics of anisotropic
5.4.
The calculation
Reference
materials
33
of Κ
[4] gives t h e stress function
for a n e l l i p t i c a l h o l e in a n
infinite
a n i s o t r o p i c plate l o a d e d with a uniform p r e s s u r e ρ a n d a s h e a r stress t within the h o l e b u t n o t l o a d e d at t h e b o u n d a r y . If w e t a k e t h e l i m i t i n g c a s e o f a c r a c k ( m i n o r axis zero) t h e n these b e c o m e
2(μ, -M2)' Φ2(Ζ )
- ( ' - •μι
=
2
ρ)
2(μ·ι
(56) fi,
where
zVz - a 2
/=-! +
2
z - a 2
ζ = χ
'
2
+ μγ,
w h e r e χ a n d y a r e m e a s u r e d f r o m t h e c e n t r e o f t h e c r a c k ( t h e c r a c k t i p is at χ = a). N o t e t h a t o n t h e b o u n d a r i e s ζ > a a n d / - » 0, g i v i n g z e r o s t r e s s e s a n d , a l o n g t h e c r a c k l i n e , y = 0 a n d ζ = χ. W i t h i n t h e c r a c k χ < a, s o R e [ / ] = - 1 a n d , e.g., a
= 2Re[cj>' (z )
y
l
ί-μ Ρ + μιΡ\^ Λ μι-μι I . 2
+ ' (x )] = Re
l
2
cj-, = /? R e [ / ] =
2
i.e.,
-p.
T h u s a u n i f o r m t e n s i o n σ at t h e b o u n d a r y a n d z e r o p r e s s u r e in t h e c r a c k c a n b e modelled by a d d i n g this uniform tension σ to the σ
ν
c o m p o n e n t a n d p u t t i n g ρ = σ,
g i v i n g t h e f o l l o w i n g e x p r e s s i o n s for t h e s t r e s s e s ,
( - μ ι Α + μιίτ)
Ιμ\-
Γ σ
= σ Re
a
K
1 - ( - Μ 2 / 1 + Μ1/2)
+ cr,
(57)
Ιμ\S j ^
_
{
f
+
x
f
i
)
ίμχ-μι
J
A l o n g t h e c r a c k l i n e , y = 0, w e h a v e ,
xVx 2
f = Â = f
2
= -i
+
χ
cr = σ- R e [ - / X ! / x / ] , x
2
—a
2
»
and
σ\, - ( J R e [ / ] + σ,
F o r χ < a, w i t h i n t h e c r a c k ; σ = τ ν
σ
χ
= -λσ.
χν
= 0, a s r e q u i r e d a n d for t h e o r t h o t r o p i c c a s e ,
C l o s e t o a n d o u t s i d e t h e c r a c k t i p w e c a n w r i t e χ = a + r, r < a, g i v i n g
f=-l+Vâ/2r
34
J.G.
TABLE 3 C N plate, Y/yf^ a/W
for L/W
χ = 0.55
λ = 0.1 2
0.2 0.4 0.6 0.8
1.05 1.19 1.41 1.85
Williams
= 2 [19].
0.6
0.65
0.7
0.75
1.0 (iso)
small (shear lag [15])
0.2
0.3
0.4
0.5
1.0
0.0
1.03 1.14 1.34 1.80
1.03 1.12 1.31 1.80
1.03 1.12 1.31 1.80
1.03 1.11 1.31 1.80
1.025 1.10 1.30
1.04 1.08 1.21 1.57
-
and σ = a^/a/2r,
σ
ν
T h u s , K = σ \/2πΓ l
i.e., σ /σ χ
γ
= λσ( — 1 + V a / 2 r ) ,
χ
= σ\ίπα,
γ
r
xy
= 0.
e x a c t l y a s i n t h e i s o t r o p i c c a s e , b u t σ -> Α σ ν ' a / 2 r =
λσ ,
χ
= A a n d λ = 1 for isotropy. A similar derivation gives the s a m e K
u
γ
a s in
the isotropic case. T h i s r e s u l t ( a s p o i n t e d o u t b y Sih et a l . [ 1 7 ] ) is r a t h e r s u r p r i s i n g , b u t is a n i m p o r t a n t s i m p l i f i c a t i o n s i n c e for s m a l l c r a c k l e n g t h s in p l a t e s (a/w<
1), w e w o u l d
e x p e c t t h e i s o t r o p i c r e s u l t . F o r a finite p l a t e w e w r i t e K= 2
Y (a/w)
σ α,
2
2
a n d m o s t o f t h e i n c r e a s e in Y
2
a b o v e π is d u e t o t h e e l e v a t i o n of t h e n e t s e c t i o n
stress a s a c o n s e q u e n c e o f e q u i l i b r i u m a n d s t r e s s - c o n t r o l l e d b o u n d a r y c o n d i t i o n s [10]. Thus one would expect Y
2
for
finite
n o t t o differ g r e a t l y f r o m t h e i s o t r o p i c v a l u e s , e v e n
a/w.
O n e a d d i t i o n a l effect in Y , 2
h o w e v e r , w o u l d b e e x p e c t e d t o give s o m e d i f f e r e n c e
in t h e a n i s o t r o p i c c a s e . T h i s is t h e c h a n g e in t h e infinite p l a t e Κ w h i c h r e s u l t s f r o m the stress-free edges. T h e s e arise from t h e relaxation of σ
along the edges, and
σ
is a f u n c t i o n o f t h e e l a s t i c c o n s t a n t s . A t t h e c r a c k c e n t r e a = - A C T , a n d for y>
a,
χ
y
d e c a y s in t h e f o r m a/2(a/y) , 2
χ
i.e., i n d e p e n d e n t o f t h e e l a s t i c c o n s t a n t s .
T a b l e 3 gives n u m e r i c a l results b y B o w i e a n d Freese [19] u s i n g c o m p l e x stress f u n c t i o n s a n d b o u n d a r y c o l l o c a t i o n for t h e c e n t r e - n o t c h e d p l a t e . T h e y p o i n t o u t t h a t t h i s is a v e r y efficient n u m e r i c a l s c h e m e , e v e n for t h e i s o t r o p i c c a s e . T h e r a t h e r limited r a n g e of λ
2
v a l u e s u s e d is f r o m 0.1 t o 0.5 a n d o f χ f r o m 0.5 t o 0.75, a n d
t h e r e is little v a r i a t i o n f r o m t h e i s o t r o p i c c a s e . H e r e t h e free e d g e s a r e r e m o t e f r o m t h e c r a c k s o t h e s m a l l effect is n o t s u r p r i s i n g . A l s o g i v e n is t h e r e s u l t f r o m a s h e a r l a g m o d e l [ 1 6 ] w h i c h is effectively λ = 0 , a n d χ s m a l l . A g a i n t h e i s o t r o p i c r e s u l t is r e p r o d u c e d a p p r o x i m a t e l y . T a b l e s 4 a n d 5 a r e d a t a t a k e n f r o m a m e t h o d g i v e n in ref. [ 2 0 ] w h i c h a r e c a l c u l a t e d u s i n g a
finite-element
solution a n d a c o n t o u r integral
t o give G f r o m w h i c h Κ is d e d u c e d u s i n g e q . ( 5 5 ) . F o r t h e d o u b l e - e d g e n o t c h e d p l a t e t h e r e s u l t s d o n o t differ g r e a t l y f r o m t h e i s o t r o p i c v a l u e s b u t t h e r e is s o m e decrease
for t h e h i g h e r λ v a l u e s . F o r t h e s i n g l e - e d g e n o t c h e d p l a t e ( t a b l e 5) t h e r e
a r e d a t a for a m u c h l a r g e r r a n g e o f χ a n d λ
2
values. For high λ
2
v a l u e s , t h e r e is
v e r y little d e p a r t u r e f r o m t h e i s o t r o p i c c a s e , e v e n for χ u p t o 4 0 0 , b u t for l o w λ , 2
Fracture mechanics of anisotropic
35
materials
TABLE 4
D E N plate, Y/sJ^r [20]. a/W
* = 1.5
25.0
1.0 (iso)
λ = 0.2
4.0
1.0
1.04 1.07 1.15
1.13 1.16 1.22
2
1.14 1.20 1.28
0.4 0.5 0.6
TABLE 5
SEN plate, Y/y/lf [20]. a/W
0.0 0.05 0.2 0.3 0.4 0.5 0.6
* = o.o
10.0
1.17 1.11
1.08 1.10 1.34 1.63 2.07 2.77 3.94
1.62 2.18 3.16 4.86
2
2
2
-
λ =1
λ = 0.05
λ = 20 100.0
400.0
χ = 0.0
5.0
20.0
* = 1.0 (iso) 1.12 1.13 1.37 1.66 2.11 2.89 4.03
1.02
1.01
1.18
1.02
1.01
-
-
-
-
-
1.87 2.38 3.15 4.40
1.78 2.24 2.89 3.90
1.89 2.34 3.04 4.27
3.10 3.87 5.05 6.28
2.38 3.00 3.79 4.89
i.e., w i t h t h e stiff d i r e c t i o n n o r m a l t o t h e c r a c k , t h e r e a r e h i g h e r v a l u e s for t h e l a r g e r χ v a l u e s . T h e s e e x t r e m e c a s e s d o p r e s e n t c o m p u t a t i o n a l difficulties, a n d t h e r e is s o m e d o u b t a b o u t t h e a c c u r a c y . ( T h e v a l u e s g i v e n in t a b l e s 4 a n d 5 a r e c o r r e c t e d v e r s i o n s o f t h o s e in ref. [ 2 0 ] k i n d l y s u p p l i e d b y t h e a u t h o r . ) O v e r a l l , it w o u l d a p p e a r t h a t t h e i s o t r o p i c finite-width c o r r e c t i o n f a c t o r s a r e a d e q u a t e e x c e p t w h e r e e x t r e m e a n i s o t r o p y is i n v o l v e d w h e n it m a y b e u s e f u l t o c o m p u t e Y f a c t o r s . 2
6. D a m a g e z o n e s T h e n o t i o n of a c r a c k t i p z o n e is of p a r t i c u l a r i m p o r t a n c e in c o n v e n t i o n a l f r a c t u r e m e c h a n i c s b e c a u s e its s i z e c o m p a r e d w i t h t h e o t h e r d i m e n s i o n s o f t h e c r a c k e d b o d y d e t e r m i n e s t h e stress s t a t e w i t h i n t h e z o n e a n d t h u s t h e v a l u e of e n e r g y a b s o r b e d in f r a c t u r e . H o w far s u c h i d e a s c a n b e t r a n s f e r r e d t o c o m p o s i t e s w h e r e t h e u s u a l plastic deformation processes are replaced by m o r e general d a m a g e , including m i c r o c r a c k i n g , h a s n o t b e e n e s t a b l i s h e d . F i r s t , it is n e c e s s a r y t o h a v e a d a m a g e criterion a n d while this m a y b e e x p e c t e d to b e s o m e form of critical stress criteria for a n a n i s o t r o p i c c o m p o s i t e , it c o u l d b e a f u n c t i o n o f d i r e c t i o n . I n a d d i t i o n , t h e f o r m of s t r e s s d e p e n d e n c e o f t h e d a m a g e p r o c e s s w o u l d a l s o b e n e e d e d if t h e size a n d s h a p e o f t h e d a m a g e z o n e a t t h e c r a c k t i p is t o b e d e t e r m i n e d . T h e l o c a l s t r e s s field a r o u n d t h e c r a c k t i p is d e f i n e d in e q . ( 5 3 ) s o if s u c h a c r i t e r i o n is k n o w n t h e n , in p r i n c i p l e , t h e d a m a g e z o n e c a n b e d e f i n e d in t e r m s of t h e Κ v a l u e s .
36
J. G.
Williams
S i n c e s u c h c r i t e r i a a r e n o t e s t a b l i s h e d t h e y will n o t b e p u r s u e d h e r e , b u t r e c o u r s e will b e m a d e t o t h e v e r y s i m p l e n o t i o n t h a t a test m a y b e p e r f o r m e d in s i m p l e t e n s i o n in a g i v e n d i r e c t i o n a n d a d a m a g e s t r e s s σ m e a s u r e d . If a n o t c h is t h e n m a d e n o r m a l t o t h a t d i r e c t i o n a n d t h e test r e p e a t e d t h e n t h e e x t e n t o f t h e d a m a g e z o n e m a y b e e s t i m a t e d f r o m t h e e x p r e s s i o n for σ v i a t h e d e f i n i t i o n of K i.e., ά
ν
l9
(58)
-(-V.
a n d a s i m i l a r e x p r e s s i o n for s h e a r u s i n g K a n d a s h e a r d a m a g e s t r e s s . T h e s t r e s s s t a t e is n o t s i m p l e t e n s i o n , o f c o u r s e , b u t t h i s is i g n o r e d h e r e . I n t h e i s o t r o p i c c a s e , t h e w h o l e f r a c t u r e a n a l y s i s m a y b e c o n d u c t e d in e i t h e r G ox Κ t e r m s , b u t for c o m p o s i t e s G seems to b e m o r e physically m e a n i n g f u l as a criterion of failure so t h a t t h e c r i t i c a l z o n e size at f r a c t u r e s h o u l d b e w r i t t e n in t e r m s of G in t h i s c a s e via e q s . ( 5 5 ) , i.e., u
l c
G
-
>
K
(*
a
+
*)
1/2
giving, 1
G
2π
σα ά
22
l c
V2 λ {χ + λ)
(59)
S i m i l a r l y , o n e m a y v i s u a l i z e a c r a c k - t i p o p e n i n g d i s p l a c e m e n t in t h e d a m a g e z o n e , given by £ic=
O /a . lc
d
(60)
7. Conclusions T h e m e t h o d s outlined here s h o w that the use of L E F M to define the energy release r a t e for a n i s o t r o p i c m a t e r i a l s a r e sufficiently d e v e l o p e d t o p r o v i d e t h e b a s i s of a w o r k i n g analysis. Simplifications, such as self-similar crack g r o w t h , r e n d e r m a n y c a s e s s u r p r i s i n g l y s i m p l e a n d t h e n o t i o n s o f s o l u t i o n s f r o m b e a m t h e o r y in t e r m s of local m o m e n t s l e a d t o u s e f u l g e n e r a l m e t h o d s o f a n a l y s i s . T h e p a r t i t i o n i n g o f m o d e s o f l o a d i n g s e e m s t o b e n e c e s s a r y a n d a g a i n c a n b e c a r r i e d o u t in s i m p l e t e r m s . It is c o n s i d e r e d b a s i c t h a t t h e r e a l c r i t e r i o n o f f r a c t u r e is t h e e n e r g y r e l e a s e r a t e . F o r c r a c k e d p l a t e s it is n e c e s s a r y t o c o n s i d e r l o c a l fields, b u t t h e r a t h e r c o m p l i c a t e d analysis leads to the result t h a t t h e stress intensity factors are a l m o s t the s a m e as the isotropic case a n d can b e easily c o n v e r t e d to the energy release r a t e . C l e a r l y , t h e r e is m u c h still t o b e d o n e , b u t t h e r e is a s o u n d b a s i s h e r e o f t r a c t a b l e a n a l y s i s o n w h i c h t o b a s e t h i s effort.
Fracture mechanics of anisotropic
materials
37
List of s y m b o l s a
crack length; compliance, when subscripted; complex constant
Λ
crack area
Β
plate thickness
C
c r a c k l e n g t h in t r a n s v e r s e s p l i t t i n g ; c o m p l i a n c e
e
direct strain
Ε
modulus
/
f u n c t i o n of θ
F
f u n c t i o n o f 0;
g
f u n c t i o n of θ
F c a l i b r a t i o n f a c t o r for l a r g e d i s p l a c e m e n t s x
G
e n e r g y r e l e a s e r a t e , s e p a r a t e d in G , for m o d e I, G
h
thickness of l a m i n a t e
n
for m o d e I I
H
f u n c t i o n of θ
i J Κ / L M ρ Ρ q Q r R S t u U
V-i s e c o n d m o m e n t o f a r e a ; i n t e g r a l s for l a r g e d i s p l a c e m e n t s stress intensity factor d i s t a n c e in b e a m t e s t ; v a r i a b l e r a t i o d i s t a n c e in b e a m t e s t ; v a r i a b l e r a t i o bending moment f u n c t i o n o f μ a n d a; p r e s s u r e load f u n c t i o n of μ a n d a shear force r a d i u s ; d i s t a n c e f r o m c r a c k t i p ; w h e n s u b s c r i p t e d , z o n e size crack resistance d i s t a n c e in l i n e z o n e s h e a r stress displacement energy
υ W x, y Y ζ
displacement energy density; width cartesian coordinates finite-width correction factor c o m p l e x v a r i a b l e , z = x + μγ
a y Γ δ Δ θ λ μ ν
s l o p e o f b e a m at l o a d p o i n t d i m e n s i o n l e s s l o a d in s t r u t s ; s h e a r s t r a i n stability p a r a m e t e r ; c o m p l i a n c e function d i s p l a c e m e n t at l o a d p o i n t ; d i s p l a c e m e n t a t c r a c k t i p c o m p l i a n c e f u n c t i o n ; l e n g t h of c r a c k e x t e n s i o n angle from crack line compliance ratio >/α /α c o m p l e x n u m b e r , μ = a + \b Poisson's ratio 22
η
38
J.G.
Williams
ξ σ r φ χ
t h i c k n e s s r a t i o in l a m i n a t e s ; d i m e n s i o n l e s s l e n g t h n o r m a l stress s h e a r stress slope of b e a m ; c o m p l e x stress function c o m p l i a n c e r a t i o , (2a + a )/2a
Φ ω
[ ( 1 ζ)Ιζ] , s t r e s s f u n c t i o n function of θ
l2
-
66
u
3
References [1] R.F.S. Hearmon, An Introduction to Applied Anisotropic Elasticity (Oxford University Press, Oxford, UK, 1969). [2] G.I. Taylor and A.E. Green, Proc. R. Soc. London A 173 (1939) 162. [3] A.E. Green, Proc. R. Soc. London A 184 (1945) 231, 289, 301. [4] S.G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic Body, Trans. P. Fern (Holden Day, San Francisco, CA, 1963). [5] S.G. Lekhnitskii, English Translation (2nd Ed.) of Revised 1977 Russian Edition (MIR Publishers, Moscow, 1981). [6] N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Noordhoff, Groningen, The Netherlands, 1953). [7] A.P. Schniewind and R.A. Pozniak, Eng. Fract. Mech. 2 (1971) 273. [8] J.A. Johnson, Wood Science 6(2) (1972) 151. [9] J.D. Barrett, Eng. Fract. Mech. 9 (1976) 711. [10] J.G. Williams, Fracture Mechanics of Polymers (Horwood-Wiley, New York, 1984). [11] J.R. Rice, in: Fracture, Vol. 2, ed. H. Liebowitz (Academic Press, New York, 1968) ch. 3. [12] J.G. Williams, Int. J. Fract. 36 (1988) 101-119. [13] J.G. Williams, Comp. Sci. & Tech (1989). [14] J.G. Williams, J. Compos. Mater. 4(21) (1987) 330. [15] J.G. Williams, Proc. ICCM IV London 3 (1987) 33. [16] J. Nairn, J. Compos. Mater. 22 (1988) 561. [17] G.C. Sih, P.C. Paris and G.R. Irwin, Int. J. Fract. Mech. 1 (1965) 189-203. [18] G.C. Sih and H. Liebowitz, in: Fracture, Vol. 2, ed. H. Liebowitz (Academic Press, N e w York, 1968) ch. 2. [19] D.L. Bowie and C E . Freese, Int. J. Fract. Mech. 8 (1972) 49-58. [20] J. Sweeney, J. Strain. Anal. 21(2) (1986) 99-107.