J. Quant. Spectrosc. Radiat. TransferVol.42, No. 6, pp. 631-634, 1989
0022-4073/89 $3.00+0.00 Copyright© 1989PergamonPresspie
Printed in Great Britain. All rights reserved
FRANCK-CONDON FOR
THE
FACTORS E1E+-XIZ SiS A N D
AND
r-CENTROIDS
÷ BANDS
OF
SiSe
SUNANDA K., SHEILA C-OPAL, B. J. Srma'a'v, and G. LAKSHMINARAYANA'~ Spectroscopy Division, Bhabha Atomic Research Centre, Bombay-400085, India (Received 7 September 1988; received for publication 5 July 1989)
Abstract--By using the computer program TRAPRB developed by Jarmain and McCallum, Franck--Condon factors and r-centroids have been calculated for the EIY.+-X~E + bands o f the SiS and SiSe radicals. Intensities of these bands have been visually estimated from the emission spectra photographed on a 3.4 m Ebert grating spectrograph (5 A/mm). A comparison of the Franck-Condon factors with these estimated intensities shows reasonable agreement.
INTRODUCTION The electronic spectra of the homologous group of radicals SiO, SiS, SiSe, and SiTe, which have been well investigated in the recent past, have been found to be comprised mainly of the following three band systems: A I/-/-XlY,+, E I ~ + - X I ~ + and a 3 I I - X ~ E + . 1 It has been observed that the emission bands of the E - X system of SiO, SiS and SiSe lie in two distinct regions as follows: for SiO, 1600-2000A, and 3100-3600 A, for SiS, 2200-2500/~, and 3500--6600/~, and for SiSe, 2400-2800/~ and 400045000 ~.2~ F o r SiS and SiSe, band assignments were established by isotopic and rotational structure studies. For SiS, the 2100-2400/~ bands arise out o f transitions from the 0 ~< v ~< 15 vibrational levels of the E~E + state to the 0 ~ v ~< 9 levels of the X~E ÷ state, while the 3500-6600/~ bands involve transitions from the 1 ~< v ~< 17 levels in the EIE + state to the 20 ~< v ~< 51 levels of the X~E + state. 7-~° In SiSe, the 2450-2800/~ bands involve the vibrational levels 4 ~< v ~< 14 in the E~Z + state and the levels 0 ~< v ~< 7 in the X~E + state, while the 4000-6000/~ bands involve the 0 ~< v <~ 13 levels in the E~E + state and the 25 ~< v ~< 52 levels of the XIE + state. 4'6 The unusual occurrence of the E - X bands of the SiS and SiSe in two distinct regions is related to the relative positions of the potential energy curves involved in these transitions. Furthermore, since some of these radicals have been observed in the interstellar medium, H-~3 the unusual intensity distribution a m o n g the E - X bands may be expected to have a bearing on the population distribution among the high-lying vibrational levels in the ground electronic state (XIy~+). The computation of F r a n c k - C o n d o n factors (FCFs) for the E - X bands of these radicals m a y serve to shed light on the intensity distribution a m o n g these bands. Here, we report F C F s and visually estimated intensities for the E - X bands of SiS and SiSe radicals.
M E T H O D OF C O M P U T A T I O N We have used the computer program T R A P R B developed by Jarmain and McCallum ~4 to evaluate the F r a n c k - C o n d o n factors and r-centroids for these bands. In this program, the K l e i n - D u n h a m series are used to represent the spectroscopic input data, namely, the vibrational and rotational constants. The R K R potential curves are then calculated. The Schr6dinger wave equation is solved numerically and the resulting vibronic eigenfunctions are used to calculate F r a n c k - C o n d o n factors and r-centroids. ?To whom all correspondence should be addressed. 631
SUNANDA K. et al
632
Table 1. Molecular constants (in cm -~) used in the calculation of FCFs and r-centroids.
Molecule
State
@e
~eXe
~eYe
Re
oe
-0.028 0.0005
0.22137 0.30353
0.00139 0.00147
9722 § 51780 t
0.1392 0.1920
0.0011 0.0007
I0000 ~ 45489 t
SiS
FI
405.60 749.64
1.6 2.57
SlSe
F 1 y* X I ]~*
308.44 574.87
1.98 1.659
t From Ref. I ;
*extrapolated value;
DO
§ from the thesis of S. Gopal.
Table 2(a). F r a n c k - C o n d o n f a c t o r s and estimated intensities for the E - X s y s t e m o f SiS in the 2100-2400~ region. V 11
0
1
I 2
012
2
3
4
5
6
7
8
9
016
063
181
392
665
892
938
743
[21
[4]
450
725
838
656
282
017
062
201
[3] 3 4
5
012
027
038
162 [4]
417 [5]
700 [61
761 [4]
481
101
022
300
091
317
626
729
440
060
064
383
480
[8]
[9]
[71
494
712
500
084
056
379
416
010
[s]
[8]
179
6
056
300
633 [7]
613
7
099
430 [4]
676 [7]
380
8
160
549
603
140
[21
[7]
628
440
9
235
320
648
[2] 183
572
015
322
404
086
052
207
416
129
032 [4]
321
384
232
262
285
320
044
[7] 232
[2] 10
[3]
356
028
[5] 246
028
363
[7] 174
029
[1] 11
410
605
088
148
353
154
023
184
310
[11 131
037
[7]
[2]
256
218
[8] 12
493
510
282
226
017
294
084
[8]
[4]
086
262
RESULTS AND DISCUSSION To make a visual estimate of the band intensities, the E - X bands of SiS and SiSe have been excited by a microwave discharge through a sealed quartz tube containing small quantities of silicon and sulphur or selenium, along with neon gas, at a pressure of about 2 torr. The spectra have been photographed at medium dispersion (5 .~,/mm) on a 3.4 m Ebert grating spectrograph using Kodak 103 aF and SA1 photographic emulsions. Care was taken to allow for variations in spectral response of the photographic emulsions and for any overlapping bands. The FCFs and r-centroids have been calculated for the E - X transitions of SiS and SiSe by using molecular constants from Refs. 6 and 10 (Table 1). Representative values of FCFs and their estimated band intensities are given for SiS in Table 2 and SiSe in Table 3; comprehensive data for FCFs and r-centroids may be obtained from the authors on request. Bands belonging to the lower sequences (Av = 0, 1. . . . ) are weak and hence not observed. The observed band intensities are proportional to the FCFs and also to the population of the initial level and the transition frequency.
F r a n c k - C o n d o n factors and r-centroids
633
Table 2(b). F r a n c k - C o n d o n factors and estimated intensities for the E - X system of SiS in the 3500-6600 A ~on. 29
30
31
32
33
34
35
36
37
5
518 [3l
310 [6]
161 [3]
073
029
010
6
827 [7]
740 [6]
534 [7]
322 [71
166
075 [Zl
030
010
[3]
328
667
818 [6]
739
533
320
[7]
[8]
164 [9]
073 [4]
028
[8]
7
38
39
8
056 [5]
036
324
664 [5]
813 [81
728 [81
519 [9]
307 [9]
154 [5]
067
026
9
462 [4]
320 [6]
050 [4]
043
342
678 [6]
810 [7]
710 [10]
494 [8]
286 [7]
141 [4]
i0
011
263
459 [6]
297 [5]
036 [4]
060 [1]
378
703
806
683
462
[8]
[10]
[9]
[7]
455 [3]
261 [4]
018
089
429
732
797
[9]
[8] 490
Ii
12
13
344 [4]
099 ~[4]
021 [5]
289
019 [4]
271
325
071 [4]
040
326
444
215 [S]
005 [4]
133
298 [3]
080
038
298
295
040
073 [4]
367 [o]
423 [5]
162
185
281
048
069
325
253 [8]
014
120
405
223
250
019
114
342
200
[5]
14
15
244
150
Note: The FCFs are multiplied by 104 • intensities
180 [t]
The numbers i n p a r e n t h e s e s a r e e s t i m a t e d
Table 3(a). F r a n c k 4 2 o n d o n factors and estimated intensities for the E - X system of SiSe in the 2400-2800 A region. v"
0
1
2
3
4
5
6
7
001 [21
002 [2]
009 [1]
028 [t]
069
1
001 [1]
004 [2]
018 [2]
057 [1]
142
291
2
004 [3]
019 [2]
066 [2]
175 [2]
356 [1]
571
002 [4]
013 [3]
056 [2]
164 [1]
354
567
665
3 4
001 [7]
006 [9]
034 [7]
124 [3]
305 [4]
524 [3]
621
467
5
001 [7]
014 [10]
073 [4]
225 [3]
450 [3]
588 [3]
465
156 [2]
6
003 [6]
030
134
343
541
502
207
7
006
056
213
448
536
308
025
085
Ii0
019
256
143
324
[6] 8
012 [6]
094
303
510
431
9
022 [S]
144
388
507
268
386 [7]
634
SUNANDAK. et al Table 3(b). Franck-Condon factors and estimated intensities for the E-X system of SiSe in the 4000-6000 A region. 28
29
30
31
32
33
34
35
36
37
38
39
40
113
055
025
011
[4]
[4l
[2]
Ill
583 [31
413 [3]
258 [51
144 [3]
072 [2]
664
716
625 [3]
463 [2]
299 [2]
0
001 [11
1
027
012
[31
[2]
005 [21
217
121
062
029
013
005
001
[1l
[2]
[2l
[i]
13l
[11
501
333 [11
199
108
053
024
010
004
[21
[21
{21
[41
14l
[11
749
736
609
437 [2]
278
159 14l
083 [4]
039 14]
017 [5]
160
435
663 ll1
743
675
521
351
210
[3]
[51
712
707
180
455
2 3 4
670 606
5
001
[2]
6
399
187
013
055
289
7
086
325
428
283
065
557
652 [2] Note: The FCFs are multiplied by 104 • intensities
The numbers in parentheses are estimated
REFERENCES 1. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules, Van Nostrand-Reinhold, New York, NY (1979). 2. N. Elander and A. Lagerqvist, Phys. Scripta 3, 267 (1971). 3. R. F. Barrow and T. J. Stone, J. Phys. B 8, L13 (1975). 4. E. E. Vago and R. F. Barrow, Proe. Phys. Soc. 58, 538 (1946). 5. H. Bredohl, R. Cornet, I. Dubois, and D. Wiideria, J.Phys. B 8, L259 (1975). 6. G. Lakshminarayana and B. J. Shetty, J. Molec. Spectrosc. 130, 155 (1988). 7. S. J. Q. Robinson and R. F. Barrow, Proc. Phys. Soc. A 67, 95 (1954). 8. R. F. Barrow, J. L. Deutseh, A. Lagerqvist, and B. Westerlund, Proc. Phys. Soc. 78, 1307 (1961). 9. S. Gopal, G. Lakshminarayana, and N. A. Narasimham, J. Phys. B 8, 3781 (1980). 10. G. Lakshminarayana, B. J. Shetty, and S. Gopal, J. Molec. Spectrosc. 112, 1 (1985). 11. M. Morris, W. Gilmore, P. Palmer, B. E. Turner, and B. Zuckermann, Astrophys. J. 199, L47 (1975). 12. N. Kaifu, D. BuM, and L. E. Snyder, Astrophys. J. 195, 359 (1975). 13. D. Buhl, L. E. Snyder, F. J. Lovas, and D. R. Johnson, Astrophys. J. 201, L29 (1975). 14. W. R. Jarmain and J. C. McCallum, JQSRT 11, 421 (1971).