Frequency-dependence of the nuclear electric shielding in the HF molecule via equation-of-motion-approaches

Frequency-dependence of the nuclear electric shielding in the HF molecule via equation-of-motion-approaches

207 Journal o f Molecular Structure, 93 (1983) 207--212 THEOCHEM Elsevier Science Publishers B.V., A m s t e r d a m -- Printed in The Netherlands F...

164KB Sizes 1 Downloads 20 Views

207

Journal o f Molecular Structure, 93 (1983) 207--212 THEOCHEM Elsevier Science Publishers B.V., A m s t e r d a m -- Printed in The Netherlands

FREQUENCY-DEPENDENCE

OF THE NUCLEAR ELECTRIC

SHIELDING

IN THE

HF MOLECULE VIA E Q U A T I O N - 0 F - M O T I O N - A P P R O A C H E S

P. LAZZERETTI, E. ROSSI

Istituto

di Chimica Organica,

In the presence dependent molecule

and R. ZANASI

external

via Campi

of a spatially uniform, electric

is p o l a r i s e d

field E(=,t),

ponse,

alternating

(refs.l,2).

functions

For instance,

discussed

the m o l e c u l a r

can be ratio-

and generalized

(=)E (=,t) can be aT

in terms of dynamic polarizability.

induced by the external p e r t u r b a t i o n

cloud of a

assuming a linear res-

the induced dipole moment m (=,t)=a O

(Italy)

time-

the electronic

and the relative p h e n o m e n o l o g y

nalized w i t h i n the theory of response susceptibilities

183, 41100 Modena

T

The electric

field

at an arbitrary point r in

space is

(1)

F (~,=,t)=-YaB(r,=)Es(=,t)

where

the dynamic electric

uliar m o l e c u l a r property, to the p e r t u r b i n g

external

(dipole)

shielding tensor ~, a pec-

is introduced to describe field (ref.3).

ordinate RI, the n u c l e a r electric

the response

For a nucleus

I, with co-

shielding tensor can be defined

(ref.4)

V

(RI,=)~VI~x (=)=-2E'<01Zn j (r.-rjo )o In> x

(=2 _=2)-1= on

(2)

on

within the dipole length formalism.

Alternative

finition can be given in dipole velocity

0166-1280/83/$03.00

equivalent

formalism:

© 1983 Elsevier Science Publishers B.V.

de-

208 and in a c c e l e r a t i o n formalism: I (w)=-2z~
In>
x [(W~n - w 2 )mort ] -I

I0 >

(2'')

This is an important m o l e c u l a r quantity,

since its k n o w l e d g e w o u l d

permit to evaluate the effective electric field at an a r b i t r a r y point, nuclei

in particular,

n u c l e a r b o n d relaxation, easily shown (refs.3,4)

the Lorentz forces causing inter -

geometrical that,

changes and so on. It can be

in the static case,

the q u a n t i t i e s

defined via eq.2 fulfill the r e l a t i o n

zIZI~I

(O)=N6

(3)

w h i c h is a T h o m a s - R e i c h e - K u h n sum rule a c c e l e r a t i o n formalism.

frequency,

in m i x e d

length-

It can be shown (ref.4) that eq.3 is a

restatement of the h y p e r v i r i a l Invariance c o n d i t i o n

(ref.5)

(ref.7).

theorem (ref.6) and of gaugeFor the general case of an a r b i t r a r y

the dynamic p o l a r i z a b i l i t y is related (ref.4) to the

n u c l e a r electric shielding:

a ~ (~)=~-2zjZj[y~, (m)-TJ~, (O)1

In the exat calculations, Approximation

(RPA)

(4)

and also w i t h i n the exact R a n d o m - P h a s e -

(ref.8),

the numerical

estimates p r o v i d e d by

eqs. 2, 2', 2'' are equal, eqs. 3, 4 are exactly obeyed. calculations,

based on a truncated space,

e q u a t i o n s indicate the quality of a

In actual

deviations from these

chosen set of expansion.

The p r e v i o u s theory has b e e n applied to investigate the linear response of the h y d r o g e n fluoride m o l e c u l e in the w range from zero up to the lower electronic

resonance frequencies. An e x t e n d e d

basis set of 72 c o n t r a c t e d G a u s s i a n f u n c t i o n s has b e e n p r e p a r e d to build up L C A O - S C F m o l e c u l a r orbitals forming the q u a s i v a c u u m IYSCF > ground state. The c o n t r a c t i o n scheme is (14s8p4d/8s3pld)-->

209

[9s6p4d/6s3pld],

w h i c h gives

a n e a r HF energy,

The RPA e q u a t i o n s

have b e e n s o l v e d w i t h i n

sation p r o p a g a t o r

approach

(TDA)

(ref.8).

and the S i n g l e - T r a n s i t i o n

been

also employed.

with

the C o u p l e d H a r t r e e - F o c k

Fock

(TDHF)

approach.

method

corresponding

the c o r r e s p o n d i n g

dipole m o m e n t

(ref.lO).

and its g r a d i e n t

reliable

were

predictions,

celeration tical

nuclear

have b e e n range

a further

shown

orbitals,

indication

0<=<0.3

a.u.

nuclear

to each other.

length-acceleration of the r e l i a b i l i t y dependence

in the ac-

of the theoreobtained

O t h e r nice computed

in length eq.3

in values,

set of c a n o n i c a l

average

up to 9.88

less

results values

formalisms.

is 9.70,

which

is

of the t h e o r e t i c a l

of the n u c l e a r Cauchy moments

shielding

is

in the range

x (2) = 0 .725,

assuming

expansion

(0) +

Also,

a numerical

2 (

(ref.ll).

and a c c e l e r a t i o n

for a c o m p l e t e

I and 2. The average

• (=)=X

proximate

velocity

are x (0)=1.014 , x (1) = 0 •406,

the t r u n c a t e d

close

length,

are close

The f r e q u e n c y

in Figs.

from the e x p e r i m e n t a l

Sambe e q u a t i o n s

for the TRK sum rule:

from m i x e d

shieldings.

obtained

in Table

when compared

is g i v e n by the RPA results

from 9.60 in a c c e l e r a t i o n

The result

are c o l l e c t e d

A check on the good quality

formalisms:

obtained

of the cal-

and 9 4 - 9 5 % of h y d r o g e n

should be the same a l l o w i n g

Hartree-Fock

w i t h the R e b a n e

The STA and TDA seem to f u r n i s h

shielding

have

Hartree-

w h i c h are too large p a r t i c u l a r l y

formalism.

the d i f f e r e n t which

obtained.

(ref.9)

The results

case

through

In fact up to 9 7 - 9 8 % of fluorine shielding

(STA)

seem to be accurate,

estimates,

Approximation

or T i m e - D e p e n d e n t

to the static

I: the length RPA p r e d i c t i o n s with

(CHF)

polari-

that the R P A is e q u i v a l e n t

The TDA is e q u i v a l e n t

variation-perturbation culations

The T a m m - D a n c o f f

we note

hartree.

the f i r s t - o r d e r

Approximation

Incidentally

-I00.069661

1)+w4X(2)

dynamic

test

(see Table

polarizability

to the actual

RPA s tensor

(5)

II) has shown that obtained in length

through

eq.

formalism.

the ap4 is very

210

TABLE I

-

Static

nuclear

electric

shielding.

F

H

~! (0)

~1 I (01

XAv(0)

X! (0)

x l I (0)

XAv(0)

STA

(1) (v) (a)

1.2952 1.1572 2.9095

1.4202 1.2235 2.4637

1.3369 1.1793 2.?609

0.6332 0.5432 0.6830

0.5610 0.3863 0.3469

0.6091 0.4909 0.5710

TDA

(1) (v) (a)

1.1430 0.9294 1.8246

1.2142 0.9889 1.4030

1.1667 0.9492 1.6841

0.6319 0.5548 0.2243

0.6368 0.5075 0.3051

0.6335 0.5390 0.2512

RPA

(1) (v) (a)

1.0141 1.0079 1.0055

1.0146 1.0137 1.0090

1.0143 1.0057 1.0067

0.5555 0.5517 0.5184

0.5907 0.5905 0.5965

0.5672 0.5646 0.5443

1.0453

1.04

1.04

0.5922

0.62

0.60

a

Exp

aExperimental values r e t a i n e d here: R ( H - F ) = I . 7 3 2 8 bohr, m = 0 . 7 0 6 6 a.u., ~m/~r=0.38 a.u., see refs. 3c,12. The formulas relating the n u c l e a r electric s h i e l d i n g to these quantities are given by Sambe (ref.ll): ~ll(F)=I/9(9+am/~r); x!(F)=i/9(9+m/r); ~ll(H)=l-~m/~r; ~ ! ( H ) = l - m / r

a

TABLE II - Dynamic p o l a r i s a b i l i t y in HF in a.u..

~!(=) RPA 0.37 0.40 0.42 0.434 0.44 0.46 0.48 0.52 0.54

6.837 8.942 16.742 -20.298 -5.038 2.406 4.328 7.626 17.031

Approx.

~11 (=) b

6.110 7.630 13.050 -12.336 -1.830 3.384 4.848 7.830 17.152

RPA 7.756 8.350 8.862 9.299 9.511 10.366 11.552 16.431 23.447

Approx.

b

7.634 8.218 8.722 9.151 9.360 10.200 11.366 16.156 23.042

aIn the range O
frequency

dependent

nuclear

211

o I

/ o

o

£

IO.O0

'

o.~o

'

o.~o

'

o.~o

'

0.40 '

'

o.~o

' 0.60 ' f.O(a.u.)

Fig.l. Frequency dependence of RPA electric shielding of F nucleus. Solid (dashed) lines are relative to perpendicular (parallel) components.

0.

&

o .

= 0

oo

o o

'o:oo 'o.1o

'o.~o

'o~o

' 0.40'

'o.~o 031a ' °Jio

Fig.2. Frequency dependence of RPA electric shielding of H nucleus. Solid (dashed) lines are relative to perpendicular (parallel) components.

212

REFERENCES 1

P. C. Martin, Measurement and Correlation Functions, p. 37 of "Many-Body Physics", ed. C. de Witt and R. Balian, Summer School in Theoretical Physics, Les Houches 1967, Gordon and Breach, New York 1968. 2 D. N. Zubarev, Nonequilibrium Statistical Thermodynamics, Plenum, New York, 1974. 3 P. Lazzeretti and R. Zanasi, Phys. Rev. A24 (1981) 1696; 2_55 (1982) 1790 and references therein; J. Phys. B, At. Molec. Phys. 15 (1982) 521. 4 P. Lazzeretti, E. Rossi and R. Zanasi, Phys. Rev. A, submitted for publication. 5 See, for instance, J. O. Hirschfelder, W. Byers-Brown and S. T. Epstein, Adv. Quantum Chemistry, ed. P. O. Lowdin, Academic, 1964, vo]. i, p.267. 6 See, for instance, S. T. Epstein, The Variation Method in Quantum Chemistry, Academic, New York, 1974. 7 G. P. Arrighini, M. Maestro and R. Moccia, J. Chem. Phys. 44 (1968) 882. 8 See, for instance, J. 0ddershede, Adv. Quantum Chemistry, ed. P. O. Lowdin, Academic, New York, 1978, vol. II, p. 275. 9 T. H. Dunning and V. McKoy, J. Chem. Phys. 47 (1973) 1735. I0 J. K. Rebane, Opt. Spectr. 8 (1960) 242. II H. Sambe, J. Chem. Phys. 58 (1973) 4779. 12 D. Steele and W.B. Person, Molecular Spectroscopy,Chem. Soc. Specialist Periodical Report, London, 1974, vol. 2, p. 357.