IFAC
Cop\Ti ght " II' AC Lagrangian and Ham i ltoni an M ethod s for Nonlinear Control. Sev ille. Spa in. ~ 003
c:
0
[>
Publications www.e lsc \i er. comloca te ifi.li.:
FRICTION COMPENSATION FOR PASSIVE SYSTEMS BASED ON THE LUGRE MODEL I Anton Shiriaev ' Ande rs Robertsson .• Rolf J ohansson ••
• T in AIaersk Institul e. Cni/'(-,.sity of So uth ern Denmark. CUI1l pll81'ej 33. DA'- 3.!.'IU Odense AI
DE.VA IARK .. Deparlmen t of Au tomatic Contro l. Lun d /lIstitlltf' of Techn ology. P. O. B o:r 11 8. SE-221 UU L und S W EDEN
Abst ract : The pa ppr suggests a llwt hod for ('ompensat ing the impact of fri ct ion for the colltrol nonlinear syst ems. \\'here the original cont roller (derived \yithout taking int o ac(,ount friction ) resul ts from t he p assivity rela tion . The illustra tiw exa mple is given. Copy right :r 2003 fFAC
1. L,TRODUCTIO:\
l'pnd ers t hp set
This pa per is devoted t o the problem of friction compensation in no nlinpa r control s~' s t e lll s . It is ass ullled tha t a s~'s t e m dnla mics \y it ho ut fri ction is cow red b~' the equ a tio n d
d ( 1'
= F (J') + C(.1') l1.
y
=
H (J')
l O= {,T: q ,T) = O}
of t he syste m ( 1) g loball y asy mpt oti(,ally st a ble, proy ided th a t t hc fun ct ion (; is a C I_Sllloot h a nd o(.l; )y > 0 'rI y -# 0: a nd tha t t he' sYstelll ( 1 ) is ::el'O-statr- dctec lablf. (1 ' -detectab le J,
( 1)
\\' 11('rc a state \'ect or ,7 ' E R ", a colltrol action 11 E RI . and F . C, H a n ' smooth H'ctor field s of a ppropriat e dimc nsions, "'hile, in addition, it is assumed t hp S\'stelll ( 1) is pass in' \\'it h a pro per sllIooth st orage fun ct ion" , lllin" = 0, i, p, the time deriYa tin' of " a long a m' solution of ( 1 ) sat isfics the follo\\'ing cl iff<:> rellti al rela t ion
!i dl "
-< ,yT 11
As one ('a n exp ect , a pJ'('selH 'C of friction in the act ua tor , tha t is \\' he n the ' trtl P' control action a pplipd to thp syste m ( 1) has tlie form T
=
- o( y)
=
11 -
F.
(5)
lI1 a~' prewnt fro m the st ab ilization of thf' set (-1 ) a nd disregard t he expected behayior of the d osC'd loop syste m,
(:2 )
It is \yell knmYll. see for exa mple ( B~Tn es El al.. 1991 : Shiriaey a nd Frad km' , 2001 ), that the feed back cont roller 11
( -1 )
The pro blem of modeling the friction F is the Yast a rea of research , a nd ma n\' different model;.; for this phcnome non a re 3ya il able in lit prature , In this paper it \\'ill Iw ass ulncd that the fri ('t ion is modeled based on the LuCre model. seC' (Ca nud as de " ' it et al.. 1995) , Thc LuCre fi ct ion model is a first-order cl ~' n a llli ca l S\'stPlIl of thc form
(3)
I T hE' ,,'or k h a.~ bE'ell s lI ppo rt ed b~' t hE' D an is h TE'ch n ica l RE'search Cou nc il. t ilE' grant 26-01 -016-1. and t hf> l! o l'j f>1 Fo und at ion.
159
holds, that is, J'(t) C01l\'erges to t he compact set I defined in (-1 ), •
F i ~' , 0-0-' -;:
l' -
u
(6)
gjr(l')
Proof. The dyn amics of t he error between the 't rue' int ernal friction st ate a nd it s est imat e
Here;: is the internal state of thp mod el: I' i" relatin> velocitv betweell t\\"o surfaces ill contact, and it i" assumed that it is available, The function gjr(c) has us uallv the forlll no > 0,
(\ 1
sc\tisties the equation
> n,
r'
In t 11(' fmt her deve loplIlPnt, \\'l' \\'ill not take imo consideration the exact form of gjr' while only the property that gjrl /') is positin> ami s triC'tI~' separated from 0 , will be USl'd,
=
I /, j -0-0 - - - ( -
(12 ) Its tillH' deri,'atiw is, then, d di
11' = I" + pC(= , ," + pc (
S .l/ ( (u + F, ) - F ) + pc = - YO(Y) - '/I ( 0-0(' +"
=
- o(y)
U
=
\\'here the friction estimate obser\'er
d clt
t
/' , /' -
( T o -' -
-
' -: -
= '-yo(y)
t
-o(y) ,
is detined
u\'
(
::(0)
Yjr( I' )
=
,
- PO-o-- e.cJjr(l')
ic l
-
J\' )
0-0-, -(' -
+ pr (
- 0 - 0Il'l - - ,- ( ' - J\')
9j,(I)
1'1 0 - 01 --(' -
-
9/r(l') -
(
ir i
J\')
0-0-'- ' -(' -
r:
+ )
gjrl l')
+
'-v--' (\
an -.-
J\' ,
\
9j,\I')
+ pc iI- !
J')
o-0gj,1,.(1l ' ) ( -
RESULT
To compensate fo r the frictioll it is suggest ed to modif\' controller (3) as follows U
(
0-1' )
= -yo(y) - yo-or - y0-1 ~IAr:\
( 11 )
Let us consider a Lyaplllloy functioll candidate for t hl' S~'stl'1ll a uglllPntl'd by t hl' frict ion Illode! (6) and the obser\'E~ r (7) as
Thl' lIlaill contribution of thl' pap er is the moditicatioll ofthp controller (3) to llP\\' onl' that enables to g UHrantP(> asvIllptotic stabilit~, of the set (-1 ), In course of doing this, nOlle of propt~rties of the Illodel (6) ha\'(' beell uspd except the fact that it s stat e is bounded , and the dn1alllica l system (6) itself i" tillle-inva riant and has a \'('rv particular st ructure, It is \\'orth lllentioning a nother ap proach to deal with c1osch ' related problem of posi t iOll tracking deYCloped for t he mechanical s~'stelll s in (Canudas dl' Wit and I\: ell \" H197 ),
2,
J\'
,fJj,\l')
J'] '
J
(7) 0
SimplE' calculat iOIlS sho\\'s that
.)
-ne - 3E
He re t h(' ob"en'er ga in J\' could be seell as a variable to 1)(' detinl'd, The next stat clllE'nt shcJ\\'s a good choice for the function A',
)
~J ~ = - ( V(\( - 2y'n
Based on this, we can cont illue
Th wT'Cm 1, Given the syst em ( 1 ), (5), ( G), consid er t he controller u
= -OIY) - F
(8)
\\'hen' the friction eq imat e F is defined b\' (7) \\"ith J\'
=
0-( -~
[
1 -
and p >
/,]
0-1---
P
.11
The fir st t",o t erms in the pre\'ious line is no npo"itin', let LI S consider thE' last n\'o t erms ill details, haw
( 9)
gjrll')
n, then a long an\' solutio n
[,1'(t), ;:(t),
"'e
: (f) ]
of thE' closed loop s\'st elll the limit rel a tio n /-
lim " (,l'(t)) -'<.
= ()
(1() )
160
}'
r-,-o-l,l) \ Il- l [O-llJo---y-lJoY-P\ , g jr(1') ,
= P.rJfr ,( l') ](2 -;- [.rJfr(I')Y
claO !I' )
Indced. ('hoose an~' initial condition .1'0 . ':0 . 50 and consider the corrcsponding soIl! t iOll
a 1Y ] ]\- ...,...
T
2 11' 1
2 ,
~
=0
.dt ). :.:(t ).
=b .)
cl(lao ~"-',-.) 91 "
t
('
A" directly S(,(']1. th(' hlllction 11' is not propcr on the state spac(' of thp O\'('rall S\'St<'ll1. that includes the state wctor J' of (1). tlH' friction state .:. ami th(' friction obserH'r state .:.
As known the minimum of thc POl\"llOllIial 11]\-:2 ~ h]\- -
\\'ith
(J
(.
> () is achi('Yed at
But by assumption the function \ - is proper on R". \\'hik Le]lIlna 1 pro\'ides the bound(~dll(,ss of th(' friction state .:(t) along thp solution. tll('refor(' the in('
ao [1 + a ] -'I-"-] Y ( 13) 211
f!
Yf' ( I')
and equals to
n~Il {
(f
]\-:2
-L
Id":
:.: (t . :':0 )· 5(t . ':o f
of the dos(>d loop syst elll ( 1) . (G). (8 ) . ( -;-) \\'ith the obserwr gain ( 13 ). Along this solution the nO]lJIcgatiw function IT" satisfies the rplation (lcl). amI non-increasing.
(a]aO~Y - aOY)-
=
::(t r = : .1'(t,,1'0 ).
ll'
(.1' (t ) . :.: (t ). .: (t ))
-:::: 11' (.1'0. ':0·
-+- ('}
':0)
in fact guarantees th(' bOlllldedness of th(' solutioll i ./'(t ). :.:(t). ': (t) ]. Then it has nOIl-e lllpt\· cOlllpact ~-limit set ~; u . and Oll this set
In our ('asE'
d 11dt
= o.
-
It is equi\-alent
two idelltities
10
_ clPYf r (l')
clao II' I
.
aOa]
')
yo (y) -+- - - . l r = 0
( 15 )
(I
au ~l_l'_!_ Yf r (l')
alld
(PC_
a]
y):2
=0
011
the set ~,o
The relation (15 ) implies that
y
( lG )
= O.
\\'hile the relation ( lG). combined \\'ith (15). states that 011 the set ~: 0 either
(=
O.
or
I'
=0
III am' case t h(' condit ion lJ = 0 and :.: ero-state detectability (1- -detec tability ) condition illlpl\' that th(' \'alup of \- (.r(t)) tPllds to zero. i. e.
Therefore. if the obsern' r gaill ]\- is chosell as in ( 13), or the sallle as ill (0 ). t hC'll the time dC'riYatiYe of the function 11 - along the solution of the dosC'd loop S\'stE'll] look;.; as
q.r (t) ) -
D.
t-
~x
This fini shes t he proof of TheorclII 1. •
.!!... d/ 11- = - .IJO(IJ . )-
R ema rk 1. In fact \y(' haw' prowll slightly mOH' than it is stated ill Theore lll 1. :\anlPh·. it is shO\\'1l that ill the' case if for
To anah'ze t hC' bchayior of the do,.;ed loop S\'stelll solutions hased on t lIP diff('[ential relation ( le! ). it is \\'orth to mentioll 011(' propert\· of the LuGre frict ion model (G)
lUll)
solution
[J' ( ~)'
:.:(t ). ': (t) ]
of th e clos ed loop system ( 1 J. ( 6 ) . (S J. (7 ) tl/(' v.:-lin7lt set ~. 0 consists of solutions . .for u-!tieh tllf relatil'e l'elocitlj 1' ( t) betwee n tu'O sllljaCt s in cOl/ta ct has at le(1.';t Ol/C t/lW- mom ent T. u-!/(l'( l'( T) i O. th en
Lemma 1. For any initial condition ':0. the solution .:(t ) of the system (G) is bounded .•
lim
/ - - :x.
(:.:(t ) - ':(t )) = O.
i. e. th e f stil7lat e :(t ) con/'ugrs to thr internal of th e LuCre fridion TIIodel. Otit erwisr. th fY can difje r only by II emu,tant. that ('or/'( sponds to unknown stiction mluf .•
Equipped \\'ith this fact onE' can readih' prOH' the feedback controller (8 ) as\"lnptoti('all~' stabilize t he set
.~tat f .:(t)
lo = {.r: 1"(.J) = 0}
161
3. EXA:\IPLE: STABILIZATIO:\ OF PERIODIC ORBITS FOR I'\"ERTIA " "HEEL PE.\"D ULU :\I
To this end. consider o lll~" the s ub s ~"ste ll1 (19 ) a nd ma k(' fped back transformat iOIl T
.1.1 Passit'ity Ba IJed Controller Derired without Taking in to A ccount th e Friction
31 rh
"'ly s in (8Il
fJ2
=
sin (fjl
) -
T
- 111)9 sin ( qIJ + I'
(22)
To o \)sern' t his one can d lPck that t he total e n e rg~' of (22) E (2:2 J( (JI . lj I! =
(1T)
(18)
~I Ij~
T
(.1 1 - rll )y ( coSI/I + 1) (2 3)
has Cl global lllinimum equ al to 0 at the pquilibriulll q1 = r. . ""hile tile reader call eas ily check th at a m ' subsd of the c~'lindrical phase space [If I· lil ] E SI x RI ,,"hen' th(' en erg~' E(2'2)((J1.lh) is fixC'd to be constant. corresponds to a ('ycle of the' unforccd s~ "s t ell1 (22) . except two critical cases "'hen such a set cont a ins one of the dowlI\\'arej or upright C'q uilibria. Let ('hoose a constant E •. and stabilize a c~"c:le of the unfor('ed S,"stelll (22) corresponding this energ,\' IE'Ye!. To do this, consider thE' Lyapuno\' function candidate
It s tim(' d eriya ti\'(~ a long a n\' solution ifJ l(t). (il(t) ] of (22) is
C ha nging the yariables RI' R2 to np,," ones. as done in (Spong et al.. 200l a) . RI'
Irlg
-'I > nl.
Here II is thc le ngt h of the pE'udulum: I c l is the position of the ('ent er of mass of the pendululll: nil is the mass of th e pendulum: rll2 is the mass of the dis(': .11 • oh arE' inertia of the pendulum a nd the disc aro und their centers of masses: 9 is the acceleration due to gray ity.
=
(2 1)
i'\Ild ih equilibriulll at (/1 = ;0 bE'colll(,s n p utrall~' sta blt' in the L\,apllllo\' seIlS(' proyidcd that
"'hen' HI is the a ngle that the pendulum makes with the ,"erticalline: 82 is the angle that descritws the position of the s~' mm ct ri(' disc: alld
ql
= -
= (.11
The ma the matica l model of this system deriyecl in (Sp ong et al .. 2001b : Spong et ul.. 2001a). is
+ d 12 8'2 = d 21 BI + d 22 82 = T
l'
The n (19 ) t akes the forll1
The I nertia Wh eel Pendulum is a ph~"sical penduIUlll ,,"ith a symmetric disk attached to the elld . The dis(' is coutrolled b~' a DC-motor that can change thp angular acceleration of the disc. ,,"hik the ph~'sical pe ndulum it self is frt'ch" rot a ting. The details alld the descr iption of hanh"arc ('a ll 1)(' foulld ill (Spollg et al.. 2001 b: Spong r-:t ul.. 200la ).
rillB I
= - JI g sin (qJ! -
;:t ' "=
(}I - (}2
brings the s.'"stem ( 1T). (18) into simplified decclllpled form
(E(22 )( fJI(t ).qdt)) - E.) 4dt) ·1'(25)
So thp Syst E'1ll (22) is passiw "'ith thE' storage function'" . the input 1.' a nd the o utput
( El )
(20 ) \,"ith
31
= (rill - d 22 ) and
32
Lf/lln/a
= 2d'.!.2·
2. Suppose t he subset of the phase space
of (22)
The problem is: To tonstl'uct and 8tabili::e an oijcillato l~lj behal'ior of th e pendulum around its upright eq uilibrium fjl = ;0. does not collt ain an ('q uili bri Ulll of t hp unforced ("' ith I' = 0) s ubs~"stE' m (22 ), ThE'n for thE' cloSE'd loop s\"st em (22 ) ,,"it h t he controller
To soh 'p tl1{' problem \n' ,,"ill procE'f'd in t\\"o steps:
• .~·r8tly. based on the id ea of p ot E'ntial shaping \YE-' d eriw the controller. that generates p er iod ic osci ll a tion a nd stabilizes it only for the SUbSyst E'lll (19): • Mcondl.tJ. it will be prOH'n that this controller prE'seryes the state:' of the s('('ond subsystt'll1 (20 ) bouncied.
I'(t)
=-
ky(t)
(28)
,,"it h any k > () and .IJ defined in (2G ). the C\'dl'. that lin's 011 thE' s('t ' 0' is orbit a lly asnnptoticalh- stablP. Furt hE'r lllore. a long a n\' sol ution
162
[q] (t). 4] (t) ] of the closed loop S\'stell1 that COl]wrges to the set 10 the function l'(qdt) . 4dt )) decreases to zero expollclItialh-. •
the closed loop s\'stem (22). (28) t ha t C'onyerges t o tlw set \ CJ' the intq!;ra l in (32) is bounded .•
Proof. The secon d pa rt of (32) is Proof. The first part of Lemma follO\\'s from the simple arguments briefl~' melltiolled ill IntroduC'tion. Let us check that tllf' fUlIction \' decreases cxponelltialh-. Consider an~' solution [qdt ). 4dt ) ~ of t he closed loop system. The controller (28) lea ds to the differential equality
.I t
{kli d s ) (E(22 )(CJd s ).li] (s)) -
L) }rls
(j
IS finitt' for any t ch](' to tll(' fact s that (f] (t) COllyerges to some periodic funct iOIl. i.('. rema ins boundt'd. \\' hil{' as shO\\'n in Lf' lllllla 2 the funct ion
\\'hich. in tum. implies the relation tE'lld::; to zero exponl'nt ially. \ '(CJ' (t).
4, (t )) = \ '(q] (0). ri, (0 )) x "'Xp { -
k!
1;1,,)d., }
To prow' that the first IHHt of (3:2 ) t hat is (29)
i I
jt -,\1g SillCJ J\8) riS :i < -'- x.
boullded .
'v' t
(33)
I
I ()
If the solution [q, (t ). q, (t) ] conwrges to the (:ycic. then rij (t ) approaches a nOlltriyial periodic function in time, Therefort' tht' relation (29) guaralltees that l' dccreases exponelltially to zero .•
IS
\\'(' obserw that it follO\\'s from (22) that I
I
' Sill q1l8) ds = --::-::--1_ _ /' {.:f,liI (s) - /'(s)} ds ( cH - m )g. ./
Let us cOllle t he second part and pro\'E' that the controller (21 ) . (28) guarantees the boundedness of am' solution [q2( t). rh(t )] of the second subsystem (20).
u
()
I
':12l12(t) =
T
= - JIg
sinqdt) -1'(t)
= -JIg sinq, (t) + ky (t) = - :Ug sin q] (t) + k4, (t)
X ./ kq] (::;) (E(22)((/1(8). 4] (8)) - E . ) cl.'; (30 )
(E('2'2)(q] (t). 4dtl) - E . )
To prow the boundednf'ss of [q'2(t). rj2(t l ]. \\'e need in fact to check onl~' the boundedness of 42(t ). The ya riable CJ2 (t) on the C'ylilldrical phase space is ah\'ays bounded.
The right hand side of the pre\'iOllS formula is bo und ed , Therefore thl' inE'qu a lit~, (33) holds. Lemma 3 is pro\'en .• Let us summarize t hp res ult
Th eo rem 2, Consider the IIwrtial "'hpel Pcncillhlln . see the equations ( 17)- ( 18) and choose the ('ollt roller
If o ne integrates (30 ) from 0 t o t. t hell an equiyale nt fonn is
;'].1
(j
I
42(t ) - 4'2(0 )
=
T(s)ds
., =
(3 1)
o
- JIg sine] + kih (E(2'2 )(H,.8] ) -
",here k
> n. JI
>
171
L)
and the fUllction
£ (22 )(8 j . 8 ]) isdefin E'd in (23). SllPPOSE' the sllbset
of t hE' phase space of (22 )
and the bo ulIdedness of 42 (t) fo1l0\\' 5 the boulIdedness of the int egral
.I t
o
.I I
T(s)d.s
=
{-jIg sillqd s) -
does not C'olltain an equilibriulll of thc unforced (\\'ith t· = 0) s ub s~' s t em (22). Then the c\'Cle. th at liws on the set \ o. is orbi~all\' as\'l11ptoticall~' stable fo r thE' phase.spacee, . H, : of the pendulum . \\'hile the rest 'fh. £12 , of the syst em yariables are bounded along t he closed loop sYst em sol ut ions that approaches \0 ill the part .•
(32 )
0
- k4 Il;;) (E I 22I (qd 8 ).4](s)) - L)}ds Lemma 3. Suppose the s ubset of the phase spa ce of (22 ) \ odoes not cOlltain an equilibriulll of the ullfOI'ced ,;u bs~,~tem (22 ). Thell for am' so lut ion of
'8,.e]
163
.J.z Passi1·ity Based Controller Augment ed by Frict ion CompeTlsator
" 'here p > 0, k > 0 , JI > liws on the set
\0 =
,\ss umillg a presencc of frier ion in the IIIE'rtia \\'heel Pelldulum. that has a structure of the LuGrE' model. we get all extend(>(l dnlalllics of the system compare to tll(' IHP\'ioush' considercd etjuatiolls (17 )- ( Itj)
m, Then the cycle, that
{ [(Jj,4 j J : E ml( (JI.ci Il
=
E.},
is orbit ally asymptotically stable in the phase plane : (J], 41 ), •
-1. CO:\CLUSIO:\S (35) ..
..
(rn B] + 11'22 (-)']
= T ~
F
This paper deals \\"it h t 11<' probkm of a frictioll compensation ill llonlillear cOlltrol s\"stems, It is assumed that the friction has a particular structure , the so called LuGre Inodel. \\"hile it is also assumed that the origillal COllt roller deriyed for the s,\'st em "'it hout frier iOIl, is based 011 t 11(' passi\'it\' relatioll, ThE' main result of the paper suggest:; a friet iOIl obs(~ rye r and modificat iOIl of t Ill' control ill such a "'a~' that t 11(' o\"('rall closed loop "-,,stelll presern's asymptotic stability of the desired attrartiw set that "'as obtain originall~' by the controller whell tll(' frictioll is llot takell illto account.
(3G)
where
Illtrod ucing
\"clria blps
lIE''''
we get the equiyalent syst em
J] ch = ~ illgsin ( (JIl J2
ch =
F
d
dt
(To'::
-
T ~
+F
~ T
F
(3tj )
+ (T1:: +
"
(37 )
( (j2 ~ (J] ) -
~
(ch
0']
BHnes C.I .. A . lsidori and J.C. Willems. Pass iyit~·, feedback equi\'alence. and the global st a bilization of minimum pha.se non linear svstems . IEEE Transa ctions on Automatic COTltrol. 36:1228 - 1240. 1£)91 Canlldas de Wit C .. H . Olsson , K.J. Astrolll and P. Lis c hill s k~·. A lle\\' mod el for control of Systellls with friction , IEEE Transactions on Automatic Control. 40:-119 --125. 1995. Canudas de " -it C. and R. Kelh·. Passiyity based control d esign for robot s \\'ith dn1amical friction. In: th e Proceedings of th e 5th lASTED Int ern ational Confarnce, :-lexico . pp. 8-1- 88,
4d
!rh~41 1
ao
REFERE.'\CES
,
,::
(39)
9/r'((J2 - (j])
The main result of the paper. Theorem 1. implies the following stat ement L emma 4, Consider the subsystcm (37), the LuGr(' fri ction model (39). tllf' friction obserwr
1997.
d dt
-
wit h \\"it h ~ (0) 1\'
Shiriaey AS and A.L. Fradkm·. Stabilization of im'ariant spt s for nonlinf'ar S~'stellls \\'ith applications to cOlltrol of oscillation,.;. Ini FI/IOtional Journal of Robu st and _Vanlin ear Control. 11 :215 .. 240. 2001. Spong :\1.\Y .. D .J . Block and 1\:..1. "\strOlll. The :-lechatronics Control Kit for Edu ca tioll and Re::
= 0 and
= _ ao [1 -'-- a] (J
(To [ 1 - (TI
P
the ga in
(h ~ ql 9/r (4'] ~
]
(id
4'] ~ ih ] 9/r((/'2 ~ 4] )
y ( ..11 )
X
and t 11(' feed back cont roller defined by T
= - .119 sin q] -'-= ~ .11!J sil}(ll +
I,- Y - F
...,..I,-Ih(t} (E(2'2Mdt},Q](t )) -
(-12 )
L) - i, 164