TECHNOLOGY
D. G. Lishan, D. J. Johnson, Y. S. Lee, B. H. Ree|fs, and R. J. Westerman
Etching in GaAs/AIGaAs devices
The challenges posed to dry etching tech-
This process offers controllable etching
niques by thin, damage-sensitive layers in
rates and high selectivity to AIGaAs while minimizing exposure to damaging high ener-
GaAs devices are well known. In this article, the development by Unaxis Semiconductors of a patent pending process is discussed.
gy ion bombardment common to many existing processes.
Frontside etching in GaAs/AIGaAs devices Successfnl fabrication of m a n y c o m p o u n d semi-
f a b r i c a t i o n s e q u e n c e of m a n y h i g h - s p e e d
c o n d u c t o r devices requires etching processes for
s e m i c o n d u c t o r devices. In particular,
thin layer structures that are controllable, selec-
h i g h e l e c t r o n mobility t r a n s i s t o r s (HEMTs)
tive, a n d low damage. Controllable in the sense
are
that etching rates result in reasonable process
s t e p d u e to t h e sensitivity of t h e s e devices to
times, selective to handle a multitude of III-V
plasma damage and etching depth. These
materials, and low damage in that material's elec-
d e m a n d i n g c o n s t r a i n t s initially led to
tronic and optical properties r e m a i n intact.
dependent o n
t h e s u c c e s s of this e t c h i n g
successful p r o c e s s flows b a s e d o n w e t
Within this class of devices, the GaAs/AIGaAs
c h e m i c a l e t c h i n g t e c h n i q u e s . But as d e v i c e
h e t e r o s t r u c t u r e system is p e r h a p s t h e most studied and applied case of these requirements.
d i m e n s i o n s c o n t i n u e to s h r i n k a n d critical d i m e n s i o n c o n t r o l b e c o m e s m o r e stringent,
T h e ability to selectively e t c h GaAs o v e r
w e t e t c h i n g is n o l o n g e r a d e q u a t e a n d dry
A1GaAs has l o n g b e e n essential in t h e
e t c h i n g b e c o m e s an e n a b l i n g technology.
Figure 1. DC bias as a function o f RF power and pressure for 13.56 and 40.68 MHz.
400 . . . . . . . . . . . . . . . . . . . . . . . . . . 13.56 MHz n 25mtorr 350300
Increasing P re s s u r ~ , , .
DC Bias (-V) 250 200-
•j•'sS ' -
150-
~..-41
25 mtorr
100 50 0 0
IIl-Vs REVIEW
:
20
VOL ~,5 " NO 9 - NOV/DEC 2002
40
60 80 RF Power (W)
1O0
120
TECHNOLOGY
Etching in GaAs/AIGaAs devices
700 600 500 Etching Rate 400 (A/min) 3O0 20O 100 0
I
0%
10%
3¸
F
20% 30% 40% RF Duty Cycle
I
I
50%
60%
Figure 2. GaAs etching rate as a function of RF duty cycle at 40.68 MHz.
However, t h e t r a n s i t i o n to dry e t c h i n g has n o t
are particularly s u s c e p t i b l e to d a m a g e as t h e
b e e n straightforward.
active t r a n s p o r t layer is often relatively near the
T h e early dry e t c h i n g d e v e l o p m e n t w o r k for
device surface.
GaAs/A1GaAs u s e d c h l o r i n e - b a s e d c h e m i s t r i e s
In an effort to o v e r c o m e t h e d a m a g e limitations
in capacitively c o u p l e d reactive ion e t c h e r s
of RIE b a s e d processes, device m a n u f a c t u r e r s
(RIE) o p e r a t i n g at 13.56 MHz. C h l o r i n e
t u r n e d to h i g h density plasma p r o c e s s e s s u c h as
radicals, typically from BCI 3 or SIC14, are
inductively c o u p l e d plasma (ICP) a n d e l e c t r o n
still the favored e t c h a n t due to t h e ease of
c y c l o t r o n r e s o n a n c e (ECR) r e a c t o r configura-
f o r m a t i o n of volatile p r o d u c t s , GaCI x a n d
tions. High density r e a c t o r s allow essentially
AsCI x. Selectivity to an u n d e r l y i n g A1GaAs
i n d e p e n d e n t c o n t r o l of t h e ion density a n d
e t c h i n g stop is a c h i e v e d e i t h e r t h r o u g h t h e
e n e r g y t h r o u g h the use of t w o RF p o w e r
a d d i t i o n of an o x y g e n s o u r c e (forming non-
sources. T h e s e c o n f i g u r a t i o n s allow for l o w e r
volatile A1203) or a f l u o r i n e s o u r c e (typically
ion e n e r g i e s (DC Bias < 50 Vdc) at h i g h e r ion
SF6 or SiF4) in o r d e r to form non-volatile AIF 3.
densities. W h i l e the l o w e r ion e n e r g i e s facili-
Thus, w i t h a c o n v e n t i o n a l RIE system a n d
tate low d a m a g e etching, t h e associated h i g h e r
c h e m i s t r y a n i s o t r o p i c feature profiles w i t h h i g h selectivty to u n d e r l y i n g A1GaAs could b e produced. While the p r o b l e m a p p e a r e d resolved, t h e m o r e subtle issue of damage remained. A l t h o u g h device d a m a g e c a n arise from a numb e r of sources, it is generally agreed that p l a s m a i n d u c e d damage is directly related to ion energy. Ion e n e r g y in t u r n is p r o p o r t i o n a l to t h e
plasma densities result in GaAs e t c h i n g rates in excess of 1000 •/min m a k i n g it difficult to c o n t r o l t h e e t c h i n g p r o c e s s for t h i n film (< 1000 A) applications.
Low damage While m a i n t a i n i n g t h e selectivity b e t w e e n GaAs
plasma p o t e n t i a l a n d self-induced DC bias w)lt-
and AIGaAs u s i n g t h e well u n d e r s t o o d BC13 /
age ( I Vdc I). Unfortunately, t h e h i g h ion ener-
SF6 chemistry, w e address t h e d a m a g e limita-
gies associated w i t h t h e self-induced DC bias at
tions of a c o n v e n t i o n a l 13.56 MHz RIE configu-
13.56 MHz (typically > 100 V) results in d e v i c e
ration as well as t h e e t c h i n g rate limitations of
d a m a g e w h i c h ultimately c o m p r o m i s e s d e v i c e
t h e h i g h density a p p r o a c h . The i m p r o v e d ,
p e r f o r m a n c e . Several g r o u p s have r e p o r t e d
p a t e n t - p e n d i n g Unaxis r e a c t o r uses a parallel
that e t c h i n g i n d u c e d d a m a g e is significantly
plate c o n f i g u r a t i o n p o w e r e d at 40.68 MHz.
r e d u c e d at values b e l o w 50 Vdc. HEMT devices
Figure 1 shows, as e x p e c t e d , that t h e DC bias
IIl-Vs REVIEW
:
V O L ~.5 - NO 9 " N O V / D E C 2 0 0 2
B
Etching in GaAs/AIGaAsdevices
Figure 3. SEM cross-sections. (a) SiN mask at 50% overetch. (b) Photoresist mask at 200% overetch. Epitaxial structure is 500 ~ GaAs over 400 ~ AIGaAs.
increases w i t h RF excitation p o w e r a n d
e x a m p l e , e t c h i n g a 300 A t h i c k film at 1200
d e c r e a s e s w i t h increasing pressure. However,
a / m i n suggests an e t c h i n g time of a p p r o x i m a t e -
Figure 1 also e x h i b i t s t h e p r e d i c t e d inverse rela-
ly 15 s e c o n d s - resulting in a n a r r o w p r o c e s s
t i o n s h i p b e t w e e n DC bias a n d RF f r e q u e n c y for
w i n d o w . Slowing t h e e t c h i n g rate by simply
13.56 MHz a n d 40.68 MHz. The h i g h f r e q u e n c y
r e d u c i n g RF p o w e r levels is generally impracti-
RF excitation results in significantly l o w e r
cal since plasma stability a n d r e p r o d u c i b i l i t y
applied DC bias voltages. For e x a m p l e at 50 W
become major concerns.
RF power, t h e DC bias for 13.56 MHz is over t w i c e t h e value for t h e same p o w e r at 40.68 MHz. In c o n t r a s t to t h e 13.56 MHz DC bias curves, t h e 40.68 MHz c u r v e s s h o w a usable p r o c e s s s p a c e w i t h IVdc I < 50 V, e v e n at l o w e r pressures. The l o w e r applied voltages result in ion energies c o m p a r a b l e to low d a m a g e ICPb a s e d processes.
With t h e i n t e n t i o n of s l o w i n g t h e GaAs e t c h i n g rate to c o n t r o l l a b l e levels for t h i n film applications, t h e 40.68 MHz RF was m o d u l a t e d between high power and low power conditions over t i m e (pulsed). The e t c h i n g rate d u r i n g the high power period remains unchanged ( - 1 0 0 0 A / m i n ) w h i l e t h e e t c h i n g rate d u r i n g t h e l o w p o w e r p o r t i o n of t h e cycle is
Controllable etching rates
essentially zero. This pulsing results in an average e t c h i n g rate o v e r a n u m b e r of cycles t h a t is
In a parallel plate factor, t h e e t c h i n g rate of
d e t e r m i n e d by t h e ratio of t h e h i g h to l o w
GaAs is nearly i n d e p e n d e n t of e x c i t a t i o n fre-
p o w e r p e r i o d s (or duty cycle). Figure 2 s h o w s
quency even though the increased frequency
t h e r e l a t i o n s h i p b e t w e e n d u t y cycle (ratio of
l o w e r s t h e DC bias a n d c o n s e q u e n t l y t h e ion
h i g h p o w e r time to total cycle time) a n d GaAs
e n e r g y at t h e w a f e r surface. Since t h e e t c h i n g
e t c h i n g rate for a BCI 3 / SF6 process. It is
of GaAs in a c h l o r i n e b a s e d plasma is primarily
i m p o r t a n t to n o t e that the a p p l i e d voltage to
chemically d r i v e n (as o p p o s e d to an ion driven
t h e s u b s t r a t e was less t h a n 30 Vdc d u r i n g b o t h
m e c h a n i s m - i.e. sputtering), this result is n o t
t h e h i g h a n d l o w p o w e r p e r i o d s w h e n this data
u n e x p e c t e d . T h e c o n c e n t r a t i o n of reactive
was collected. Using a 25% duty cycle resulted
species, a n d h e n c e t h e e t c h i n g rate, is directly
in GaAs e t c h i n g rates n e a r 300 A / m i n yielding
related to t h e e x c i t a t i o n power. Thus, for a simi-
a desirable o n e m i n u t e p r o c e s s time for a
lar excitation p o w e r a n d c h e m i s t r y (BC13 / SF6)
300 ik film.
e t c h i n g rate results at 40.68 MHz w e r e consist e n t w i t h p r e v i o u s g r o u p s investigating e t c h i n g rates w i t h a 13.56 MHz RIE configuration. Both RF f r e q u e n c i e s yielded e t c h i n g rates of approximately 1200 ]k/min.
IIl-VsREVIEW
High selectivity to AIGaAs As previously discussed, in addition to having low damage and a controllable etching rate, GaAs e t c h i n g processes for m a n y devices must also b e
In o r d e r to realize a m a n u f a c t u r a b l e p l a s m a
highly selective to A1GaAs. By using e x t e n d e d
e t c h i n g process, it is desirable to h a v e p r o c e s s
e t c h i n g times it is possible to d e t e r m i n e selectiv-
times of at least o n e m i n u t e in length. For
it3' u n d e r various conditions. Table 1 summarizes
VOL15 - NO 9" NOV/DEC2002
Etching in GaAs/AIGaAsdevices
Table 1 Etching Rate
Selectivity
GaAs
~300 A/min
GaAs:AIGaAs
>200:1
AIGaAs
-1.5 A/min
GaAs:SiN x
>20:1
GaAs:Resist
> 10:1
SiN x
14 A/min
Resist
30 A/min
t h e data for etching rates and selectivity using a
r e a c t o r is discussed. A qualitative c o m p a r i s o n
baseline GaAs etching p r o c e s s of approximately
to alternative available t e c h n i q u e s is s h o w in
300 A/rain.
Table 2.
Thus, u n d e r t h e s e specific c o n d i t i o n s t h e
The high frequency reactor described
GaAs:A1GaAs e t c h i n g selectivity is over 200:1
h e r e achieves t h e goal of l o w bias voltages
w h i c h c o m p a r e s quite favorably w i t h t h e
(<50Vdc) w h i c h significantly r e d u c e s
typical values of a p p r o x i m a t e l y 50:1 for ICP
e t c h i n g i n d u c e d damage a n d is c o m p a r a b l e
processes.
to ICP-based processes. Pulsing t h e RF r e d u c e s t h e e t c h i n g rate to t h e same o r d e r of
Profile control
m a g n i t u d e as t h e film thickness. Controllable
Feature profile is a n o t h e r i m p o r t a n t considera-
GaAs e t c h i n g rates b e t w e e n 200 A / m i n a n d
tion for GaAs frontside e t c h i n g applications.
1000 2k/min h a v e b e e n d e m o n s t r a t e d w i t h o u t
Depending on the subsequent fabrication
the addition of a p r o c e s s gas diluent. T h e s e l o w
p r o c e s s f l o w e i t h e r an a n i s o t r o p i c or control-
e t c h i n g rates are r e q u i r e d in o r d e r to o b t a i n
lably u n d e r c u t feature profile is required. Using
controllable e t c h i n g times for t h i n films (e.g.
t h e same BC13 / SF6 chemistry, b o t h SiN x a n d
gate recess definition for HEMT devices). Due
resist m a s k e d samples w e r e e t c h e d a n d cross-
to t h e l o w p r o c e s s p o w e r s u s e d in this configu-
s e c t i o n e d for SEM analysis.
ration, active cooling of t h e s u b s t r a t e is n o t required. In a d d i t i o n to allowing l o w DC bias
Figure 3 s h o w s e x a m p l e s of profiles w i t h SiN x a n d resist masks. A SiN x mask sample exhibiting a 40 n m u n d e r c u t feature profile w i t h a 50% over-etch is s h o w n in Figure 3a. T h e
operation, t h e h i g h f r e q u e n c y RF also p e r m i t s o p e r a t i o n at relatively l o w PIE p r e s s u r e s of less t h a n 20 m t o r r p r o c e s s pressures. This l o w pressure o p e r a t i o n results in highly u n i f o r m (_+4%)
u n d e r c u t increases linearly w i t h time in t h e range of 50% - 150% over-etching w i t h 100 n m of u n d e r c u t e v i d e n t at 200%. Similar experim e n t s o n resist m a s k e d samples reveal m i n i m a l u n d e r c u t e v e n w i t h an e x t e n s i v e (150%) overe t c h (see Figure 3b).
e t c h i n g rates across a 100 m m substrate. The system p e r f o r m a n c e has b e e n c h a r a c t e r i z e d for a GaAs/A1GaAs selective e t c h i n g p r o c e s s using a BC13 / SF6 c h e m i s t r y a n d selectivities are in excess of 150:1.
Author contact details:
Summary
Unaxis USA, Inc.,
In this article a low damage, selective GaAs
10050 16th St N.
e t c h i n g p r o c e s s using a BCI 3 / SF6 c h e m i s t r y in
St. P e t e r s b u r g ,
a c o m m e r c i a l l y available p u l s e d 40.68 MHz PIE
FL 3 3 7 1 6
Process
Low Damage
High Selectivity
Etching Rate Control
Profile Control
Critical Dimension
Wet
good
good
fair
poor
poor
13,56 MHz RIE
poor
good
fair
good
good
ICP
good
fair
poor
good
good
ECR
good
fair
poor
good
good
Pulsed 40.68 MHz RIE
good
good
good
good
good
IIl-Vs REVIEW : ~
VOL 15 - NO 9 ° NOV/DEC 2 0 0 2