FUNDAMENTAL FREQUENCY OF TRANSVERSE VIBRATION OF ORTHOTROPIC PLATES OF REGULAR POLYGONAL SHAPE CARRYING A CONCENTRATED MASS

FUNDAMENTAL FREQUENCY OF TRANSVERSE VIBRATION OF ORTHOTROPIC PLATES OF REGULAR POLYGONAL SHAPE CARRYING A CONCENTRATED MASS

Journal of Sound and Vibration (1999) 221(1), 175–179 Article No. jsvi.1998.1841, available online at http://www.idealibrary.com.on FUNDAMENTAL FREQU...

76KB Sizes 0 Downloads 82 Views

Journal of Sound and Vibration (1999) 221(1), 175–179 Article No. jsvi.1998.1841, available online at http://www.idealibrary.com.on

FUNDAMENTAL FREQUENCY OF TRANSVERSE VIBRATION OF ORTHOTROPIC PLATES OF REGULAR POLYGONAL SHAPE CARRYING A CONCENTRATED MASS P. A. A. L  R. H. G Institute of Applied Mechanics (CONICET) and Department of Engineering, Universidad Nacional del Sur 8000, Bahı´ a Blanca, Argentina (Received 17 September 1998)

1.  The present study deals with the solution of the title problem using a conformal mapping approach coupled with the optimized Rayleigh–Ritz method [1, 2]. By conformally transforming the given shape in the z-plane onto a unit circle in the z-plane it is possible to construct co-ordinate functions which satisfy the essential boundary conditions in the case of simply supported and clamped plates. For the sake of simplicity, the azimuthal variation in the z-plane is disregarded and the following co-ordinate functions are used. (1) Simply supported plates: W 2 Wa = C1 (1 − rp) + Ca (1 − r p + 1) + C2 (1 − rp + 2),

z = r eiU.

(1)

(2) Clamped plates: W 2 Wa = C1 (1 − r p)2 + C2 (1 − r p + 1)2 + C3 (1 − rp + 2)2

(2)

where p is Rayleigh’s optimization parameter [2]. It should be pointed out that orthotropic plates are commonly used in engineering practice, e.g., printed circuit boards used in electronics applications. 2.   Following Lekhnitskii’s standard notation [3] one expresses the governing functional in the form J(W) =

gg

2 (D1 Wx2 2 + 2D1 n2 Wx 2 Wy 2 + D2 Wy22 + 4Dk Wxy ) dx dy − rhv2

p

gg

W2 dx dy − Mv 2W2(0, 0),

(3)

p

where it has been assumed that the concentrated mass M is rigidly attached at the center of the plate. 0022–460X/99/110175 + 05 $30.00/0

7 1999 Academic Press

   

176

In the case of regular polygons of degree ‘‘s’’ the mapping function is given by [1] z = As ap F(z) = AS ap

g

z

0

dz , (1 + zs)2/s

(4)

where ap is the apothem of the polygon. Defining now 1 e−2Ui , 4 F'2(z)

U1 + V1 i =

U2 + V2 i =

1 F0(z) −Ui e , 2 F'3(z)

(5)

and substituting equations (4) and (5) into equation (3) one obtains the transformed energy functional in the form

As2 ap2 J(Wa ) = D1

gg 8& 00

Wa −

2

1

c

− 8n2

+

&

D2 −2 D1

+ 16



$0

War 2 −

Dk D1

1

War U1 − War U2 r

War 2 −

$0

As2 p 16tg s 4

00

1

War 1 U1 − War U2 + 2 r

War 2 −

+

1

n2 2

0

War 2 +

1

War 1 U1 − War U2 + 2 r

1

War V1 − War V2 r

$ gg

V 2 As2

%

2

War r =F'(z)=2

War 2 +

%9

1

War r

=F'(z)=4

2

'

War r =F'(z)=2

War 2 +

2

2

=F'(z)=2r dr du

Wr2 =F'(z)=2r dr du + mstg

c

'

2

%

p 2 W , s (0)

(6)

where the fact that Wa , defined in equations (1) and (2), does not contain the azimuthal variable u has been taken into account, and m = M/Mp , Mp = plate mass, tgp/s = tan p/s, and V12 = (rha4/D1 )v12 . 3.   Tables 1 and 2 depict values of the fundamental frequency coefficient V1 in the case of isotropic, simply supported and clamped plates, respectively. Reasonably

   

177

y

a

M

x

ap

M

Figure 1. Orthotropic plate of regular polygonal shape carrying a central, concentrated mass, M.

good agreement with values available in the literature, for the case where m = 0, is obtained. Pentagonal, exagonal and heptagonal plates are considered in the present investigation.

T 1 Frequency coefficients of simply supported isotropic plates of regular polygonal shape (n = 0·30) s

m=0

0·10

0·20

0·30

0·40

m = 0 [4]

5 6 7

11·00 6·96 4·97

9·28 5·90 4·22

8·14 5·19 3·72

7·33 4·68 3·35

6·72 4·30 3·08

11·01 7·15 5·06

T 2 Frequency coefficients of clamped isotropic plates of regular polygonal shape s

m=0

0·10

0·20

0·30

0·40

m = 0 [5]

5 6 7

19·24 12·56 8·91

15·11 9·91 7·05

12·76 8·39 5·97

11·23 7·39 5·27

10·13 6·68 4·76

19·71 12·81 9·08

   

178

T 3 Frequency coefficients of simply supported orthotropic plates of regular polygonal shape (n2 = 0·30) Dk /D1

s

m=0

0·10

0·20

0·30

0·40

m = 0 [6]

4

0·85

5 6 7

17·08 10·73 7·68

14·41 9·10 6·51

12·64 8·01 5·73

11·38 7·23 5·17

10·42 6·63 4·75

17·03 11·70 –

1

0·85

5 6 7

12·49 7·78 5·50

10·54 6·60 4·67

9·24 5·81 4·12

8·32 5·24 3·71

7·62 4·81 3·41

12·54 8·48 –

1

0·10

5 6 7

10·17 6·50 4·68

8·58 5·51 3·97

7·53 4·85 3·49

6·78 4·37 3·15

6·21 4·01 2·89

10·45 7·16 –

0·25

0·10

5 6 7

8·33 5·35 3·84

7·04 4·54 3·26

6·17 3·99 2·87

5·56 3·60 2·59

5·10 3·30 2·37

8·65 5·94 –

D2 /D1

Tables 3 and 4 present values of V1 for simply supported and clamped orthotropic plates. The following orthotropic parameters have been considered: D2 /D1 = 4, Dk /D1 = 0·85, n2 = 0·30; D2 /D1 = 1, Dk /D1 = 0·85, n2 = 0·30; D2 /D1 =1, Dk /D1 = 0·10, n2 = 0·30; D2 /D1 = 0·25, Dk /D1 = 0·10, n2 = 0·30. In the case of bare plates (m = 0) the eigenvalues have been compared with those determined in reference [6]. T 4 Frequency coefficients of clamped orthotropic plates of regular polygonal shape (n2 = 0·30) Dk /D1

s

m=0

0·10

0·20

0·30

0·40

m = 0 [6]

4

0·85

5 6 7

29·77 19·42 13·79

23·37 15·31 10·90

19·73 12·96 9·23

17·36 11·41 8·14

15·67 10·31 7·36

30·46 20·18 14·82

1

0·85

5 6 7

21·69 14·13 9·99

17·02 11·14 7·90

14·36 9·43 6·69

12·63 8·30 5·90

11·40 7·50 5·33

22·09 14·52 10·62

1

0·10

5 6 7

17·90 11·70 8·32

14·06 9·23 6·58

11·88 7·82 5·58

10·45 6·89 4·92

9·44 6·22 4·45

18·66 12·25 9·05

0·25

0·10

5 6 7

14·71 9·62 6·83

11·56 7·59 5·41

9·77 6·43 4·58

8·59 5·67 4·04

7·76 5·12 3·65

15·38 10·18 7·41

D2 /D1

   

179

Present results are, in general, somewhat lower. Possibly the values determined in reference [6] are rather high upper bounds since a single approximating function was used.  The present study has been sponsored by CONICET Research and Development Program, Secretarı´ a General de Ciencia y Tecnologia of Universidad Nacional del Sur and Comisio´n de Investigaciones Cientificas (Buenos Aires Province).  1. R. S and P. A. A. L 1991 Conformal Mapping: Methods and Applications. Elsevier: Amsterdam. 2. P. A. A. L 1995 Ocean Engineering 22, 235–250. Optimization of variational methods. 3. S. G. L 1968 Anisotropic Plates. New York: Gordon and Breach Science Publishers. 4. P. A. S, R. P and P. A. A. L 1967 Journal of the Acoustical Society of America 42, 806–809. Application of complex variable theory to the determination of the fundamental frequency of vibrating plates. 5. P. A. A. L and R. H. G 1976 Journal of Sound and Vibration 48, 327–332. Fundamental frequency of vibration of clamped plates of arbitrary shape subjected to a hydrostatic state of in-plane stress. 6. P. A. A. L, L. E. L and G. S´ S 1980 Journal of Sound and Vibration 70, 77–84. A method for the determination of the fundamental frequency of orthotropic plates of polygonal boundary shape.