Gas—liquid chromatographic analyses

Gas—liquid chromatographic analyses

/oumal of Chromatography, 248 (1982) 69-88 Ekvier Scientific Publishing Company, Amsterdam CHROM. Printed in The Netherlands 15,087 GAS-LLQUID CHR...

1MB Sizes 11 Downloads 90 Views

/oumal of Chromatography, 248 (1982) 69-88 Ekvier Scientific Publishing Company, Amsterdam CHROM.

Printed in The Netherlands

15,087

GAS-LLQUID

CHROMATOGRAPHIC

ANALYSES

IX*. GLASS CAPILLARY GAS CHRO_MATOGRAPHY OF ALIPHATIC C, n-ALKYL MONOCHLORO ESTERS OF ACETIC, CHLOROACETIC, CHLOROACETIC AND TRICHLOROACETIC ACIDS

ILPO 0.0.

Deparmenr

C,DI-

KORHONEN

of Chemikrry, University ofJytxisk_Gi,

K1:lliX_inkaruI-3, SF4OIOO JjvciLA~kT 10 (Finland}

(Received May 14th. 1982)

SUMMARY

The gas chromatography (GC) of rz-alkyl acetates (CH,-COOR), chloroace(CH,Cl-COOR), dichloroacetatcs (CHQ-COOR) and trichloroacetates (Ccl,-COOR), where the alcohol chain length (R) varied between 1 and S, and certain of their monochlorinated derivatives, 176 compounds alrogether, has been studied on SE-30 and OV-351 glass capillary columns under the same operating conditions_ The isomeric monochlorinated esters are eluted in direct order from the lchloro to the c+chloro isomer, the separation of the isomers being complete on OV351. On SE-30, however, the peaks of the 6- and 7-chlorooctyl esters are partly overlapped_ The separation of the mixtures of odd- and even-carbon-number esters was better on a non-polar column. The GC analysis of the combined mixtures of all isomers resulted in several overlapping peaks, particularly with the chloroacetates. The isomer% chloro esters are eluted on SE-30 in the order mono-, di- and trichloro isomers, whereas on OV-35 1 the di- and trichloro esters are eluted in the reverse order while the l-chloroalkyl C,C, trichloroacetates are eluted before the corresponding monochloro isomers. A

tates

different elution order of the compounds is observed on a polar column, l-chloro and o-chloro isomers giving rise to the _aeatest difference in elution order. The gas chromatograms of the mixtures and the relative retention times of the compounds are given.

INTRODUCTION

Recently, the gas chromatographic (GC) separation of mixtures with a wide range of chain lengths of aliphatic n-alkyl acetates and their monochlorinated derivatives on SE-30 and Carbowax 20M glass capillary columns has been reported’. Also, the GC of a series of n-alkyl esters of acetic acid and its chlorinated derivatives has * For PartVIII, seeref.-Z 002 1-%73/S2iOOOO4WOjSO2_75

,Q 1952 Ekewier Scientific Publishing Company

_~ _ ’ I_ 0.0.

70

KOk-IONEN

1 been studied on poIar and non-polar coIumnsz, as have-halogenated esters3: _ This paper describesa w\study -of homologous series-of aliphatic n-alkyl acetates, chloroacctates and cktain of theii iiionochloriinatixi derjv&tiGes. The parent esters are CH,COOR, CH&lCOOR, CHCl,COOR and CC13COOR, where the carbon number of the akoboi-chain (RI-varied betwekn1 and 8_ The sepisrations-bf mixtmzs of the parent esteri tid their isomeric chloroatkyi deri\iatives tier& carri& ont on a non-polar SE-30 and a highly polar OV-351 glasscapillary cblumn Under the same operating conditions_The relativeretentiontimes for all 176 compounds are

given and the retentionorder on both columns is discussed.

7

SE-30

GC OF CHLORINATED

n-ALKYL ACETATES

71

TABLE I RELATIVE RETENTION TI,MES (RRT) OF ALIPHATIC C,-C, n-ALKYL ACETATES AND THEIR ,MONOCHLORINATED DERIVATIVES ANALYSED ON SE-50 AND OV-3.51GLASS CAPILLARY COLUMNS Conditions as shown in Fig_ I. n-Alk-I_Iacetate, CH,-COOR. R=

cohmn

-

SE-30 Time tminp

0 v-351 RRTt*

RR*

Time (min)*

RRTct

RRT-

RRTS

Methyl Chloromethyl

1.65 2.80

1.00 1.70

0.19 0.32

265 6.34

1.00 2.39

0.32 0.76

1.61 226

Ethyl I-Cbloroethyl 2-Chloroethyl

2.10 330 4.45

1.00 1.57 2-13

0.24 0.3s 0.52

3.01 5.94 9.36

1.00 1.97 3.11

0.36 0.72 1.13

1.43 1.80 209

fiOPY1 l-Chloropropyl 2-Chloropropyl 3-Chloropropyl

2.86 A87 5.39 6.95

1.00 1.70 1.88 2.43

0.33 0.56 0.62 0.80

3.61 7.27 8.99 11.83

1.00 2.01 2.49 3.28

0.44 0.88 1.08 1.43

1.26 1.49 1.67 1.70

Butyl &Chlorobutyl 2-Chlorobutyl 3-Cblorobutyl 4-Chlorobutyl

4.21 6.81 7.69 8.15 9.74

1.00 1.62 1.83 1.94 2.31

O-49 0.79 o-s9 0.94 1.12

4.71 8.88 10.86 11.99 14.46

1.00 1.s9 2.31 2.55 3.07

0.57 1.07 1.31 1.45 1.74

1.12 l-30 I-41 1.47 1.48

Pentyl l-Chloropcatyl 2-Chloropentyl 3-Chloropntyl 4-Cllloropentyl 5-Cbloropentyl

691 9.30 lO_OO 10.75 11.02 12.51

lxlo 1.50 1.61 1.73 1.77 2.01

0.72 1.07 1.15 1.24 1.27 1.4t

6.34 10.95 12-58 13.92 14.73 16.70

1.00 1.73 1.98 2.20 2.32 2.63

0.76 1.32 1.52 1.68 1.78 2.01

1.02 1.18 1.26 1.30 1.34 1.33

Hexyl I-Cblorohexyl 2-Chlorohcxyl 3-Chlorokxyl 4-Cblorohc..yl 5-Chloroktexyl

8.67 11.87 1251 13.05 13.57 13.79 15.13

1.00 1.37 1.44 1.51 1.57 1.59 1.75

!_tXl 1.37 1.44 1.51 1.57 1.59 I.75

8.29 13.05 14.53 15.46 16.50 16.97 18.76

1.00 1.57 1.75 1.86 1.99 2.05 2.26

1.00 1.57 1.75 1.86 1.99 2.05 226

0.96 1.10 1.16 1.18 1.22 1.23 1.24

11.26 14.39 14.98 15.45 15.72 IL18 16.33 17.55

1.00 l-28 1.33 1.37 I.40 1.44 1.45 1.56

1.30 1.66 l-73

10.45 15.11 16.70 17.42

1.00 1.45 1.60 1.67 1.73 I.80 1.83 1.99

1.26 1.82 201 2.10 2’18 326 231 251

0.93 1.05 1.11

6-ChIOi-OhCxyi

Hem1

lshloroheptyl 2-Cbloroheptyl 3-Chlorolxeptyl 4-Chlorolteptyl 5-ChloroheptyI 6-Cbloroheptyi 7-Chloroheptyl

1.78 1.81, 1.87 1.88 202

18.08 18.76 19.11 20.78

1.13 1.15 1.16 1.17 1.18

fCon:l-nut-cfon p. 72)

TABLE

I (continued) .

n-Mqt areZaxe_ CH,-COOR R=

~.CdSE-30

k

* Aksolute Relative Reiatiw s Relative

0 v-351

retention times (min) measured from Fig_ l_ retention times for the parent esters taken as l-00. retention time for n-hexyl acetate taken as 1.00. retention times For compounds on SE-30 taken as 1.00.

EXPERI:ME%TAL Gas

CJwomatograpJr,

GC analyses were carried out pn a Perkin-Elmer Model Sigma 3 gas chromatograph with the following operating conditions: injector temperature, 250°C; flameionization detector temperature, 270°C; nitrogen carrier gas flow-rate, O-9 ml/min; splitting ratio, I-30; chart speed, 10 mm/min_ The two columns used Were a vitreous silica SE-30 ivall-coated open-tub&r (WCo;T) columri (25 m x O_ti mm I-D_), supplied by-Scientific Glti (North Melbourne, Australia), and a fused silica Ov{35! WCOT column (25 & x O-32 mm I-D_), supplied .by Orion Analytica (J+poo;; Finland). The column temperature was programmed from 50°C at 6”C/min until eiution of peaks had &eased_ Samples

-.

Aliphatic C,-C, JZ-alkydacetates, chioroacetates, dichIoro+x&t~ an& tri-chloroacetates were prepared in our laboratqry -&sde&&xl ea&efi3_ The’cotipond1 ing chioroaikyl este& were obtain& by cl$ori&&on of ihe parent &e&vith &lo&e in the Squid phase*_ -fhe products were ~denti&i by ga$chr~mat~~hyy-r&ss spec-~ trometry (W-MS). :%_hecrude chlorination n&ures && used for GC~‘&alyses_-Thei additional peaks ill&ted in Figs; I, 3,4 a&d 5 &e unidentified. higher chh&nated: isdtiers fotied in the_&lo&at&s, .,

CC OF CHLORINATED

0

eampauad .

.

.

.

.

.

.

.

.

.

n-ALKYL

.

.

.

.

.

.

.

.

ACETATES

.

.

.

.

.

,*:,:.:::,::::‘:::::,~~~~:~.~,‘,,,,**,..“~~

.

.

.

73

.

.

.

.

.

.

.

.

.

*253.5.**73.54

.

.

.

.

.

.

.

.

Fig_ 2. Relative retention times (RRT) of aliphatic Ct-C, n-alkyl acetates and their monochlorinsted derivatives, analysed on SE-30 and OV-351 glass capillary columns_ Relative retention time for tz-hesyl acetate (6) taken as 1.00 (see Table I). Notation of compounds as in Fig. 1.

columns has been reported’. To compare the GC behaviour, the separation of these acetates has now been studied under the same esperimental conditions with their chlorinated derivatives. The gas chromatograms of the mixture of all C,--C, zz-alkyl acetates are illustrated in Fig_ 1 for both SE-30 and OV-351 columns. Table I gives the absolute and relative retention tLnes of the compounds. Ah retxntion times were measured from sample injection and are tabulated relative to the parent esters and relative to zz-hesyl acetate = 1.00 (Fim =_ 2). The retentions are also expressed as the ratios of the retention

times of the compounds on OV-351 divided by those on SE-30. The results show that the separations of the esters are similar on a highly polar OV-351 column and, as previously reported, on Carbowas 20&P. iMethyl and ethyl acetates are completely

separated,

but khloroheptyl

and S-chloropentyl

isomers

74

:

..

,

_.

._.:

_

:::

-1r;

O;b_YKOwO&N

overiap- n-Pentyl and cworomethyi acetates Ad 5-khloroheptyl.and 6-chlorohexyl :: isomers completely. overlap, e on Carbowax 2OM_ Figs_ X5 ilk&ate the GC se&rations -of the mixtures of odd- and evencarbon-number C,-C, &dkyI chioro-, dichloro- and trichloroacetzks and their monochlorinated derivatives, respectively_ However, the GC analysis of the combined mixtures of all isomeric esters resulted in tivqal qverlapping Peaks, making-the chromatograms c~mpiicat&i_ Tables II-IV give the retention data for the compounds, the retention ako being expressed re!ative to the corresponding n-alkyl ‘acetates = LOO, given in Table I_ -Theretention times relative to n-hexyl esters = 140 are iliustrated in Figs 6-S_

SE-30 A

f f ::

T

: ~

I

L.--

GC OF CHLORINATED

n_ALKYL ACETATES

75

SE-30 B

Fig 3. Chromate_-s of the mixtures of aliphatic odd- (A) and even-carbon-number (B) Cl-C, n-aikyl chloroacetates and their monochIotinated derivatives, analysed on SE-30 and OV-351 glass capillary coluxnns. S = solvent. Notation of compounds: l-8 are the parent esters from methyl chloroaaxate (1) to n-octyl chloroacetate (8): the upper number indicates the position of the Cl-substituent, the lower numhr the alcohol chain length (e-e.. i denotes 3-chlorohexyl chloroacetate)- The additional pea.ks are unidentified polychloro isomers.

Figs. 3-5 show that the separations of the mixtures are better on SE-30 than on OV-351. The isomeric monochlorinated esters are eluted in direct order from the Ichioro to the ochloro compound, their separation being complete on a polar column’. On SE-30, however, the peaks of 6- and 7-chlorooctyl esters partly overlap. As can be seen from Fig. 3, the following cilloroacetates are poorly separated on SE30: chIoromethy1 and n-propyl, 4-chioropentyl and n-heptyl and n-octyl and S-chlorohexyf esters. Figs_ 4 and 5 show that the corresponding di- and trichIoroacetates are separated from each other.



:,;

::,I’: :’

I,’

'IlbO '0.82 I.?4 " ,,'I.01I I.OH 1.321 1.39 I.14 I;16 I.42 ,'I.54 ,'I;26

1i.49' l&25 '15,20, 15.9SQ 1'6;,3j: ~$75

6.63' O.H4 0.93 0.97 1.08 :

0.46 d.67 0.75 O,.RU

l.bO: 1.47 I.64 I,93 I,00 l.j3 l,47. 1.53 I.71 :,

0.32 0.51 : 0.68

I,00 I,60 2,12

0,23 , 0,46

k90: ll.Sli:' 13.oc .i3,58 15.23,': ,.

4.49 7.17 isb I: a,43 '9.+$ 10.52. 12;40, :

I,97 :

I,00

I.85 I,53 IS2 I,48 I,48 1.42

2,lI I,74 I,70 I,67 I,56

2,25 I,94 I,95 I,78

2914 2,17 2,12

l,9R 2,29

I4,74 18.86 20,90 22,16 23,03 24.93

12.49 16,94 19.39 20047 22.93

IO,63 15.65 17096 20073

8077 14.27 IHe62

8.19 IS,65

I,00 I,28 : I,42 IS0 IS6 I,69

1.00 I,36 I,55 I,64 I,84

I.00 1.47 I,69 I,95

I,00 I,63 2.12

I,00 I,91 "

0,89 I,14 I,26 I,34 I,39 IS0

0,75 I,02 l,l7 It23 I,38

064 0,94 l,oa I,25

OS3 0,86 It12

0,49 0,94

2,32' I,72 1.66 1.59 I.5G I.49

2,65 I.91 I,79 1.7) I,59

2,94 2,15 2,oo I*75

2.91 2.40 I,99

3.09 2.47

I,65 I,65 I,71 I,67

I,95 I,99 I,96

2,5l 2,44

DERd

1.28 I,32 I,38 I,39 I,41 I,40

I,40 I,43 I,48 " IS,, I,51

'I~ELATIVE RETENTiO'NTIhilIS (RRT) OF hLII’1:lhTIC C,-C, a.ALI(YLCIdL0ROACETATES AND Tlll3lR MONOCHLORINATED TlVES,ANA;~Y,S~D~NSE~30~NDOV.35IGLASSCAl'lLLARYCOLlJMNS

.T~nl,ElI

(

I,

3

Octyl IChlorooctyl 2-Chlorooctyl 3.Chlorooctyl 4.Chlorooclyl 5-Chlorooclyl 6.Chlorooctyl 7-Chlorooctyl 8.Chlorooctyl

l

I .oo I.12 1.17 I.19 I.21 1.22 1.24 1.25 I.31

1.00 I.15 I,20 I,23 1.25 1.28 1.29 I.36

I,25 1.2R 1.32 1.35 I.43

1.18

IJO

I.33 I.49 I,55 l-58 I.61 I.63 I.65 I,66 I,74

I,17 I,34 1.40 I .43 I,46 I,50 I.51 I.59

lJ0 I,18 I.25 1,2x 1.32 1.35 I,43

I.36 I,25 I,26 I,25 I,26 I,26 I,25 I,25 I,23

I,45 I,31 I,31 I,30 I,30 I,30 I,30 I,27

I,62 I ,40 I#40 I,38 I,37 I,37 I,33

20355 24.09 25,RS 26.61 27.26 27.70 28,20 28040 29.82

I II,75 22.43 24025 25,OR 25,79 26.51 26.79 2X,30

16059 20.50 22-45 23,34 2440 24,9 I 26.54

tinws (min) mcssurcd front Fig. 3, lima for the purcnl esters tnkcn IIS 1.00. time for /I-hcxyl cllloroacclatc tukcn ils I .OO. times for the corresponding /dkyl i\ccInIcs (Tnblc I) takctl IIS 1.00. times for conpounds on SE-30 tilkctl its I .OO.

18.70 21.00 21.81 22.25 22.56 22,89 23.25 23.32 24.41

I-Chlorohcl~tyl 2-Chlorohcptyl 3-Chlorohcptyl I)-Chlorohcptyl 5-Chlorohcplyl Whlorohcptyl 7-Chlorohcptyl

rcunlion rclcnlion rclcnlion rclcnlion rcrcntion

16.37 18.82 IO,66 20.12 20.49 21.01 21.16 22.31

ncptyi

* Absolute * RcMve *** Relative ( Rclutivc oo Rclutive

14.05 16.61 17.50 18.01 18.57 18.91 20.12

HCXYI IChlorohcxyl 2-Chlorohcxyl 3-Chlorohcxyl cl_Chlorohcxyl 5-Chlorohcxyl Whlorohcxyl

I .oo I.17 I,26 I,29 1.33 1.35 I,37 I.38 I .45

.20 -29 .34 .3x -41 I.43 I,51

.oo

I .OO .24 ,35 ,4l -47 I -50 860

1.24 I.45 1.56 I .60 I .64 1.67 1.70 I.71 I.HO

I.13 1.35 1.46 I.51 1.55 I.60 I.61 I.71

I .oo 1.24 1.35 I.41 I .47 I.50 1.60

1.62 I.41 I.40 1.38 I,37 1.37 I,35 I,35 I.32

I.79 I.48 1.45 I.44 1.43 I.41 I,40 I,36

2,oo 1.57 1.55 I.51 I.48 1.47 I.41

I.10 I.15 I.19 1.20 I.21 I.21 I.21 1.22 1.22

1.27 1.27

1.23 I.25 1.26 1.26

I.15 I,19

I,32

I.18 I,23 I.28 I,30 I,31 1.32

?i q 2; B

k ;3

%

5 E! 0

B s E

$

Q I>

2,13 I,68 I ,67 to62 I,62 IS5 0.84 1.00 1.07 I.12 I.14 1.24

I .no I,18 I .27 1.32 Ii35 I .47

‘13.21 15.60 Iii72 17.45 17.89 19.43

lb.01 19.32 21.93 23.12 24.15 26.20

14, I4 t7,78 20.70 21.69 24.30

2S.1 I,95 I,91 Id6 I,74

0.68 0.85 0.94 0.97 1.08

I JJO I,25 I,38 I,42 I ,59

lO,i,S 0.28 14.67 IS;16 t6,9! !., :

12.19 16.45 19.25 22.01

2,86 2,26 2,27 2,03

0.52 0.70 0.78 0.90

I ,oo I,35 to49 a I,73

8*18 II,02 t2,2t l&l2

10.62 15.42 2h4S

0,3H 0.55 0.72

I ,oo I,45 I ,I)0

5.97 8,65 II,32

IO,22 17.29

0.89 I.07 I.22 I,28 1.34 1.45

0.78 0.99 I.15 I.20 I.35

I ,oo I ,26 I,46 I,53 I,72 I ,OO I,21 I,37 I .44 IS1 I,64

O.6H 0.91 I.07 I.22

0.59 0.85 I.13

I ,oo I,45 to93 I,00 I.35 ISH I,81

0.57 0,96

I ,oo I,69

RRP""

2S3 I,76 I,74 I,66 I,64 I,57

3,oo 2800 I,91 I,81 I,68

3,38 2,26 2,t4 t,H6

3,53 2960 2418

3Jt6 2,73

RRT'

AND Tt-t,:,R MONOCItLOt{tNATED

Thrc(nrlrr)* RRP"

0 v.351

2,84 2,62 2S3

2872 2.88

0.29 0.51

I’,00 I,RO

,I,06

439

RRT'

,

RRW*

,

RRP"

‘rrvtIkyI ~l~chl~jrcirrcrrir/c,’ ' 'Cohnrn : crlCl,~canR, R=i !!' It* ,'//, ,,<,I',' $/$3Q’ , I, I, (I/, 0 mrc (rrrl/r)” / !

‘fCpmMiyi8 ui4fdxowrlin Fiwl. ,l I,, $1

: tt&hT~Vti RtXl’ENTION TIMES (Rl\T) OF ALtPt~tATIC C& /I-ALKYL DICIILORQACETATES *‘t’IV88 ANALYStiD ON St?-30 AND OV.351 GLASS CAl’tLLAt~Y COLUMNS

;,zt I.24 I.31 I.32 I.35 I.35

I,33 1.34 I.41 I .43 I .44

I ,49 I,49 I.58 IS6

I,78 1.78 I,81

2e28 2,15

RRT"

DER,VA.

6

k

;

15065 17.92 18.95 19.48 20.12 20054 21.78

18.00 20.14 21.11 21060 22,04 22365 22,18 23995

20,25 22031 23921 23,67 24.05 24.44 24.19 24.88 25.96

licp1yl I-Cl~loroltcptyl 2.Clllorollcptyl 3.Cl~lorolicplyl 4.Cl~lorolicptyl 5-Cl~lorol~cptyl 6.Qlorol~cplyl ~Clilorolrcptyl

0ccyl I-Chlorooctyl ~-Chlorooctyl 3.Cl~lorooctyl 4~Clilorooctyl 5.Clilorooctyl QJJdorooctyl 7.Clllorooctyl 8.Chlorooctyl I.10 I.15 I.17 I.19 I.21 I ,22 1.23 I .28

1.00

I .oo I,12 1.17 I ,20 1.22 I.26 1.27 1.33

1.00 I,15 I,21 1.24 1.29 I.31 I,39

1.29 I ,43 la48 I.51 1.54 1.56 I,58 1.59 I.66

I,15 I .29 I,35 1,3x l-41 I,45 I,46 IS3

I.00 I.15 1.21 1024 I.29 1831 I .39

1.47 I .33 1.34 1.33 I .33 I .34 1.33 1.33 1.31

I.60 I.40 1.41 I.40 1.40 1.40 I.39 1.36

I.81 1.51 1.51 1.49 I,48 I .49 I .44

21.79 24.62 26.81 27.51 2X.31 28081 29.35 29.56 30.94

19.HH 2LH5 25.17 25.97 26.79 21064 27.93 29.43

18.04 21.11 23.52 24.38 25.59 26.24 27.X5

* Absolute rctcnlion timcs (min) mc;mul from Fig, 4, -* ** R&live rctcntion tinw for the pwcat cstcrs taken iIS l,OO. *** Relative rctcntion time for /I-lw,yl dichloroucetatc tilkca 11sI JO. ’ Rclntivc rctcntion times for the corresponding rr-alkyl iIccIatCs (Tublc I) titkcn as 1.00. I’ Rclutivc rctcntion times for COIII~OUIKIS on SE-30 fitkclt iIS 1.00.

‘,

I*Clllorollexyl, 2~Cl~lorol~cxyl 3~Chlorolicxyl 4.Clrloroltcxyl 5~Cltloroltcxyl 6.Cltloroltcxyl

Ilcxyl

IJO I,13 I,23 I,27 I,30 I,32 I,35 I-36 I,42

I.00 I,15 I,27 1,31 I.35 1-39 I,40 I,48

I,00 I,17 I,30 I,35 I A2 I,45 IS4

1.21 1.36 I .49 1.53 I.57 I.60 I .63 I ,64 1.72

1.10 1.27 I.40 1.44 I .49 1.53 I.55 I.63

I,00 1.17 I,30 1.35 I .42 I.45 1.54

I.72 1.44 I,45 1.43 I ,42 I .42 I.41 1.40 1.37

I,90 I.51 ISI I ,49 I,48 I ,47 I,46 I,42

2,lU I,62 1.62 1,5X 1155 I,55 I.48



PO E I,28 1.28

2 ;r B

b I.08 I,10 1.15 I.16 1.18 I,18 1.18 1.19 I.19

;r

F

I1.22 .20 1.23 I.23

%

1.19

1.22

d

I;10 I.13

5

!G

%

8

1.24 I,25 I .27

I.15 I,IH

d,3d 0857

I,00 I,59

h29 ,!598

, ‘,.::,.:. ,i, :.,. * Ethyl ;: .’ ‘I I”,qloroclhyi ‘. 2Chlorocl~y~ 0,58 0.73 Odl 0,9l 0,73 On85 0,94 0897 I,07 0,86 o,qe I,05 I,10 I,12 lo22

LOd I,33 I,71 i,bo I,25 ?S l,*57, (00 !,I8 !,29 I,34 1.48 i,oo I*14 I,22 I,27 I,30 I,41

IO,18 12,7Ij 14,08 I,!,98 ‘,‘, I,?.71 I$94 16,40 16.97. 18.76

l$lij l&1,5, !8,35 I!?.!5 i9,61 ?i.?f

I@8 13,36

7.k3

0,45 0859 0.76

NW**

RRW

.’ ,,I : :

Tlttre*

,

‘. : 8, ‘:

:.

!*

(II

,’

,

CCl,,~O~R,~Rr.,:. e ‘, ,. .,,:1I, , .I, ,,t,. : : SE-30

Condllions 119 sl~own In Fig, 5. :,,‘,>S, j:’ ,,’ : .,#,I,, ,,.I,, .,I , tkA/kJJ. ryl~l///oartaryrc,, Co/~r~rrrt

2.43 I,84 1.84 I,78 I,78 1.70

3,02 2,19 2,13 2.08 1.93

3,56 2,61 2,6l i,30

3,73 3,15 2998

3,8l 3.56

RAT’

I5,40 I?,71 2l,l2 22.32 23,60 25,90

I3,42 I6,03 19,93 21,oo 23,92

I i,59 14879 l8,62 21940

IO,09 13,73 20,lO

9,116 IGel

TitllC*

0 I’“351

1.00 I,15 I,37 I,45 I,53 I,68

I,00 1.19 I ,49 1.56 I,78

I ,oo I,28 I,61 Id5

I ,oo I,36 1.99

1.00 I,64

RRP”r

o,s9 I,02 I,21 I,28 I,36 I,49

0,77 0992 l,i5 I,21 I,37

0,67 0,85 I,07 I,23

0,58 0,79 I,16

0,si 0,93

RR’P**

2.43 I,62 I ;68 I,60 I ,6Cj I,55

2,85 I,81 I,84 I,75 I,65

3021 2803 2,07 I,81

3,35 2,31 2015

3072 2,55

RRT’

/,

I ,02 I ,03 I,15 I,17 !,20 I ,22

i,& 1,(j; I,22 ’ l&j I,28

I,14 lJ6 I,32 I,34

I ,29 I,32 I,50

I,57 I,62

,

?RT”

~ELATIVERET~NTIONTIMES~RRT~FORALIP~IA~I~O,-~~~I~AL~~LT~~~~H~.~R~A~I~TATE~ANI~TI~~~~R ~~ON~CI~L~RWAT~D DERIVAT!VBS ANALYSED ON SE.30AND OV9351 GLASS CAPILLARY COLUMNS

TAIILL!IV

‘.

,!i

.‘6,

6,

.:; ‘, ; ,;j

/

t

"

* Absolute ** Rclutive *** Rclotivc fl Rclulive I( Rclutive

I.59 I,41 I,42 I.41 I ,42 I *43 I,41 I,41 I,38

I,15 I,50 I,51 l-50 I,50 I,SQ I ,49 I,45

I.13 I,23 I.29 I,32 I.35 1.39 I.40 I,46 1.25 1.35 I,41 I .44 I.46 1.48 1.50 1.51 1.57

2*02 I,63 I,64 1,62 labI I.61 I,55

I .oo I,11 I,18 I,21 I,25 I.27 I,34

tinlcs (min) nmsurcd from Fig. 5. times for the pwnl cstcrs taken ilS 1.00. tinlc for rr-hexyl trichloroacctatc tukcn IN I .OO. timer Tar UIC corresponding wlkyl i\cCtUcS (‘Mdc lima for co~npounds on SE-30 tilkcn as 1.00.

I.00 I.08 I.12 1.15 I.lG I.18 I .20 1.20 1.25

21,9l 23061 24.62 25809 25,50 2595 2GJO 26,39 21849

Octyl I-Chlorooclyl 2-Chlorooclyl 3~Chlorooctyl 4.Chlorooctyl 5~Chlorooctyl 6.Chlorooctyl I-Chlorooctyl &Chlorooctyl

rctcntion rctenlion rclcntion rctcntion rclcnlion

I.00 I.09 1.15 I.11 1.20 I.23 1.24 I.30

I’),70 21,55 22,60 2313 23,GO 24,24 24839 2552

ldeptyl I-Chlorohcptyl 2~Chlorohcptyl 3.Clllorohcptyl 4-Chlorohcptyl 5.Chlorohcptyl 6.Chlorohcptyl 1Chlorohcplyl

I.00 I.11 I.18 I.21 1.25 I.21 1.34

I7,4R 1940 20,54 21.11 21,80 22,2l 2341

I-Chlorohcxyl 2Zhlorohcxyl 3~Chlorohcxyl 4.Chlorollcxyl 5.Chlorohcxyl 6.Chlorohcxyl

l~lexyl

1) taken i\S 1.00.

21.21 23.20 2G.06 2G.85 21.83 28.53 29.0[1 29.30 30.RO

19.35 21.32 24.38 25.21 26.29 21.31 2l.Gl 29.19

11.40 19.50 22-12 23.G2 25.OG 25.85 21.59

1.00 1.09 1.23 I,26 I,31 I,34 I,31 1,3x l-45

1.00 I,10 I.26 I,30 l.3G I,41 I.43 I.51

I ,OO I.12 I,31 I.36 1.44 I.49 I,59

1.22 I,33 1,50 I,54 1.60 I.64 I,61 l,GU I,11

I,II I,23 I ,40 I,45 I.51 I.51 I,59 I.GH

I ,oo I,12 I,31 I,36 I,44 I.49 I,59

I.61 I,35 I.41 I.39 1,40 I,41 I ,39 1.39 I.36

I,85 1,41 I,46 I.45 1,45 I.46 I ,44 l,4u

2.10 I ,49 l,SG I.53 I,52 I,52 1.47

0,91 0.90 I,06 I ,Ol I,09 1,lO I,1 I I,1 I I.12

0,98 0,99 I.08 1.09 1,ll I,13 I,13 1,14

I ,oo I,01 I,11 I,12 I,15 I.16 1.18

b

F s

5

T E! t;l

; s ‘El

$

w

.- L O_ O- KORHONW

82

The use of a highly polar OV-351 column resuhedin more overlappingpeaks, particulariywith the chloroacctatcs (Fig. 3), chloromethyl and l-chloropropyl, nheptyi and I-chIoropentyl arN3chIorobutyl and Ichlorohexyl est.en_b@ng completely overlapped_ Also, a.ppor separation of 6_chibr&~x~~.anc$f3-&lor&&l ctioroacctatesis observed.As &I be seen from Figs. 4 and 5, however, l-chlor&&y~ di- and trichloroacetatesare separatedbetterowing to theirrelativeIyshort retention times in comparison with the other isomers.

SE-30

A-

i

GC OF CHLORINATED

n-ALKYL

83

ACETATES

SE-30 B

w-351 B

0

i

s

‘C

P s

lI¶

2s

33

wo”“m’~“m’~“2b”

Fig. 4. Chromatograms of the mixtures of aliphatic odd- (A) and evencarbon-number (B) C,-C, n-alkyd dichloroacetates and their mormchiorinatexi derivatives, analysed on SE-30 and OV-351 glass capillary columns. S = solvent. Notation of compounds: l-8 are the parent esters from methyl dichloroacetate (1) to n-octyl dichloroacetate (8); the upper number indicates the position of the Cl-substituent, the lower number the alcopot chain length (e.g.. 2 .kuotes 3-chkkohexyl dichloroacetate). The additional peaks are unidentified polychIoro isomers.

Tables II-IV show that the chloroacetates are always eluted on SE-30 in the mono-, di- and trichloro esters. On a polar OV-351 column the elution order is generally mono-. tri- and dichloro esters. With the l-chloroalkyl esters, except for the chloromethyl isomers, however, trichloroacetates are eluted before monochloro isomers. The last column of TabIes I-IV shows that the retention times of the compounds are generally longer on OV-351 than on SE-30. As can be seen from Figs_ 2,6, 7 and 8, relatively short retention times for the parent esters on a polar column are observed,,giving rise to lower values for n-hexyl, n-heptyl and n-octyl acetates (Table I). As with chiorinated chloromethyl esters5*6, the chlorine substituent at a carbon order

atom adjacent (Le. at C-l) to the ether oxygen has a stronger effect on the polarity of the compound than a substituent further away- This lea& to relatively short retention times of the l-chloro isomers on a polar column, I-chloroheptyl and l-chlorooctyl trichloroacetates being eluted on OV-351 before than on SE-30 (Tabie IV). The o-chloroalkyl esters have longer retention times on a polar column than the other isomers, as have also ‘the whloromethyi’ and chloromethyl esters’. The values for the ochloroalkyI acetates (relative to the parent esters = 1.00) varied on OV-351 between 3-28 and 1_7S:and on SE-30 between 2-43 and 1.44 (Table I), npropyl acetate giving the highest and n-octyl acetate the lowest value. Tables II-IV shcw that the lower relative retention times for the ochloro isomers of chlorinated acetic acids are observed_ On OV-351 the values vary from 212 to l-4.5 for mono-,

SE-30 A

:

Lll 5’

;

:

:

:

l_

CC OF CHLORINATED

a-ALKYL

ACETATES

8i SE-30 B

I 54

t

I

b

aa



ne

1

I

L

I

I

w3

8.

8

14

rm

11

I

*

1

81

I

I..

I

233

Fig 5 Chromatograms of the mixtures of aliphatic odd- (A) and even-czbon-number (B) C,-C, n-alkyl trichloroacetates and their monochlorinated derivatives, analysed on SE-30 and OV-351 glass capillary columns. S = solvent. Notation of compounds: 1-S are the parent esters from methyl ttichloroxvtate (1) to n-octyl trichloroacetate (8); the upper number indicates the position of the Cl-substituent. the lower numb.x the alcohol chain length (e.g._ i denotes 3chlorohesyl

trichloroacetate). The additional peaks are

unidentitled polychloro isomers_

from 1.93 to 1.42 for di- and from 1.99 to 1.45 for trichloroacetates. The corresponding values on SE-30 are 2.12-l .3 1, 1.90-l .28 and I .7 l-l .25, respectively. The highest relative retention times for the o-chloroethyl and the lowest values for the o-chlorooctyl esters are observed under the operating conditions used. As can be seen from Figs. 1-8, different elution orders of the esters are obscrvcd on OV-351 and on SE-30. By separating the mixtures of closely reIated compounds, the order of elution on a non-polar column is largely determined by the

: ,,:

,’

8,.



8’

Se.30

Co/rnrrr

123425

123425 I II 2172213 3 1463572464853756

I

I 122 21332 3643274534586546

I+1 122 1231 13643275446835576

I

I

I

221 3231 4 2345344565456576

I II 121323

123425+I

I22 13231 3 2354344565455676

1342

23132

32312

24314

24341

I22 13’23 12434 3 2354344055455766

2 I2 1323 I4234 2’3354344654555765’66668

I I 121324

I I 121324

I I’ 121324

Bdlotr order of rowtpowrfh*

I2

534 56687

2345

44312 54687

44312 45687

126 776

3,456 7777

6415 6787

435 675

455 665

551

623475678 788878888

623745678 7’88788RRH

5423 6788

3425 7787

566456778 767R887X8

636456778 687888788

3425 663457678 7787+678887888

523 6415 6716707

523 677

623745678 788788888

127345678 8878HR8RR

AND TRICHLOROACBTATES

I526+3415 676 77117

41342 57667+568

2 3514 65768

2 5341 56678

IS

C&, rr.ALKYL ACETATES, CHLOROACETATES, DICHLOROACETATES DERIVATIVES ON SE40 AND OV-351 GLASS CAPILLARY COLUMNS 5,



::(:‘dcl,&q~ <,; ‘, , ;,’ 1~1 II I2 12232 1332 14342 435 5243 566456778 I,, ,r‘ / 123423 5 4165376424587356 85647 676 5878 767888788 ;‘.. .:‘/ ‘,‘ I,/ I i , 1” / I,,1, ’ * Not$iop
Cl-l,-CO& ov.35 I /,“. ,:,( I’ I’, ,. ,‘, CH,CI&R~ ” : ( ,‘I ‘, ‘( /( CHCl,;&j;~: ‘/ ,, ” ,) .. ,’ :;’ , ,*: , /

3,’ ,I /





<

/I



:

‘CHCI&OR’ a’1 , ,’ ,, ‘ CCI,-COOR * ’ 9

CH,Cl-&R ,’

CH,-C$R ,,

&&,,I,/ ’ H * +i+C~ . arrdrt-C,(CI)4,(CI)

ELUTIO$‘O\DER OF ALIPHhTlC ‘AND’T1_r@IR MONOCHLORINATED

TABFO’V,

s z

3!

6

? P 9

ami

l_50-

l.eo -

0x5-

0’

-pgmd .,.....,..,.....,..........,,,,.,......,,

15263435623745i72

,,

Fig 6. Relative retention times (RRT) of aliphatic C,-C, n-akyl chloroacetates and their monochlorinated derivatives, analysed on SE-30 and OV-351 glass capillary columns. ReIative retention time for IIhexyl chloroacetate (6) taken as 1.00 (see Table II). Notation of compounds as in Fig. 3.

am4 -4 aw-351

m

campauud I . ,

~‘~ZLfl”l”“L~““““ii58LStl””

12~22r32354344ssfrS~~7~s~:~*~~~~7*77*~7~~~~~

Fig. 7. Relative retention times (RI&T) of aIiphatic C,X, K-alljl dichloroacetates and their monocblori*ted derivatives, analysed on SE-30 and OV-351 glass capillary columns. Relative retention time for nhexyI dichloroacetate (6) taken as 1.00 (see Table III)_ Notation of compounds as in Fig_ 4.

I. O_0. KORHONEN

SE-30

-Fig. S. Relative retention times (RRT) of aliphatic C,-Cs n-alkyl trichloroacetates and their monochlorinareQ derivatives, amdysed on SE-30 and OV-351 glass capillaq columns_ Relative retention time for nhe@ trichloroacctste (6) tien as 1.M (see Table IV). Notation of compounds as in Fig. 5. boiling pint of the compounds. On a polar column, however, the order in which the compounds appear iS greatly influenced by their structure6_ Table V gives the retention order of the compounds_ It can be seen that with increasing degree of chlorination l-chioro and w;chIoro isomers give rise to the greatest difference in elution orders, the former being eluted before and the latter after the other isomers-As espected, this tendency is stronger on OV-351 than on.SE-30, particularly with the less polar l-chioroalkyl trichloroacetates. The decrease in the polarity of the 3,- and 3chioro isomers on increasing the degree of chlorination seems to be smaller. ACKNOWLEDGE.MENT

This work was financialIy supported by the Academy of Finland_. REFERENCES I 2 3 4 5 6

I_ O_ O_ I_ O_ O_ I_ 0.0. L 0.0. I_ O_ O_ L 0. Q_

Korhonen, J_ Chromatogr, 246 (1982) 241. Korhonert, Chronuuographtir, in press Korhonen. Chronuzrographio. 13 (1952) in pressKorhonen and J. N_ J. Koryola, Acttz Chern_ Scsnd- Ser_ B, 35 (198!) 139; Korhonen, X Chromnlogr, 219 (1951) 306. -1 __i__ _Korhoq-<_,_Cbvrogr., 240 (198~)~.377,: .. _.. _:._ _ .._- ..:j:_._.?-‘?~I?._.,

7 I. 0: qrKorhon&,

J. Chroniaiogi,

211 (1981) X7_

: : Y:

’ :

: .-. - ‘:

.-.: : -.: : :

..