Information Sciences 181 (2011) 1072–1079
Contents lists available at ScienceDirect
Information Sciences journal homepage: www.elsevier.com/locate/ins
General Barnes–Godunova–Levin type inequalities for Sugeno integral q Hamzeh Agahi a,b, H. Román-Flores c,⇑, A. Flores-Franulicˇ c a b c
Department of Statistics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424, Hafez Ave., Tehran 15914, Iran Statistical Research and Training Center, Tehran, Iran Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
a r t i c l e
i n f o
Article history: Received 30 September 2009 Received in revised form 18 November 2010 Accepted 29 November 2010
Keywords: Sugeno integral Non-additive measure Barnes–Godunova–Levin’s inequality
a b s t r a c t Integral inequalities play important roles in classical probability and measure theory. Nonadditive measure is a generalization of additive probability measure. Sugeno’s integral is a useful tool in several theoretical and applied statistics which has been built on non-additive measure. For instance, in decision theory, the Sugeno integral is a median, which is indeed a qualitative counterpart to the averaging operation underlying expected utility. In this paper, Barnes–Godunova–Levin type inequalities for the Sugeno integral on abstract spaces are studied in a rather general form and, for this, we introduce some new technics for the treatment of concave functions in the Sugeno integration context. Also, several examples are given to illustrate the validity of this inequality. Moreover, a strengthened version of Barnes–Godunova–Levin type inequality for Sugeno integrals on a real interval based on a binary operation H is presented. Ó 2010 Elsevier Inc. All rights reserved.
1. Introduction In 1974, Sugeno [35] initiated research on non-additive measures and integrals. Non-additive measures and integrals can be used for modelling problems in nondeterministic environment. Sugeno’s integral is a useful tool in several theoretical and applied statistics. For instance, in decision theory, the Sugeno integral is a median, which is indeed a qualitative counterpart to the averaging operation underlying expected utility. The use of the Sugeno integral can be envisaged from two points of view: decision under uncertainty and multi-criteria decision-making [13]. Sugeno’s integral is analogous to Lebesgue integral which has been studied by many authors, including Pap [26], Ralescu and Adams [30] and, Wang and Klir [36], among others. The study of inequalities for Sugeno integral was initiated by Román-Flores et al. [14,31–34], and then followed by the authors [1,3–10,15,19–21,37]. In [33], Román-Flores, Flores-Franulicˇ and Chalco-Cano studied some properties of Sugeno integral for monotone functions, they also provided some Young type inequalities. Based on these results, Flores-Franulicˇ and Román-Flores [14] provided a Chebyshev type inequality for Sugeno integral of continuous and strictly monotone functions based on Lebesgue measure. Some other classical inequalities have also been generalized to Sugeno integral by them (see, for example [32,34]). Later on, Ouyang and Fang [20] generalized the main results of [33] to the case of monotone functions. Based on these results, Ouyang et al. further generalized the Sugeno Chebyshev type inequalities [14] to the case of arbitrary nonadditive measure-based Sugeno integral [19,21–24]. Recently, Agahi and Yaghoobi [1] proved a Minkowski type inequality for monotone functions and arbitrary non-additive measure-based Sugeno integral on real line, and then Agahi et al. [3,4]
q This work was supported by Conicyt-Chile through Project Fondecyt 1080438. Also the first author is partially supported by the Fuzzy Systems and Applications Center of Excellence, Shahid Bahonar University of Kerman, Kerman, Iran. ⇑ Corresponding author. E-mail address:
[email protected] (H. Román-Flores).
0020-0255/$ - see front matter Ó 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.ins.2010.11.029
H. Agahi et al. / Information Sciences 181 (2011) 1072–1079
1073
further generalized it to comonotone functions and arbitrary non-additive measure-base Sugeno integral on an arbitrary measurable space. Recently, the study of integral inequalities has been extended to a more general class of pseudo-integral operators (see [2,11,27]). Any integral inequality can be a very strong tool for applications. In particular, when we think of an integral operator as a predictive tool then an integral inequality can be very important in measuring and dimensioning such process. The classical Barnes–Godunova–Levin inequality [28,29] is one of the famous mathematical inequalities for concave functions. This inequality is an important tool for modern analysis. In general, due to the behavior of the Sugeno integral, the concept of concavity (or convexity) is not frequently used in the Sugeno integration context. Moreover, the most of the integral inequalities studied in the Sugeno integration context normally consider conditions such as monotonicity or comonotonicity. The aim of this paper is to study some general Barnes–Godunova–Levin type inequalities for Sugeno integrals of concave functions. We think that our results will be useful for those areas in which the classical Barnes–Godunova–Levin inequality plays a role whenever the environment is non-deterministic. The paper is organized as follows. Some necessary preliminaries are presented in Section 2. We address the essential problems in Section 3. In Section 4, we construct a strengthened version of Barnes–Godunova–Levin type inequality for Sugeno integrals on abstract spaces. Finally, a conclusion is given in Section 5. 2. Preliminaries In this section, we are going to review some well known results from the theory of non-additive measures, Sugeno’s integral. For details, we refer to [30,35,36]. As usual we denote by R the set of real numbers. Let X be a non-empty set, R be a r-algebra of subsets of X. Let N denote the set of all positive integers and Rþ denote ½0; þ1. Throughout this paper, we fix the measurable space ðX; RÞ, and all considered subsets are supposed to belong to R. Definition 1 (Ralescu and Adams [30]). A set function l : R ! Rþ is called a non-additive measure if the following properties are satisfied: (FM1)lð;Þ ¼ 0; (FM2)A B implies lðAÞ 6 lðBÞ; S (FM3)A1 A2 implies l 1 lðAn Þ; and n¼1 An ¼ limn!1 T (FM4)A1 A2 , and lðA1 Þ < þ1 imply l 1 n¼1 An ¼ limn!1 lðAn Þ. When
l is a non-additive measure, the triple ðX; R; lÞ then is called a non-additive measure space.
Let ðX; R; lÞ be a non-additive measure space, by Fl ðXÞ we denote the set of all nonnegative measurable functions f : X ! ½0; 1Þ with respect to l. In what follows, all considered functions belong to Fl ðXÞ. If f 2 Fl ðXÞ, we will denote the set fx 2 Xjf ðxÞ P ag by F a for a P 0. Clearly, F a is nonincreasing with respect to a, i.e., a 6 b implies F akFb. Definition 2 (Pap [26], Sugeno [35], Wang and Klir [36]). Let ðX; R; lÞ be a non-additive measure space and A 2 R. If f 2 Fl ðXÞ then the Sugeno integral of f on A, with respect to the non-additive measure l, is defined as
Z _ -- fdl ¼ ða ^ lðA \ F aÞÞ: A
aP0
When A ¼ X, then
Z Z _ -- fdl ¼ --fdl ¼ ða ^ lðF aÞÞ: X
aP0
It is well known that Sugeno integral is a type of nonlinear integral [18], i.e., for general case,
Z Z Z --ðaf þ bgÞdl ¼ a --fdl þ b --gdl does not hold. Some basic properties of Sugeno integral are summarized in [26,36], we cite some of them in the next theorem. Theorem 1 (Pap [26], Wang and Klir [36]). Let ðX; R; lÞ be a non-additive measure space, then R (i) --A fdl 6 lðAÞ; R (ii) --A kdl ¼ k ^ lðAÞ for all nonnegative constant k and A 2 R; R (iii) lðA \ F aÞ P a ) --A fdl P a; R (iv) lðA \ F aÞ 6 a ) --A fdl 6 a;
1074
H. Agahi et al. / Information Sciences 181 (2011) 1072–1079
R (v) If lðAÞ < 1, then lðA \ F aÞ P a () --A fdl P a; R R (vi) If f 6 g, then --fdl 6 --gdl. Before stating our main results we need a definition. Definition 3. Functions f ; g : X ! R are said to be comonotone if for all x; y 2 X,
ðf ðxÞ f ðyÞÞðgðxÞ gðyÞÞ P 0 and f and g are said to be countermonotone if for all x; y 2 X,
ðf ðxÞ f ðyÞÞðgðxÞ gðyÞÞ 6 0: The comonotonicity of functions f and g is equivalent to the nonexistence of points x; y 2 X such that f ðxÞ < f ðyÞ and gðxÞ > gðyÞ. Similarly, if f and g are countermonotone then f ðxÞ < f ðyÞ and gðxÞ < gðyÞ cannot happen. Also, it is clear that if f and g are comonotone then (see [19,25]) for any real numbers s; t either F s # Gt or F t # Gs . Observe that the concept of comonotonicity was first introduced in [12]. Now, our results can be stated as follows. 3. Barnes–Godunova–Levin type inequalities for Sugeno integrals The following is the classical Barnes–Godunova–Levin inequality [28,29]:
Z
b
!1p Z f ðxÞdx
a
!1q
b
p
q
g ðxÞdx
6 Bðp; qÞ
Z
a
where p; q > 1; Bðp; qÞ ¼
b
f ðxÞgðxÞdx;
ð1Þ
a 1þ11 q
6ðbaÞp 1
1
ð1þpÞp ð1þqÞq
and f ; g are nonnegative concave functions on ½a; b.
Unfortunately, as we will see in the following example, in general, the classical Barnes–Godunova–Levin inequality is not valid for Sugeno integral. Example 1. Let f ; g be two real valued functions defined as f ðxÞ ¼ gðxÞ ¼ measure and p ¼ q ¼ 4 in (1). A straightforward calculus shows that
Z 100 Z 100 ðiÞ -- f 4 ðxÞdm ¼ -- g 4 ðxÞdm ¼ 0
0
_
½a ^ mð½0; 100 \ fx P agÞ ¼
a2½0;100
ffiffiffi p 4 x where x 2 ½0; 100. Let m be the Lebesgue
_
½a ^ ð100 aÞ ¼ 50;
a2½0;100
Z 100 _ _ pffiffiffi a ^ m ½0; 100 \ x P a ¼ a ^ 100 a2 ¼ 9:512 5; ðiiÞ -- f ðxÞgðxÞdm ¼ 0
ðiiiÞ Bð4; 4Þ ¼
a2½0;10
a2½0;10
3 pffiffiffiffiffiffiffiffiffi 500 ¼ 0:268 33: 250
Therefore:
Z 100
14 Z 100
14 Z 100
-- f 4 ðxÞdm -- g 4 ðxÞdm ¼ 7:071 1 > Bð4; 4Þ -- f ðxÞgðxÞdm ¼ 2:5525 0
0
0
and, consequently, inequality (1) is not valid for Sugeno integral. The aim of this section is to show a Barnes–Godunova–Levin type inequality derived from (1) for the Sugeno integral. Theorem 2. If p; q 2 ð0; 1Þ and f ; g : ½0; 1 ! ½0; 1Þ are two concave functions and m be the Lebesgue measure on R. Then (a) If f ð0Þ < f ð1Þ and gð0Þ < gð1Þ, then
0 0 1 0 11 R 1p R 1q 1 p 1 q Z 1
1p Z 1
1q Z1 f dx f ð0Þ g dx gð0Þ 0 0 B B C B CC -- g q dx ^ @1 @ -- f p dx A ^ @1 AA 6 -- f ðxÞgðxÞdx: f ð1Þ f ð0Þ gð1Þ gð0Þ 0 0 0 (b) If f ð0Þ ¼ f ð1Þ and gð0Þ ¼ gð1Þ, then
Z 1
1p Z 1
1q Z1 p q -- f dx -- g dx ^ f ð0Þgð0Þ 6 -- f ðxÞgðxÞdx: 0
0
0
H. Agahi et al. / Information Sciences 181 (2011) 1072–1079
1075
(c) If f ð0Þ > f ð1Þ and gð0Þ > gð1Þ, then
0 0R 1 0R 11 1p 1q 1 p 1 q Z 1
1p Z 1
1q Z1 f dx f ð0Þ g dx gð0Þ B 0 C B 0 CC B -- g q dx ^ @ @ -- f p dx A^@ AA 6 -- f ðxÞgðxÞdx: f ð1Þ f ð0Þ gð1Þ gð0Þ 0 0 0 R1 R1 1 1 Proof. Let p; q 2 ð0; 1Þ; ð --0 f p dxÞp ¼ t 1 and ð --0 g q dxÞq ¼ t2 . Since f ; g : ½0; 1 ! ½0; 1Þ are two concave functions, for x 2 ½0; 1 we have
f ðxÞ ¼ f ðð1 xÞ 0 þ x 1Þ P ð1 xÞ f ð0Þ þ x f ð1Þ ¼ h1 ðxÞ; gðxÞ ¼ g ðð1 xÞ 0 þ x 1Þ P ð1 xÞ gð0Þ þ x gð1Þ ¼ h2 ðxÞ: (a) If f ð0Þ < f ð1Þ and gð0Þ < gð1Þ, then by Theorem 1 (vi) and the comonotonicity of h1 and h2 , we have
Z1 Z1 _ -- f ðxÞgðxÞdx P -- h1 ðxÞh2 ðxÞdx ¼ ða ^ mð½0; 1 \ fh1 ðxÞh2 ðxÞ P agÞÞ P t1 t2 ^ mð½0; 1 \ fh1 ðxÞh2 ðxÞ P t 1 t 2 gÞ 0
0
aP0
P t 1 t 2 ^ mð½0; 1 \ fh1 ðxÞ P t 1 g \ fh2 ðxÞ P t2 gÞ ¼ t1 t2 ^ mð½0; 1 \ fh1 ðxÞ P t1 gÞ ^ mð½0; 1 \ fh2 ðxÞ P t 2 gÞ ¼ ðt 1 t 2 ^ mð½0; 1 \ f½ð1 xÞ f ð0Þ þ x f ð1Þ P t 1 gÞ ^ mð½0; 1 \ f½ð1 xÞ gð0Þ þ x gð1Þ P t 2 gÞÞ
t1 f ð0Þ t 2 gð0Þ ^ m ½0; 1 \ x P ¼ t1 t2 ^ m ½0; 1 \ x P f ð1Þ f ð0Þ gð1Þ gð0Þ
t 1 f ð0Þ t 2 gð0Þ ¼ t1 t2 ^ 1 ^ 1 : f ð1Þ f ð0Þ gð1Þ gð0Þ (b) If f ð0Þ ¼ f ð1Þ and gð0Þ ¼ gð1Þ, then
f ðxÞ ¼ f ðð1 xÞ 0 þ x 1Þ P f ð0Þ ¼ h1 ðxÞ; gðxÞ ¼ g ðð1 xÞ 0 þ x 1Þ P gð0Þ ¼ h2 ðxÞ: Thus, by Theorem 1 (vi) and (ii) we have
Z1 Z1 Z1 -- f ðxÞgðxÞdx P -- h1 ðxÞh2 ðxÞdx ¼ -- f ð0Þgð0Þdx ¼ f ð0Þgð0Þ ^ 1: 0
0
0
R1 R1 1 1 Since ð --0 f p dxÞp ¼ t 1 and ð --0 g q dxÞq ¼ t 2 where p; q 2 ð0; 1Þ, Theorem 1(i) implies that t 1 6 1 and t 2 6 1. Therefore
Z1 -- f ðxÞgðxÞdx P f ð0Þgð0Þ ^ 1 P f ð0Þgð0Þ ^ t 1 t 2 : 0
(c) If f ð0Þ > f ð1Þ and gð0Þ > gð1Þ, then by Theorem 1 (vi) and the comonotonicity of h1 and h2 , we have
Z1 Z1 _ -- f ðxÞgðxÞdx P -- h1 ðxÞh2 ðxÞdx ¼ ða ^ mð½0; 1 \ fh1 ðxÞh2 ðxÞ P agÞÞ P t1 t2 ^ mð½0; 1 \ fh1 ðxÞh2 ðxÞ P t 1 t 2 gÞ 0
0
aP0
P t 1 t 2 ^ mð½0; 1 \ fh1 ðxÞ P t 1 g \ fh2 ðxÞ P t2 gÞ ¼ t1 t2 ^ mð½0; 1 \ fh1 ðxÞ P t1 gÞ ^ mð½0; 1 \ fh2 ðxÞ P t 2 gÞ ¼ ðt 1 t 2 ^ mð½0; 1 \ f½ð1 xÞ f ð0Þ þ x f ð1Þ P t 1 gÞ ^ mð½0; 1 \ f½ð1 xÞ gð0Þ þ x gð1Þ P t 2 gÞÞ
t 1 f ð0Þ t2 gð0Þ ^ m ½0; 1 \ x 6 ¼ t1 t2 ^ m ½0; 1 \ x 6 f ð1Þ f ð0Þ gð1Þ gð0Þ
t1 f ð0Þ t 2 gð0Þ ^ ¼ t1 t2 ^ f ð1Þ f ð0Þ gð1Þ gð0Þ and the proof is completed.
h
n o 1 f ð0Þ – ; and Remark 1. The last step in demonstration of Theorem 2 (part a) is valid whenever ½0; 1 \ x P f tð1Þf ð0Þ n o t 2 gð0Þ ½0; 1 \ x P gð1Þgð0Þ – ;. Analogously, the last step in demonstration of Theorem 2 (part c) is valid whenever n o n o t 2 gð0Þ 1 f ð0Þ ½0; 1 \ x 6 f tð1Þf – ; and ½0; 1 \ x 6 gð1Þgð0Þ – ;. ð0Þ Anyway, in any other case the inequality is trivially verified.
1076
H. Agahi et al. / Information Sciences 181 (2011) 1072–1079
Example 2. Let f ; g be two real valued functions defined as f ðxÞ ¼ gðxÞ ¼ and p ¼ q ¼ 2. A straightforward calculus shows that
pffiffiffi x where x 2 ½0; 1. Let m be the Lebesgue measure
Z1 Z1 Z1 _ _ ½a ^ mð½0; 1 \ fx P agÞ ¼ ½a ^ ð1 aÞ ¼ 0:5; -- g 2 ðxÞdm ¼ -- f 2 ðxÞdm ¼ -- f ðxÞgðxÞdm ¼ 0
0
0
a2½0;1
0
1 0 1 R 12 R 12 1 2 1 2 g dm gð0Þ f dm f ð0Þ 0 0 B C B C @1 A ¼ @1 A ¼ 0:292 89; gð1Þ gð0Þ f ð1Þ f ð0Þ
a2½0;1
Therefore:
0 0 1 0 11 R 12 R 12 1 2 1 2 Z 1
12 Z 1
12 Z1 f dm f ð0Þ g dm gð0Þ 0 0 B B C B CC -- g 2 dm ^ @1 @ -- f 2 dm A ^ @1 AA ¼ 0:29289 6 -- f ðxÞgðxÞdm ¼ 0:5: f ð1Þ f ð0Þ gð1Þ gð0Þ 0 0 0
Now, we will prove the general case of the Theorem 2. Theorem 3. Let p; q 2 ð0; 1Þ and f ; g : ½a; b ! ½0; 1Þ be two concave functions and m be the Lebesgue measure on R. Then (a) If f ðaÞ < f ðbÞ and gðaÞ < gðbÞ, then
0
0 1 0 11 R 1p R 1q !1p Z !1q b b Zb b --a f p dx ðb aÞ þ af ðbÞ bf ðaÞC B --a g q dx ðb aÞ þ ag ðbÞ bgðaÞCC B B -- g q dx ^ @b @ -- f p dx A ^ @b AA f ðbÞ f ðaÞ g ðbÞ gðaÞ a a Zb 6 -- f ðxÞgðxÞdx: a
(b) If f ðaÞ ¼ f ðbÞ and gðaÞ ¼ gðbÞ, then q p !pþq !pþq Zb Zb Zb p q ^ f ðaÞgðaÞ 6 -- f ðxÞgðxÞdx: -- f dx -- g dx
a
a
a
(c) If f ðaÞ > f ðbÞ and gðaÞ > gðbÞ, then
0
0R 1 0R 11 1p 1q !1p Z !1q b p b q Zb b f dx ð b a Þ þ af ð b Þ bf ðaÞ g dx ð b a Þ þ agðbÞ bgðaÞ a a B C B CC B -- g q dx ^ @ aA ^ @ aAA @ -- f p dx f ðbÞ f ðaÞ gðbÞ gðaÞ a a Zb 6 -- f ðxÞgðxÞdx: a
R 1p R 1q b b Proof. Let p; q 2 ð0; 1Þ; --a f p dx ¼ t 1 and --a g q dx ¼ t2 . Since f ; g : ½a; b ! ½0; 1Þ are two concave functions, for x 2 ½a; b we have
f ðxÞ ¼ f
x a x a x a x a 1 aþ b P 1 f ðaÞ þ f ðbÞ ¼ h1 ðxÞ; ba ba ba ba
gðxÞ ¼ g
1
x a x a x a x a aþ b P 1 gðaÞ þ gðbÞ ¼ h2 ðxÞ: ba ba ba ba
We will prove (a) and (b), the other case is similar. (a) If f ðaÞ < f ðbÞ and gðaÞ < gðbÞ, then by Theorem 1(vi) and the comonotonicity of h1 and h2 , we have
Z b Z b _ -- f ðxÞgðxÞdx P -- h1 ðxÞh2 ðxÞdx ¼ ða ^ mð½a; b \ fh1 ðxÞh2 ðxÞ P agÞÞ P t 1 t2 ^ mð½a; b \ fh1 ðxÞh2 ðxÞ P t1 t 2 gÞ a
a
aP0
P t 1 t 2 ^ mð½a; b \ fh1 ðxÞ P t 1 g \ fh2 ðxÞ P t 2 gÞ ¼ t1 t2 ^ mð½a; b \ fh1 ðxÞ P t1 gÞ ^ mð½a; b \ fh2 ðxÞ P t2 gÞ x a n o x a f ðaÞ þ f ðbÞ P t 1 ¼ t1 t 2 ^ m ½a; b \ 1 ba ba n o x a x a gðaÞ þ gðbÞ P t 2 ^ m ½a; b \ 1 b ba
a
t 1 ðb aÞ þ af ðbÞ bf ðaÞ t 2 ðb aÞ þ agðbÞ bgðaÞ ^ m ½a; b \ x P ¼ t1 t2 ^ m ½a; b \ x P f ðbÞ
f ðaÞ
gðbÞ gðaÞ t 1 ðb aÞ þ af ðbÞ bf ðaÞ t2 ðb aÞ þ agðbÞ bgðaÞ ^ b ; ¼ t1 t2 ^ b f ðbÞ f ðaÞ gðbÞ gðaÞ
1077
H. Agahi et al. / Information Sciences 181 (2011) 1072–1079
(b) If f ðaÞ ¼ f ðbÞ and gðaÞ ¼ gðbÞ, then h1 ðxÞ ¼ f ðaÞ and h2 ðxÞ ¼ gðaÞ. Thus, by Theorem 1(vi) and (ii) we have
Zb Zb Zb -- f ðxÞgðxÞdx P -- h1 ðxÞh2 ðxÞdx ¼ -- f ðaÞgðaÞdx ¼ f ðaÞgðaÞ ^ ðb aÞ: a
a
a
Rb Rb 1 1 1 1 If ð --a f p dxÞp ¼ t 1 and ð --a g q dxÞq ¼ t 2 where p; q 2 ð0; 1Þ, Theorem 1(i) implies that t 1 6 ðb aÞp and t 2 6 ðb aÞq , which im1 1 1
plies that b a P ðt1 t 2 Þpþq and, consequently
Zb 1 1 1 -- f ðxÞgðxÞdx P f ðaÞgðaÞ ^ ðb aÞ P f ðaÞgðaÞ ^ ðt 1 t 2 Þpþq a
and the proof is completed.
h
Example 3. Let f ; g be two real valued functions defined as f ðxÞ ¼ lnð1 þ xÞ and gðxÞ ¼ lnð1 þ xÞ2 where x 2 ½0; 4. Let m be the Lebesgue measure and p ¼ q ¼ 1. A straightforward calculus shows that
Z4 ðiÞ -- f ðxÞdm ¼ 0
_
½a ^ mð½0; 4 \ flnð1 þ xÞ P agÞ ¼
a2½0;ln5
Z4 ðiiÞ -- gðxÞdm ¼ 0
_
_
½a ^ mð½0; 4 \ f2 lnð1 þ xÞ P agÞ ¼
a2½0;2ln5
Z4 ðiiiÞ -- f ðxÞgðxÞdm ¼ 0
½a ^ ð5 ea Þ ¼ 1:306 6;
a2½0;ln5
_
h
1
_
h
a ^ 5 e2a
i
¼ 2:117 4;
a2½0;2ln5
_
2
½a ^ mð½0; 4 \ f2ðln ð1 þ xÞÞ P agÞ ¼
a2½0;2ðln5Þ2
1
a ^ 5 e2
pffiffipffiffi i 2 a
¼ 2:1677:
a2½0;2ðln5Þ2
Therefore:
R R 0 0 1 0 11 4 4 Z 4
Z 4
4 --0 fdm þ 0:f ð4Þ 4f ð0Þ 4 --0 gdm þ 0:gðbÞ 4gð0Þ @ -- fdm A ^ @4 AA -- gdm ^ @4 f ð4Þ f ð0Þ gð4Þ gð0Þ 0 0
4 1:306 6 4 lnð1Þ 4 2:117 4 4 lnð1Þ ¼ 2:766 6 ^ 4 ^ 4 ¼ 2:766 6 ^ 0:752 66 ^ 1:368 8 ¼ 0:752 66 lnð5Þ lnð1Þ 2 lnð5Þ lnð1Þ Z4 6 2:1677 ¼ -- f ðxÞgðxÞdx: 0
4. A -based B–G–L-inequality In this section, we provide a strengthened version of Barnes–Godunova–Levin type inequality for Sugeno integrals on a real interval based on a binary operation H (see [16,17]), where H : ½0; 1Þ2 ! ½0; 1Þ is continuous and nondecreasing in both arguments. Theorem 4. Let p; q 2 ð0; 1Þ and f ; g : ½a; b ! ½0; 1Þ be two concave functions and m be the Lebesgue measure on R. If the binary operation H : ½0; 1Þ2 ! ½0; 1Þ is continuous and nondecreasing in both arguments, then (a) If f ðaÞ < f ðbÞ and gðaÞ < gðbÞ, then
0 02 1 0 11 R 1p R 1q !1p !1q 3 b p b q Zb Zb f dx ðb aÞ þ af ðbÞ bf ðaÞ g dx ðb aÞ þ agðbÞ bgðaÞ a a B4 B C B CC -- f p dx H -- g q dx 5 ^ @b @ A ^ @b AA f ðbÞ f ðaÞ gðbÞ gðaÞ a a Zb 6 -- f ðxÞHgðxÞdx: a
(b) If f ðaÞ ¼ f ðbÞ and gðaÞ ¼ gðbÞ, then q p !pþq !pþq Zb Zb Zb p q -- f dx H -- g dx ^ ðf ðaÞHgðaÞÞ 6 -- f ðxÞHgðxÞdx:
a
a
a
1078
H. Agahi et al. / Information Sciences 181 (2011) 1072–1079
(c) If f ðaÞ > f ðbÞ and gðaÞ > gðbÞ, then
02 0R 1 0R 11 1p 1q !1p !1q 3 b b Zb Zb --a f p dx ðb aÞ þ af ðbÞ bf ðaÞ --a g q dx ðb aÞ þ agðbÞ bgðaÞ B4 B C B CC -- f p dx H -- g q dx 5 ^ @ aA ^ @ aAA @ f ðbÞ f ðaÞ gðbÞ gðaÞ a a Zb 6 -- f ðxÞHgðxÞdx: a
Proof. The proof is similar to that of Theorem 3. h Example 4. Consider the binary operation H ¼ þ. Then H is continuous and nondecreasing in both arguments and, taking f and g as in Example 2, we have
Z1 _ _ pffiffiffi 1 ðiÞ -- f ðxÞ þ gðxÞdm ¼ ½a ^ mð½0; 1 \ f2 x P agÞ ¼ a ^ 1 a2 ¼ 0:828 43: 4 0 a2½0;2 a2½0;2 Z1 Z1 ðiiÞ -- g 2 ðxÞdm ¼ -- f 2 ðxÞdm ¼ 0:5; 0
0
0
1 0 1 R 1p R 12 b p 1 2 ð Þ f dx b a þ af ðbÞ bf ðaÞ f dm f ð0Þ a 0 B C B C ðiiiÞ @b A ¼ @1 A ¼ 0:292 89: f ðbÞ f ðaÞ f ð1Þ f ð0Þ Therefore:
02 1 0 11 R 12 R 12 3 0 1 1 Z 1
12 Z 1
12 --0 f 2 dm f ð0ÞC B --0 g 2 dm gð0ÞCC B B4 -- f 2 dx þ -- g 2 dx 5 ^ @1 @ A ^ @1 AA ¼ 1:414 2 ^ 0:292 89 f ð1Þ f ð0Þ gð1Þ gð0Þ 0 0 Z1 ¼ 0:292 89 6 -- f ðxÞ þ gðxÞdm ¼ 0:828 43: 0
5. Conclusion In this paper, we have investigated some Barnes–Godunova–Levin type inequalities for Sugeno integral of concave functions defined on a real interval ½a; b (Section 3). Also, a strengthened version of Barnes–Godunova–Levin type inequality for Sugeno integrals on a real interval based on a binary operation H is presented (Section 4). In the future research, we will continue exploring other integral inequalities for nonadditive measures and integrals. Acknowledgements The authors are grateful to the referees and Area Editor of the paper for their critical reading of the manuscript and many valuable recommendations for improvements. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
H. Agahi, M.A. Yaghoobi, A Minkowski type inequality for fuzzy integrals, Journal of Uncertain Systems 4 (2010) 187–194. H. Agahi, R. Mesiar, Y. Ouyang, Chebyshev type inequalities for pseudo-integrals, Nonlinear Analysis 72 (2010) 2737–2743. H. Agahi, R. Mesiar, Y. Ouyang, General Minkowski type inequalities for Sugeno integrals, Fuzzy Sets and Systems 161 (2010) 708–715. H. Agahi, R. Mesiar, Y. Ouyang, New general extensions of Chebyshev type inequalities for Sugeno integrals, International Journal of Approximate Reasoning 51 (2009) 135–140. H. Agahi, R. Mesiar, Y. Ouyang, Further developmentsof Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators, Kybernetika 46 (2009) 83–95. H. Agahi, R. Mesiar, Y. Ouyang, E. Pap, M. Strboja, Berwald type inequality for Sugeno integral, Applied Mathematics and Computation 217 (2010) 4100–4108. J. Caballero, K. Sadarangani, Hermite-Hadamard inequality for fuzzy integrals, Applied Mathematics and Computation 215 (2009) 2134–2138. J. Caballero, K. Sadarangani, Fritz Carlson’s inequality for fuzzy integrals, Computers and Mathematics with Applications 59 (2010) 2763–2767. J. Caballero, K. Sadarangani, Chebyshev inequality for Sugeno integrals, Fuzzy Sets and Systems 161 (2010) 1480–1487. J. Caballero, K. Sadarangani, A Cauchy–Schwarz type inequality for fuzzy integrals, Nonlinear Analysis-Theory Methods and Applications 73 (2010) 3329–3335.
H. Agahi et al. / Information Sciences 181 (2011) 1072–1079
1079
[11] P. Benvenuti, R. Mesiar, D. Vivona, Monotone set functions-based integrals, in: E. Pap (Ed.), Handbook of Measure Theory, vol. II, Elsevier, 2002, pp. 1329–1379. [12] C. Dellacherie, Quelques commentaires sur les prolongements de capacités, in: Seminaire de Probabilites (1969/70), Strasbourg, Lecture Notes in Mathematics, vol. 191, Springer, Berlin, 1970, pp. 77–81. [13] D. Dubois, H. Prade, R. Sabbadin, Qualitative decision theory with Sugeno integrals, in: Proc. of UAI’98, 1998, pp. 121–128. [14] A. Flores-Franulicˇ, H. Román-Flores, A Chebyshev type inequality for fuzzy integrals, Applied Mathematics and Computation 190 (2007) 1178–1184. [15] D. Hong, Applied a sharp Hardy-type inequality of Sugeno integrals, Mathematics and Computation 217 (2010) 437–440. [16] E.P. Klement, R. Mesiar, E. Pap, Measure-based aggregation operators, Fuzzy Sets and Systems 142 (2004) 3–14. [17] E.P. Klement, R. Mesiar, E. Pap, Triangular norms, trends in logic, Studia Logica Library, vol. 8, Kluwer Academic Publishers, Dordrecht, 2000. [18] R. Mesiar, A. Mesiarová, Fuzzy integrals and linearity, International Journal of Approximate Reasoning 47 (2008) 352–358. [19] R. Mesiar, Y. Ouyang, General Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets and Systems 160 (2009) 58–64. [20] Y. Ouyang, J. Fang, Sugeno integral of monotone functions based on Lebesgue measure, Computers and Mathematics with Applications 56 (2008) 367– 374. [21] Y. Ouyang, J. Fang, L. Wang, Fuzzy Chebyshev type inequality, International Journal of Approximate Reasoning 48 (2008) 829–835. [22] Y. Ouyang, R. Mesiar, H. Agahi, An inequality related to Minkowski type for Sugeno integrals, Information Sciences 180 (2010) 2793–2801. [23] Y. Ouyang, R. Mesiar, On the Chebyshev type inequality for seminormed fuzzy integral, Applied Mathematics Letters 22 (2009) 1810–1815. [24] Y. Ouyang, R. Mesiar, Sugeno integral and the comonotone commuting property, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17 (2009) 465–480. [25] Y. Ouyang, R. Mesiar, J. Li, On the comonotonic-H-property for Sugeno integral, Applied Mathematics and Computation 211 (2009) 450–458. [26] E. Pap, Null-additive Set Functions, Kluwer, Dordrecht, 1995. [27] E. Pap, M. Štrboja, Generalization of the Jensen inequality for pseudo-integral, Information Sciences 180 (2010) 543–548. [28] J.E. Pecˇaric´, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., Boston-San Diego-New York, 1992. [29] T. Pogány, On an open problem of F. Qi, Journal of Inequalities in Pure and Applied Mathematics 3 (4) (2002). Article 54. [30] D. Ralescu, G. Adams, The fuzzy integral, Journal of Mathematical Analysis and Applications 75 (1980) 562–570. [31] H. Román-Flores, Y. Chalco-Cano, H-continuity of fuzzy measures and set defuzzifincation, Fuzzy Sets and Systems 157 (2006) 230–242. [32] H. Román-Flores, Y. Chalco-Cano, Sugeno integral and geometric inequalities, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15 (2007) 1–11. [33] H. Román-Flores, A. Flores-Franulicˇ, Y. Chalco-Cano, The fuzzy integral for monotone functions, Applied Mathematics and Computation 185 (2007) 492–498. [34] H. Román-Flores, A. Flores-Franulicˇ, Y. Chalco-Cano, A Jensen type inequality for fuzzy integrals, Information Sciences 177 (2007) 3192–3201. [35] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. thesis. Tokyo Institute of Technology, 1974. [36] Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992. [37] L. Wu, J. Sun, X. Ye, L. Zhu, Hölder type inequality for Sugeno integral, Fuzzy Sets and Systems 161 (2010) 2337–2347.