Generalized Averages for Solutions of Nonlinear Operators

Generalized Averages for Solutions of Nonlinear Operators

Journal of Mathematical Analysis and Applications 250, 196᎐203 Ž2000. doi:10.1006rjmaa.2000.7077, available online at http:rrwww.idealibrary.com on G...

64KB Sizes 3 Downloads 84 Views

Journal of Mathematical Analysis and Applications 250, 196᎐203 Ž2000. doi:10.1006rjmaa.2000.7077, available online at http:rrwww.idealibrary.com on

Generalized Averages for Solutions of Nonlinear Operators Xiaojing Yang Department of Mathematics, Tsinghua Uni¨ ersity, Beijing, People’s Republic of China Submitted by L. Debnath Received May 4, 2000

1. INTRODUCTION Recently, Korman and Li w1x proved the following theorem. THEOREM A. Consider the two point Dirichlet problem u⬙ q f Ž u . s 0,

0 - x - T,

u Ž 0 . s u Ž T . s 0.

Ž 1.1.

Assume f g C 1 Ž Rq ., and let uŽ x . be a positi¨ e solution of Ž1.1., uŽ x . ) 0, x g Ž0, T .; we ha¨ e f Ž u Ž x . . ) 0.

Ž 1.2.

Define LŽ u. s

1r2

u

žH

f Ž s . ds

0

/

,

g Ž u . s L⬘ Ž u . .

Ž 1.3.

Then T

H0

g Ž u Ž x . . dx s ␲r'2 .

Ž 1.4.

Theorem A is a generalization of the following boundary value problem: u⬙ q u 3 s 0,

0-x-T

u Ž 0 . s u Ž T . s 0.

Ž 1.5. Ž 1.6.

The problem Ž1.5. ᎐ Ž1.6. has a unique positive solution uŽ x . ) 0, x g Ž0, T . w1, 2x. Then for any T ) 0 this solution satisfies the following average 196 0022-247Xr00 $35.00 Copyright 䊚 2000 by Academic Press All rights of reproduction in any form reserved.

SOLUTIONS OF NONLINEAR OPERATORS

197

condition: T

H0

u Ž x . dx s



'2

.

Ž 1.7.

This fact is observed in w2x and is proved in w1x by setting y s H0x uŽ s . ds, hŽ y . s u 2 ; then Ž1.1. is transformed to h⬙ q 2 h s 0,

0 - y - R,

h Ž 0. s h Ž R . s 0

Ž 1.8.

with Rs

T

H0

u Ž s . ds.

Ž 1.9.

A solution of Ž1.8. is hŽ y . s C sin '2 y; C is a constant, hŽ R . s 0, and the positivity of h implies that '2 R s ␲ . Then Ž1.9. implies Ž1.7.. By using the same ideal, let hŽ y . s LŽ uŽ y .., y s H0x g Ž uŽ s .. ds; Ž1.1. is transformed to L⬘ Ž u . Ž h⬙ q 2 h . s 0.

Ž 1.10.

Then L⬘Ž u. ) 0, x g Ž0, T ., Ž1.10. becomes Ž1.8., and the results of Theorem A follow. The method of Theorem A is clear now; by using variables transformation Ž1.3., hŽ y . s LŽ uŽ y .., y s H0x g Ž uŽ s .. ds. Ž1.1. is transformed into a simple linear equation Ž1.8.; then the result follows. Inspired by this ideal, we consider in this paper the more general problem

Ž ␸ Ž u⬘ . . ⬘ q f Ž u . s 0,

u Ž 0 . s u Ž T . s 0,

Ž 1.11.

where ␸ g C 1 Ž R, R ., ␸ is strictly increasing, ␸ Ž R . s R, and ␸ Ž0. s 0. An interesting example is the well-known p-Laplacian: ␸ Ž x . s ␸p Ž x . s < x < py 2 x, where p ) 1 is a constant. By using suitable variable transformation, Ž1.11. can be transformed into a kind of simpler form; then by applying known eigenvalue problem results, we obtain a generalized average result for positive solutions of Ž1.11..

2. MAIN RESULTS LEMMA 2.1. Let ␸ g C 1 Ž R, R .; ␸ is strictly increasing, ␸ Ž R . s R, and ␸ Ž0. s 0. If the boundary ¨ alue problem ŽBVP.

Ž ␸ Ž u⬘ . . q ␭␸ Ž u . s 0, u Ž 0. s u Ž T . s 0

Ž 2.1. ␭ Ž 2.2.

198

XIAOJING YANG

has nonzero solutions, then ␭ ) 0, and ␭ is called an eigen¨ alue of Ž2.1.␭ ᎐ Ž2.2. with eigenfunction uŽ x .. Let ␭1 s inf ␭ N Ž2.1.␭ ᎐ Ž2.2. has nonzero solutions4 : then ␭1 ) 0 and

␭1 s inf

¡H

T

~

u/0

0

¦

␸ Ž u⬘ Ž s . . u⬘ Ž s . ds

¢H

T

0

␸ Ž u Ž s . . u Ž s . ds

¥.

Ž 2.3.

§

Proof. Multiplying Ž2.1.␭ by u, integrating by parts over w0, T x, and then using Ž2.2. we obtain T

␭s

␸ Ž u⬘ Ž s . . u⬘ Ž ds . ds

H0

T

H0

.

␸ Ž u Ž s . . u Ž s . ds

Now the definitions of ␸ and uŽ x . / 0 imply ␭ ) 0 and Ž2.3.. THEOREM 2.2. Suppose ␸ satisfies the assumptions of Lemma 2.1; Ž2.1.␭ has at least one positi¨ e solution and all positi¨ e solutions of Ž2.1.␭ corresponding to the same eigen¨ alue ␭1 ) 0. Let LŽ u. and g Ž u. be defined as L Ž u . s ⌽ry1 Ž F Ž u . . ,

g Ž u . s L⬘ Ž u . ,

Ž 2.4.

where ⌽ry1 is the right in¨ erse of ⌽, that is, the in¨ erse of ⌽ restricted to w0, ⬁., x

⌽Ž x. s

H0 1

H0

␸ Ž s . ds ,

␸ Ž s . ds

FŽ x. s

x

H0 f Ž s . ds,

f g C 1 Ž Rq . ,

f Ž u. ) 0

if u ) 0. Then for any positi¨ e solution of Ž1.11., if it exists, we ha¨ e T

H0

g Ž u Ž s . . ds s R

and

␭1 s

1 1

H0

␸ Ž s . ds

.

Ž 2.5.

199

SOLUTIONS OF NONLINEAR OPERATORS

Proof. From the definition of L and g, we have

H0L u ␸ Ž s . ds Ž .

F Ž u. s ⌽ Ž LŽ u. . s

1

H0

.

Ž 2.6.

␸ Ž s . ds

Define a time variable transformation

␶s

t

t g Ž 0, T . ;

H0 g Ž u Ž s . . ds,

Ž 2.7.

then u⬘ s

du dt

du d␶

s

du

s

d␶ dt

d␶

g Ž u.

and u⬙ s

d2 u

d2 u

s

dt 2

d␶ 2

2

du

g q 2

g ⭈ g ⬘.

ž / d␶

Ž 2.8.

From Ž2.4. and Ž2.6. we obtain

␸ Ž L Ž u . . L⬘ Ž u .

f Ž u . s F⬘ Ž u . s

1

H0

␸ Ž L. g

s

␸ Ž s . ds

1

H0

.

Ž 2.9.

␸ Ž s . ds

Substituting Ž2.8. and Ž2.9. into Ž1.11., we obtain g ⭈ ␸⬘ g

du

ž /ž d␶

g

d2 u d␶

2

q g⬘

␸ Ž L.

2

du

ž // d␶

q

1

H0

␸ Ž s . ds

s 0.

Ž 2.10.

Since g Ž u. / 0 for u / 0, we have

␸⬘ g

du

ž /ž d␶

g

d2 u d␶

2

q g⬘

du

␸ Ž LŽ u. .

2

q

ž // d␶

1

H0

␸ Ž s . ds

Now define hŽ␶ . s LŽ uŽ␶ ..; then we have dh d␶ d2 h d␶ 2

s L⬘ Ž u . s L⬙ Ž u . sg

d2 u d␶ 2

dh d␶

sg

du

du d␶

2

q L⬘ Ž u .

ž / ž / d␶

q g⬘

du d␶

2

.

d2 u d␶ 2

s 0.

Ž 2.11.

200

XIAOJING YANG

Hence Ž2.11. can be written as 1

Ž ␸ Ž h⬘ . . ⬘ q

1

␸ Ž s . ds

H0

␸ Ž h. s 0

Ž 2.12.

with hŽ0. s hŽ R . s 0, where Rs

T

H0

g Ž u Ž s . . ds.

Since uŽ t . is a positive solution of Ž1.11., then by comparing Ž2.1. with Ž2.12. and by using the assumptions of Theorem 2.2, we have 1

␭1 s

1

H0 COROLLARY 2.3. then

.

␸ Ž s . ds

Let ␸ Ž u. s ␸p Ž u. s < u < py 2 u with p ) 1 a constant;

⌽ Ž u. s F Ž u. s

u

H0

u

H0

␸p Ž s . ds s

f Ž s . ds s

up p

u G 0.

,

⌽ Ž LŽ u. . ⌽ Ž 1.

s L p Ž u. ,

so LŽ u. s F 1r p Ž u., and g Ž u . s L⬘ Ž u . s

1 p

F Ž1r p.y1 Ž u . f Ž u . .

Let hŽ ␶ . s LŽ uŽ ␶ . . ,

␶s

t

H0 g Ž u Ž s . . ds;

then Ž1.11. can be written as

Ž ␸p Ž h⬘. . ⬘ q p␸p Ž h . s 0,

Ž 2.13.

with h Ž 0 . s h Ž R . s 0,

Rs

T

H0

g Ž u Ž s . . ds.

Ž 2.14.

201

SOLUTIONS OF NONLINEAR OPERATORS

Therefore ␭1 s p, by the well-known result of w3x,

␭1 s

␲p

p

ž /

Ž 2.15.

R

with

␲p s

2␲

Ž 2.16.

Ž p sin Ž ␲rp . .

and h Ž ␶ . s c sin p

␲p␶

ž / R

,

where c is any nonzero constant and sin p Ž t . is the unique 2␲p periodic function w implicitly defined by

H0w t

ds

Ž .

Ž 1 y s pr Ž p y 1 . .

1rp

s t.

Ž 2.17.

By ␭1 s p and Ž2.15., we get Rs

2␲ p

Ž1qp.r p

Ž 2.18.

sin Ž ␲rp .

and T

H0

g Ž u Ž s . . ds s

2␲ p

Ž1qp.r p

Ž 2.19.

sin Ž ␲rp .

Let p s 2 in Corollary 2.3; then R s ␲r '2 in Ž2.18. ᎐ Ž2.19. and hŽ␶ . s c sin '2 ␶ ; hence Corollary 2.3 is a generalization of w1, Theorem Ax. By using the similar method used in w1x we can prove the following lemma Žthe proof is omitted.. LEMMA 2.4. Any two positi¨ e solutions uŽ t . and ¨ Ž t . of Ž1.11. are strictly ordered; i.e., we may assume that uŽ t . - ¨ Ž t . ,

t g Ž 0, T . .

Ž 2.20.

THEOREM 2.5. Assume that f g C 1 Ž Rq. and f Ž u. ) 0 for u ) 0 and either GŽ u. ) 0 or GŽ u. - 0 for all u ) 0, where GŽ u. s f ⬘Ž u. ␸ 2 Ž LŽ u. . y ␸ ⬘Ž LŽ u. . f 2 Ž u.

1

H0

␸ Ž s . ds.

Ž 2.21.

202

XIAOJING YANG

Then the problem Ž1.11. has at most one positive solution; especially, if ␸ Žu. s ␸p Žu., then G Ž u . s Gp Ž u . s f ⬘ Ž u . F Ž u . y

py1 p

f 2 Ž u. .

Ž 2.22.

Proof. Conditions Ž2.21. and Ž2.22. imply that g ⬘ s L⬙ s G ) 0 Žor - 0., and hence the function g is either strictly increasing or strictly decreasing; the result now follows from Ž2.5. and Lemma 2.4. Assume f g C 2 Ž Rq. with f Ž u. ) 0 for u ) 0 and let

THEOREM 2.6.

H Ž u. s f ⬙ Ž u. ␸ 3 Ž LŽ u. . y ␸ ⬘Ž LŽ u. . ␸ 2 Ž LŽ u. . g Ž u. f ⬘Ž u. 1

y

H0

␸ Ž s . ds f 2 Ž u . g Ž u . ␸ Ž L Ž u . . q2 f ⬘ Ž u . ␸ ⬘ Ž L Ž u . . ␸ Ž L Ž u . . y3 g Ž u . f Ž u . Ž ␸ ⬘ Ž L Ž u . . .

2

,

Ž 2.23.

especially if ␸ Ž u. s ␸p Ž u., H Ž u. s H p Ž u., Hp Ž u . s f ⬙ Ž u . F 2 Ž u . q y

3 Ž p y 1. p

Ž p y 1. Ž 2 p y 1. p2

f 3 Ž u.

f ⬘Ž u. f Ž u. F Ž u. .

Ž 2.24.

If H Ž u. ) 0 for u ) 0, then the problem Ž1.11. admits at most two positive solutions. Proof. By a direct computation we see Ž2.23. and Ž2.24. are equivalent to g ⬙ Ž u . ) 0,

u)0

Ž 2.25.

If there were three solutions u, ¨ , and w, by Lemma 2.4, we may assume that uŽ t . - ¨ Ž t . - w Ž t . ,

t g Ž 0, T . .

Set pŽ t . s ¨ Ž t . y uŽ t ., q Ž t . s w Ž t . y uŽ t .; then 0 - pŽ t . - q Ž t . ,

t g Ž 0, T . .

Ž 2.26.

Writing the formula Ž2.5. at u and ¨ , respectively, and then subtracting, we have Žby using the mean value theorem. T

1

H0 H0

g ⬘ Ž ␪ ¨ Ž t . q Ž 1 y ␪ . u Ž t . . p Ž t . d␪ dt s 0.

Ž 2.27.

SOLUTIONS OF NONLINEAR OPERATORS

203

Similarly T

1

H0 H0

g ⬘ Ž ␪ w Ž t . q Ž 1 y ␪ . u Ž t . . q Ž t . d␪ dt s 0.

Ž 2.28.

In view of the above inequalities, the integrand in Ž2.28. is pointwise greater than the one in Ž2.27., a contradiction. Remark. Let p s 2 in Ž2.24.; we have H2 Ž u . s f ⬙ Ž u . F 2 Ž u . q 34 f 3 Ž u . y 32 f ⬘ Ž u . f Ž u . F Ž u . , which is the result of w1, Theorem 2.3x. Hence our results above are a generalization of the results in w1x.

REFERENCES 1. P. Korman and Y. Li, Generalized averages for solutions of two-point Dirichlet problems, J. Math. Anal. Appl. 239 Ž1999., 478᎐484. 2. P. Korman, Problem 97-8, SIAM Re¨ . 39 Ž1997., 318. 3. M. Del Pino, M. Elgueta, and R. Manasevich, A homotopic deformation along p of a Leray᎐Schauder degree result and existence for Ž< u⬘ < py 2 u⬘.⬘ q f Ž t, u. s 0, uŽ0. s uŽT . s 0, p ) 1, J. Differential Equations 80 Ž1989., 1᎐13.