Generalized quasilinearization method for mixed boundary value problems

Generalized quasilinearization method for mixed boundary value problems

Applied Mathematics and Computation 133 (2002) 423–429 www.elsevier.com/locate/amc Generalized quasilinearization method for mixed boundary value pro...

81KB Sizes 0 Downloads 76 Views

Applied Mathematics and Computation 133 (2002) 423–429 www.elsevier.com/locate/amc

Generalized quasilinearization method for mixed boundary value problems Bashir Ahmad a, Juan J. Nieto b, Naseer Shahzad a

c

c,*

Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan b Departmento de Analisis Matematico, Facultad de Matematicas, Universidad de Santiago de Compostela, Spain Department of Mathematics, Faculty of Science, King Abdul Aziz University, P.O. Box 9028, Jeddah 21413, Saudi Arabia

Abstract A generalized quasilinearization method for a nonlinear mixed BVP is developed and a sequence of approximate solutions converging monotonically and quadratically to a solution of the given problem is presented. Ó 2002 Elsevier Science Inc. All rights reserved. Keywords: Quasilinearization; Mixed BVP; Quadratic convergence

1. Introduction It is well known that the method of quasilinearization [1] provides an excellent tool for obtaining approximate solutions of nonlinear differential equations. This technique works fruitfully only for the problems involving convex/concave functions and gives the sequence of approximate solutions converging monotonically and quadratically to the solution. Recently, the convexity assumption was relaxed and the method was generalized and extended in various directions to make it applicable to a large class of problems [2,4–8]. Afterwards, Shahzad and Vatsala [12,13] and Shahzad and Sivasundaram [11] discussed the generalized quasilinearization method for second

*

Corresponding author. E-mail address: [email protected] (N. Shahzad).

0096-3003/02/$ - see front matter Ó 2002 Elsevier Science Inc. All rights reserved. PII: S 0 0 9 6 - 3 0 0 3 ( 0 1 ) 0 0 2 4 3 - 0

424

B. Ahmad et al. / Appl. Math. Comput. 133 (2002) 423–429

order boundary value problems. More recently, Nieto [10] developed a generalized quasilinearization method for a nonlinear Dirichlet problem to obtain a sequence of approximate solutions that converges quadratically to the solution of the given problem. For a complete survey of the generalized quasilinearization method, see [9]. The aim of this paper is to consider a second order ordinary nonlinear differential equation with mixed boundary conditions and develop the method of quasilinearization for this problem without requiring the function involved to be convex/concave.

2. Preliminaries It is well known that the following mixed BVP  w00 ðtÞ ¼ kwðtÞ; t 2 ½0; p; wð0Þ ¼ w0 ðpÞ ¼ 0; 2

has a nontrivial solution if and only if k ¼ ½ð2m  1Þ=2 ðm ¼ 1; 2; 3 . . .Þ. For 2 k 6¼ ½ð2m  1Þ=2 ðm ¼ 1; 2; 3 . . .Þ and ,ðtÞ 2 C½0; p, the unique solution of the problem  w00 ðtÞ  kwðtÞ ¼ ,ðtÞ;

t 2 ½0; p;

wð0Þ ¼ w0 ðpÞ ¼ 0; is wðtÞ ¼

Z

p

Gk ðt; tÞ,ðtÞ dt;

0

where hpffiffiffi i hpffiffiffi i 8 > cos k ðp  tÞ sin kt ; > > < 1 0h6 t 6 t 6 ph i ðk > 0Þ pffiffiffi  Gk ðt; tÞ ¼ pffiffiffi pffiffiffi i pffiffiffi > sin k t cos k ðp  tÞ ; > k cos kp > : 06t6t6p t; 0 6 t 6 t 6 p G0 ðt; tÞ ¼ ðk ¼ 0Þ t; 0 6 t 6 t 6 p hpffiffiffiffiffiffiffi i hpffiffiffiffiffiffiffi i 8 > cosh k ðp  tÞ sinh kt ; > > < 1 0 6 t 6 t 6 p hpffiffiffiffiffiffiffi i hpffiffiffiffiffiffiffi i ðk < 0Þ: pffiffiffiffiffiffiffi  Gk ðt; tÞ ¼ pffiffiffiffiffiffiffi sinh k t cosh k ðp  tÞ ; > k cosh kp > > : 06t6t6p

B. Ahmad et al. / Appl. Math. Comput. 133 (2002) 423–429

425

Let us consider the following nonlinear BVP  x00 ðtÞ ¼ f ðt; xðtÞÞ;

t 2 ½0; p;

0

xð0Þ ¼ x ðpÞ ¼ 0;

ð2:1Þ

where f : ½0; p R ! R is a continuous real valued function. A function a 2 C 2 ½½0; p; R is a lower solution of (2.1) if  a00 ðtÞ 6 f ðt; aðtÞÞ;

t 2 ½0; p;

að0Þ 6 0; a0 ðpÞ 6 0; and b 2 C 2 ½½0; p; R is an upper solution of (2.1) if  b00 ðtÞ P f ðt; bðtÞÞ;

t 2 ½0; p;

0

bð0Þ P 0; b ðpÞ P 0: The following lemma plays a crucial role in the sequel and we sketch its proof for the sake of completeness. Lemma 2.1. Assume that a; b 2 C 2 ½½0; p; R are lower and upper solutions of (2.1), respectively, such that aðtÞ 6 bðtÞ for every t 2 ½0; p. Then there exists a solution xðtÞ of (2.1) such that aðtÞ 6 xðtÞ 6 bðtÞ for t 2 ½0; p. Proof. Let p : ½0; p R ! R be a mapping defined by pðt; xÞ ¼ maxfaðtÞ; minfx; bðtÞgg: Then, extend f ðt; xÞ to ½0; p R by setting F ðt; xÞ ¼ f ðt; pðt; xÞÞ: Observe that F ðt; xÞ is bounded. Let us consider the modified BVP  x00 ðtÞ ¼ F ðt; xðtÞÞ; 0

xð0Þ ¼ x ðpÞ ¼ 0;

t 2 ½0; p;

ð2:2Þ

which is solvable, that is (2.2) has a solution x on ½0; p. Using the arguments similar to those of [3,10], it can be shown that a6x6b

on ½0; p:

Finally, since any solution of (2.2) is also a solution of (2.1), it follows that x is a solution of (2.1). This completes the proof. 

426

B. Ahmad et al. / Appl. Math. Comput. 133 (2002) 423–429

3. Main result Theorem 3.1. Assume that ðA1 Þ ao ; bo 2 C 2 ½½0; p; R are lower and upper solutions of (2.1), respectively, such that ao 6 bo on ½0; p, ðA2 Þ f 2 C½X; R is such that fx ðt; xÞ; fxx ðt; xÞ exist and are continuous for every ðt; xÞ 2 X, where X ¼ fðt; xÞ 2 ½0; p R : ao ðtÞ 6 x 6 bo ðtÞg; ðA3 Þ fx ðt; xÞ < 0 for every ðt; xÞ 2 X. Then there exists monotone nondecreasing sequence fan g which converges uniformly to a solution of (2.1) and the convergence is quadratic. Proof. Set Uðt; xÞ ¼ F ðt; xÞ  f ðt; xÞ on ½0; p R; where F : ½0; p R ! R is such that F ðt; xÞ; Fx ðt; xÞ; Fxx ðt; xÞ are continuous on ½0; p R and Fxx ðt; xÞ P 0;

ðt; xÞ 2 ½0; p R:

ð3:1Þ

It further implies that F ðt; xÞ P F ðt; yÞ þ Fx ðt; yÞðx  yÞ for x P y and therefore f ðt; xÞ P f ðt; yÞ þ Fx ðt; yÞðx  yÞ  ½Uðt; xÞ  Uðt; yÞ:

ð3:2Þ

Now, consider the mixed BVP  u00 ¼ gðt; u; ao Þ ¼ f ðt; ao Þ þ Fx ðt; ao Þðu  ao Þ  ½Uðt; uÞ  Uðt; ao Þ; uð0Þ ¼ u0 ðpÞ ¼ 0: ð3:3Þ The inequality (3.2) together with ðA1 Þ imply  a00o 6 f ðt; ao Þ ¼ gðt; ao ; ao Þ;  b00o P f ðt; bo Þ P f ðt; ao Þ þ Fx ðt; ao Þðbo  ao Þ  ½Uðt; bo Þ  Uðt; ao Þ ¼ gðt; bo ; ao Þ: In view of Lemma 2.1, there exists a solution a1 of (3.3) such that ao 6 a1 6 bo on ½0; p. Next, we consider the mixed BVP  u00 ¼ gðt; u; a1 Þ; uð0Þ ¼ u0 ðpÞ ¼ 0:

ð3:4Þ

B. Ahmad et al. / Appl. Math. Comput. 133 (2002) 423–429

427

The inequality (3.2) yields a001 ¼ gðt; a1 ; ao Þ; ¼ f ðt; ao Þ þ Fx ðt; ao Þða1  ao Þ  ½Uðt; a1 Þ  Uðt; ao Þ 6 f ðt; a1 Þ ¼ gðt; a1 ; a1 Þ; b00o P f ðt; bo Þ P f ðt; a1 Þ þ Fx ðt; a1 Þðbo  a1 Þ  ½Uðt; bo Þ  Uðt; a1 Þ ¼ gðt; bo ; a1 Þ; It follows again by Lemma 2.1 that there exists a solution a2 such that a1 6 a2 6 bo on ½0; p. Thus, ao 6 a1 6 a2 6 bo on ½0; p. Employing the same arguments successively, we conclude ao 6 a1 6 a2 . . . 6 an 6 b o

on ½0; p;

where the elements of the monotone sequence fan g are the solutions of the mixed BVP  u00 ¼ gðt; u; an1 Þ ¼ f ðt; an1 Þ þ Fx ðt; an1 Þðu  an1 Þ  ½Uðt; uÞ  Uðt; an1 Þ; uð0Þ ¼ u0 ðpÞ ¼ 0: The monotonicity of the sequence fan g ensures the existence of its (pointwise) limit x. Let us consider the linear mixed BVP  u00 ¼ fn ðtÞ;

ð3:5Þ

uð0Þ ¼ u0 ðpÞ ¼ 0; where fn ðtÞ ¼ gðt; an ðtÞ; an1 ðtÞÞ;

t 2 ½0; p:

The continuity of g on X implies that the sequence ffn g is bounded in C½½0; p; R and so lim fn ðtÞ ¼ f ðt; xðtÞÞ;

n!1

t 2 ½0; p:

Here an ðtÞ ¼

Z

p

G0 ðt; sÞfn ðsÞ ds;

0

where an ðtÞ is a solution of (3.5). Thus fan g is bounded in C 2 ½½0; p; R and fan g " x uniformly on ½0; p. Consequently, Z p xðtÞ ¼ G0 ðt; sÞf ðs; xðsÞÞ ds; t 2 ½0; p: 0

428

B. Ahmad et al. / Appl. Math. Comput. 133 (2002) 423–429

Hence x is a solution of (2.1). For quadratic convergence, we set pn ðtÞ ¼ xðtÞ  an ðtÞ. Using the mean value theorem repeatedly, we obtain pn00 ðtÞ ¼ f ðt; xðtÞÞ  gðt; an ðtÞ; an1 ðtÞÞ ¼ f ðt; xðtÞÞ  f ðt; an1 ðtÞÞ  Fx ðt; an1 ðtÞÞ½an ðtÞ  an1 ðtÞ þ ½Uðt; an ðtÞÞ  Uðt; an1 ðtÞÞ ¼ F ðt; xðtÞÞ  F ðt; an1 ðtÞÞ  Fx ðt; an1 ðtÞÞ½an ðtÞ  an1 ðtÞ þ ½Uðt; an ðtÞÞ  Uðt; xðtÞÞ ¼ Fx ðt; nÞ½xðtÞ  an1 ðtÞ  Fx ðt; an1 ðtÞÞ½an ðtÞ  an1 ðtÞ þ ½Uðt; an ðtÞÞ  Uðt; xðtÞÞ ¼ ðFx ðt; nÞ  Fx ðt; an1 ðtÞÞÞ½xðtÞ  an1 ðtÞ þ Fx ðt; an1 ðtÞÞ ½xðtÞ  an ðtÞ þ ½Uðt; an ðtÞÞ  Uðt; xðtÞÞ ¼ Fxx ðt; rÞ½n  an1 ðtÞ½xðtÞ  an1 ðtÞ þ Fx ðt; an1 ðtÞÞ½xðtÞ  an ðtÞ  Ux ðt; gÞ½xðtÞ  an ðtÞ; where an1 ðtÞ 6 n 6 r 6 xðtÞ and an ðtÞ 6 g 6 xðtÞ: Take hn ðtÞ ¼ Fx ðt; an1 ðtÞÞ  Ux ðt; gÞ; and 2 ðtÞ; kn ðtÞ ¼ Fxx ðt; rÞ½n  an1 ðtÞ½xðtÞ  an1 ðtÞ  Mpn1

where 0 6 Fxx ðt; yÞ 6 M; ðt; yÞ 2 X. Clearly kn ðtÞ 6 0. Since Fx is nondecreasing and an1 ðtÞ 6 g, it follows by ðA3 Þ that there exists k < 0 and an integer N such that hn ðtÞ 6 k, t 2 ½0; p for n P N . Therefore, the error pn satisfies the mixed BVP 2 ðtÞ þ kn ðtÞ;  pn00 ðtÞ  kpn ðtÞ ¼ ½hn ðtÞ  kpn ðtÞ þ Mpn1 0 pn ð0Þ ¼ pn ðpÞ ¼ 0:

Thus, we can write Z p

2 pn ðtÞ ¼ Gk ðt; sÞ ½hn ðsÞ  kpn ðsÞ þ Mpn1 ðsÞ þ kn ðsÞ ds; 0

which gives pn ðtÞ 6 M

Z 0

p 2 Gk ðt; sÞpn1 ðsÞ ds;

n P N:

B. Ahmad et al. / Appl. Math. Comput. 133 (2002) 423–429

429

Hence, there exists a constant d > 0 such that 2

kpn k 6 dkpn1 k ;

n P N;

where kxk ¼ maxfjxðtÞj: t 2 ½0; pg.



References [1] R. Bellman, R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems, Elsevier, New York, 1965. [2] P.W. Eloe, Y. Zhang, A quadratic monotone iteration scheme for two-point boundary value problems for ordinary differential equations, Nonlinear Anal. 33 (1988) 443–453. [3] G.S. Ladde, V. Lakshmikantham, A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, MA, 1985. [4] V. Lakshmikantham, An extension of the method of quasilinearization, J. Optim. Theory Appl. 82 (1994) 315–321. [5] V. Lakshmikantham, Further improvement of generalized quasilinearization, Nonlinear Anal. 27 (1996) 223–227. [6] V. Lakshmikantham, S. Leela, F.A. McRae, Improved generalized quasilinearization method, Nonlinear Anal. 24 (1995) 1627–1637. [7] V. Lakshmikantham, N. Shahzad, Further generalization of generalized quasilinearization method, J. Appl. Math. Stochastics Anal. 7 (1994) 545–552. [8] V. Lakshmikantham, N. Shahzad, J.J. Nieto, Methods of generalized quasilinearization for periodic boundary value problems, Nonlinear Anal. 27 (1996) 143–151. [9] V. Lakshmikantham, A.S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Boston, 1998. [10] J.J. Nieto, Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc. 125 (1997) 2599–2604. [11] N. Shahzad, S. Sivasundram, Extended quasilinearization method for boundary value problems, Nonlinear World 2 (1995) 311–319. [12] N. Shahzad, A.S. Vatsala, Extension of the method of generalized quasilinearization for second order boundary value problems, Appl. Anal. 58 (1995) 77–83. [13] N. Shahzad, A.S. Vatsala, Improved generalized quasilinearization method for second order boundary value problems, Dyn. Syst. Appl. 4 (1995) 79–85.