Genotoxicity of polycyclic aromatic hydrocarbons in escherichia coli PQ37

Genotoxicity of polycyclic aromatic hydrocarbons in escherichia coli PQ37

Rt~vcurch. 27X ( I Yl)l) I -I) ( IS’_’ El.wvirr Science Publishers l3.V. All right\ reserved Mtrurwr7 MLJTGEN Olh~-I~IR/Y7/%0S.00 017X Genotoxici...

645KB Sizes 0 Downloads 37 Views

Rt~vcurch. 27X ( I Yl)l) I -I) ( IS’_’ El.wvirr Science Publishers l3.V. All right\ reserved

Mtrurwr7

MLJTGEN

Olh~-I~IR/Y7/%0S.00

017X

Genotoxicity

of polycyclic aromatic V. Mersch-Sundermann,

lnsriiurr

of Medical

hydrocarbons S. Mochayedi

in Escherichia coli PQ37

and S. Kevekordes

Microbiology und Hygienr, Faculty of Clinical Mrdicine Munnhrim.

Unil yrsiry
D-6X00 Munnheim IF. R. G.) (Received

1 November lYY1))

(Revision received 2 July 1991) (Accepted 9 July 1901)

Keywords: SOS chromotest; Polycyclic aromatic hydrocarbons; Genotoxicity

Summary In the present investigation, 32 pol;cyclic aromatic hydrocarbons (PAHs) were tested for genotoxicity in E. coli PQ37 using the standard tube assay of the SOS chromotest. PAHs such as benzo[glzi]fluoranthene, benzo[j]fIuoranthene, benzo[a]pyrene, chrysene, dibenzo[a,l]pyrene, fluoranthene and triphenylens exhibited high genotoxicity when incubated in the presence of an exogenous metabolic activation mixture. ‘The results were compared to those obtained with the Salmonella/microsome test.

In E. co/i PQ37 the /3-galactosidase gene (lucZ) is placed under control of the s&l gent operon, which belongs to the SOS-repair system ($4 : : 1acZ fusion). Accordingly, upon the induction of DNA damages not only the s&f gene, but also the 1acZ gene, is expressed. Hence, the gene product of lacZ, P-galactosidasc, can be measured by a simple assay and thus provides a measure of genotoxicity. In contrast, to obtain a measure of a generalized bacteriotoxic effect, the alkaline phosphatase activity of E. co/i PO37 can be measured as it is an indicator of general protein syn?hesis (Quillardet et al., 1982a, b, 1985; Quillardet and Hofnung, 1985; Hofnung et al., 1989; Walker, 19841.

Correspondence: Dr. Volker Mrrsch-Sunderman% lnstitut fiir Medizinische Mikrobiologie und Hygiene, Fakultit fir Klinische Medizin Mannheim der Universitlt fach 1001123, D-6800 Mannheim I (F.R.G.).

Heidelberg,

Post-

As part of a continuing characterization of the E. co/i genotoxicity assay (SOS chromotest) (Mersch-Sundermann, 1989a, b), we examined the responses of 32 polycyclic aromatic hydrocarbons (PAHsJ. Materials and methods Chemicals

The 32 PAHs were tested by the standard SOS chromotest with slight modifications. The sources of chemicals are described in Table 1. The PAHs selected for genotoxicity testing are representative of those that are abundant in environmental samples (Brune et al., 1979). For testing the PAHs were dissolved in DMSO up to doses of 39-20000 rig/assay or to the limit of solubility in 10 differcnt dilutions. All chemicals were routinely tested in triplicate in the presence and absence of SO derived from the livers of Aroclor 1354-induced rats.

with

Wc follo\v~d :he procedure recommended by Quillurdct and Hofnung ( 1985) with slight modifica:ions. I ml ctf an E. I-V!! PO37 overnight culture \\;is diluted :;ith 9 ml L-riedium. Then hOl)-~.~l portions of this dilution ; = 5 X lOh cfu) we c distributed into tubes containing 20 +I of gradual dilutions of the PAHs to be tested. Using the text procedure with metabolic activation S ml of a modified S9 mis ~5OYi 52) mix) replaced 9 ml of L-me&m (see below). These mistures were incubated for 2 h at 37 OC

T.ABLE

I

CtlAR;\(‘TERIZ(\TIC)N

OF P.i\t?h

Anthanthrene Xnthracrnr Eirnz[tr]anthraccne Benzo[ h]fluoranthenr Brnzo[ g/n]iluoranthcnr Benzo[ j]tlrwrunthcnc Brnzo[~rjIluorenr Bcn,w[ h]tluorznc Benzo[ ,gIzi]pr+ne Bcn~ti[ cr]p)rrnc‘

32.32 'i7 _. _ 12 2lh.‘S 2lh.2S 77fb.34 75-l _. -..i

Benzo[eJpyrene Chnsrnr Coronrne

3’ -._3 -_ “Y ._‘Y __.

Dihrnz[u.c.];lnthrctcrn~

27s.1 27S.J

Dihrnz[tr.ll]anthracene Diiiazo[ [l.l]pyrenr Di‘nrnzo[ tr.h]pyrrnr Dihenzo[ ~.i]pqrrnr 7. I?-Dimethylhenz[u]anthracrnr

.Wl).3l

32.4 302.4

Jacob Srrw 13675 Srrva l-1530

YY’;

Aldrich .27.533-b

> 995 > YYci YWi YXri > YXri YX’i YYri Y5Ci 97% YX? YV-i

Jacob J;icoh Fluka 11-190 Fluka 124’!5 Aldrich B YOO-Y Serb3 IJxoo Aldrich B1.010-2 Aldrich CX.OOO-X Aldrich CX.GW I Serva 19275 Serva lY7XO

> YYci

Jacob

301.1

> YYci 9X?

Jacob Sigma DO33

2Sh.35

> W’i

Fluka

3.bDimethklphenanthrenr Fluoranthene Fluorrnr Indeno[ 12.3~ctllpyrenr 2-Methylanthracene Y-blcthylanthracenr

Yx’; YSCi

> YYc;

39570

Aldrich 26.190-3 Servu ‘I539 Selva 2155? Jacob

! Y23

Atlanta

I.3533

Atlanta

7121

%Mrthylcholltnthrene

I913 35X.3h

2-Mrthylphcnanthrenr Naphthalenr PU$UW

I’)‘.76 11X.1 157_.__ 3’ _.

Aldrich

Phenanthrene Pyrrnr

17x.1 ‘01.3 ‘3.‘Y

Srrva

Triphrnylrnr

Fluka

hh’30

Pl.l20-4 32005

Serva 33hh5 Aldrich

Metabolic actirution In contrast to the procedure described by Quiilardet and Hofnung (1985) we used S9 mix containing only 50% of the standard 9000 x g supernatant (see also Marzin et al., 1986). The composition of the S9 mix has been described by McrschSundermann et al. (199lb).

7b.11)4-6

Sigma N3XO Aldrich

agitatic>n. To prevent measurement problems due to the turbidity of the S9 mix a short centrifugation step (2500 x g. 5 min) followed. 550 ~1 of the supernatant was decanted carefully and the rcmainir,g bacterial pellets were resuspended in 550 ~1 of a 0.9% NaCl solution. After mixing thoroughly, a further centrifugation step with decantation of 550 ~1 supernatant and resuspension with 550 ~1 0.9% NaCl solution followed (washing step). Then. 300~~1 portions from each tube were drawn and placed in fresh tubes, such that the-.e were 2 equal series of tubes each Tontaining a volume of 300 ~1. To determine the induced P-galactosidase activity, 2.7 ml of bg buffer and 600 ~1 of 0.4% 4-nitrophenyl-fi-o-galactopyranoside !QNPG) solution were added to each tube of one series. The mixtures were incubated for 30 m;n at :‘7 o C in a water bath. The incubation was stopped with 2 ml of I M sodium carbonate. The absorbance at 405 nm was read against a blank containing all ingredients but lacking bacteria. The determination of alkaline phosphatasc activity was similar to the P-galactosidase assay except that ap buffer replaced the bg buffer and a 0.4% 4-nitrophenyl phosphate (PNPP) solution replaced the ONPG solution. The conversion of PNPP was stopped with 2 ml of I.5 N sodium hydroxide. Positive controls, equipments and sources have been described elsewhere (Mersch-Sundermann et al., 1989a, b, 19Yla). The photometer was a Hitachi model 1170-60 digital double-beam spectrophotometer (horizontal beam). Measurements were made with 1 cm standard plastic cuvettes.

TKXO-0

Calculation The P-galactosidase (bg) and al!:sline phosphatase cap) activities were calculated according to the simplified version recommended by Quillardet and Hofnung (1985): units = A405 x

TABLE 7 GENOTOXlCiTY Compound

OF P.Ws

IN Eschrrichiu

Dose

(/.&assay)

coli PO37

(TUBE ASSAY) IN = 3)

Assay ( - S9J

Assay ( + 94)

Pgai

ap

(units)

(units)

0.156 0.625 2.500 10.000

5.25 5.63 5.73 6.18 6.19

Anthracene

0.000 0.156 0.625 2.500 10.000

Benzlalanthracene

IF

SOSIP

17.4; 17.37 17.41 17.29 i7.:5

1.oo 1.08

0

5.19 5.23 5.23 5.23 5.25

0.000 0.156 0.625 2.500 10.000

Penzo[ h]fluoranthene

&gal iunits)

av (&iitsJ

ratio

SOSiP 0.132

I .09 1.19 1.20

9.63 9.51, 8.97 4.84 8.73

1.uu

5.49 h.24 10.37 13.80

1.25 2.13 2.89

16.88 lb.84 16.81 16.76 16.20

1.00 1.01 1.01 1.02 1.05

5.37 5.56 5.91 6.31 6.41

9.33 9.09 8.92 x.77 8.19

1.00 1.06 1.15 1.25 1.36

0.010

4.57 5.01 4.99 5.03 5.31

lb.27 16.13 16.12

5.32 5.49 5.79 6.96 18.91

8.85 8.73 8.73 8.67 8.65

1.00 1.05 1.11 1.34 3.64

O.!%J

16.16

1.00 1.11 1.10 1.10 1.18

0.000 0.156 O.b25 2.500 10.000

5.45 5.48 5.52 5.49 5.15

17.25 17.15 17.19 17.19 16.89

1.oo 1.01 I .02 1.01 0.96

5.49 5.95 6.41 8.12 14.76

9.03 8.95 8.91 X.81 8.69

1.OtJ 1.09 1.18 1.52 2.79

0.045

Benzo[ghi]fiuoranthene

o.oon 0.155 0.625 2.500 10.000

4 Y3 5.08 4.99 5.05 5.09

16.15 16.08 16.16 16.09 16.01

1.oo 1.03 1.01 1.03 1.04

5.40 5.63 6.55 12.51 33.40

9.56 9.41 9.08 X.97 8.84

1SHJ I .06 1.28 2.47 6.h’)

0.340

Benzo[ j]fluoranthene

0.000 0.156 0.625 2.500 10.000

4.72 5.39 5.45 5.41 5.40

16.64 16.56 iii.45 16.56 16.68

1.oo 1.15 1.17 1.16 1.15

5.07 6.00 6.85 15.77 19.15

9.21 8.89 8.76 8.67 8.32

1.00 1.23 1.42 3.31 4.18

0.254

Benzo[ rc]fluorene

0.000 0.156 0.625 2.500 io.c00

4.96 5.40 5.37 5.43 5.48

lb.97 16.49 16.52 16.48 16.49

1.00 1.12 1.11 1.13 1.14

4.97 4.91 4.88 5.00 5.00

X.56 8.56 8.52 8.57 8.59

i .uo 0.99 0.94 1.oo 1.0

0

Benzo[ hlfluorene

0.000 0.156 0.625 2.500 10.000

5.32 5.41 5.41 5.3’) 5.45

17.37 17.35 17.33 17.32 17.29

1SJO 1.02 1sJ2 1.02 1.03

5.04 5.45 5.91 6.80 9.61

8.43 X.28 8.11 7.07 7.ni

1.oo I.10 1.22 1.43 2.tJ6

0.024

Benzo[ ghi]perylene

0.000 0.312 1.250 5.000 10.000

5.33 5.39 5.37 5.43 5.39

17.19 17.15 17.08 17.05 17.13

1.oo 1.01 1.02 1.03 1.01

4.85 5.83 6.05 7.25 9.15

8.85 8.28 8.03 7.84 7.X0

i .OO 1.29 1.38 1.69 2.14

0.033

Anthanthrene

0.000

16.03

5.35

1.04

Campound tnclmc)

Benzo[a]pyrenr

Ben& r]pyrene

Chrysene

DWX (j.lg/assay)

Dibenz[a.c]anthracene

Dibenz[o,/r]anthracene

B-gal (unitsi

0.243

5.02 6.22

9.19 8.99

1.00 1.27 2.17

16.72 15.83

1.oo 1.15

0.625 2.500

5.91 6.17

15.87 15.87

1.30 I .36

10.25 24.91

8.67 8.54

10.000

6.28

15.63

1.41

31.13

8.34

0.000 0.156

5.13 5.17

17.15 17.05

I .oo 1.01

4.79

8.60

0.625 2.500 10.000

5.21 5.25

17.08 17.07

1.02

5.43 5.53

8.40 8.27

5.21

17.07

1.03 1.02

6.63 6.93

8.16 7.91

0.000 0.156 0.625

4.16 4.hO

15.25

1.oo

15.05 15.05

1.12 1.14

5.12 5.88

8.55 8.39

15.04 14.92

1.16 1.17

6.32 12.79

8.27 8.09

35.59

8.00

15.81

1.00 106

5.21

8.97

5.65 5.75

8.85 8.88 8.72

4.68 4.75 4.77

0.000 0.05 I

4.39 4.48

0.206 3.825 3.300

4.49 4.52 4.44

15.31 15.35 15.40 15.36

0.000 0.156 0.625

4.72 4.85 4.88

16.09 16.12

2.500 10.000

4.85 5.56

16.04 15.93

0.000 0.156

4.68 4.84 5.09 5.12 5.15

0.000

4.55

pyrene

0.156 0.625

5.05 5.11

2.500 10.000

4.85 5.01

0.000 0.052 0.206 0.825

5.47 5.47 5.17

3.300 Dibenzo[Q,i]pyrene

P-gal (units)

5.21

Dibenzo[a,i]-

pyrene

SOSlP

4.79

0.625 2.500 10.000

Dibenzo[Q,h]-

ratio

IF

O.OOil 0.156

2.500 10.000 Coronrne

Assay ( + S9)

Assay ( - S9)

0.000 0.156 0.625 2.500 10.000

16.39

1.05 1.06 1.04

6.13 6.85

8.41

1.00 1.16

1.58 1.00 1.17 1.28

1.00 1.10

1.00 1.10

1.05 1.05

6.15

8.73 8.37

1.22 1.74

8.12

2.99 1.oo

5.24 5.55

9.29 9.08

16.20 16.03 15.93

1.09 1.11

5.60 6.76

8.92 8.51

1.13

11.05

8.29

16.43 16.13

1.00

5.12 10.08

1.41

1.oo 2.02

7.85 7.79

12.55

1.00

16.11

1.09

20.49 55.67

16.09

1.13

46.35

5.39

17.33 17.23 17.28

1.oo 1.01

5.38

5.40

5.79

9.80 9.59

1.02

10.54

6.21 6.93

9.37 8.95

1.oo

10.35

8.79

5.04

17.25

8.87

1.00

16.84

1.oo 1.03

5.09

5.07 5.13

8.79 8.77

1.13

1.04

5.68 7.56

1.05 1.09

12.31 18.99

8.75

1.50 2.45

8.35

3.96

5.35

16.76

0.117

1.10 1.21

1.02

16.88 16.81

2.100

4.15

17.27 16.56

5.17

0.039

2.36

9.05

16.13

0.104

1.08 1.11

8.84 n.75

1.13 1.14

0.027

1.11 1.21 1.40

8.97

1.oo 1.04

0.221

2.64 7.43

9.24

16.32 16.25

0.032

1.20 1.46

5.33 5.69

1.21

0.605

5.34 6.84

1.oo 1.05

8.41 14.01

SOSIP

1.41 2.14 0.174

TABLE 2 (continued) Compound (name)

Dose (/Lg/assay)

Assay t - SY)

Assay ( + S9)

P-gal (units)

aP (units)

IF

5.07 5.65 5.71 5.73 6.01

17.17 16.56 15.52 15.33 15.33

1.00 1.16 I .25 I .27 1.33

0

5.29 5.69 6.44 X.51 i5.80

9.07 8.91 X.80 x.53 x.44

1.00 I 0’) 1.25 1.71 3.21

0.072

0.156 0.625 2.500 10.000

3,6-Dimethylphenanthrene

0.000 0.156 0.625 2.500 10.000

4.89 5.16 5.19 4.60 3.84

16.88 16.76 16.83 16.24 15.55

1.00 I .07 1.07 0.98 0.86

0

5.43 5.72 6.47 6.77 7.71

9.55 9.4x 9.47 9.47 9.47

1.00 1.06 1.20 1.26 1.43

0.007

Fluoranthene

0.000 0.156 0.625 2.500 10.000

5.01 5.04 5.07 5.11 5.09

16.84 16.71 15.52 14.11 14.04

1.00 1.02 1.19 1.22 1.22

0

5.32 7.16 10.95 30.32 40.57

9.11 X.91 x.75 8.57 8.24

1.oo

0.4 I3

0.000 0.156 0.625 2.500 10.000

4.79 4.89 4.85 4.63 3.47

17.05 16.08 16.09 14.47 9.25

1.00 1.08 I .08 1.14 1.33

0

5.16 5.16 5.16 5.12 5.11

8.79 8.81 8.60 8.89 8.73

0.98 1.00

Indeno[ 1,2,3-cd]pyrene

0.000 0.156 0.625 2.500 10.000

5.59 5.65 5.75 5.39 5.21

17.31 17.29 17.27 17.09 17.03

1.oo I .02 1.03 0.98 0.95

0

5.15 5.31 5.83 6.75 10.35

9.0 1 8.96 8.93 8.84 x.97

1.00 1.04 1.14 I .34 2.02

0.036

2-Methylanthracene

0.000 0.156 0.625 2.500 10.000

5.11 5.46 5.52 5.52 5.49

17.49 17.37 17.47 17.40 17.41

1.oo 1.08 1.08 1.09 1.08

0

5.11 5.77 6.53 9.01 9.81

9.13 9.04 E.85 8.75 8.33

1.OO 1.14 1.32 1.84 2.11

0.052

9-Methylanthracene

0.000 0.156 0.625 2.500 10.000

5.16 6.20 5.45 2.28 1.23

17.40 17.31 16.08 5.52 2.67

1.oo 1.20 1.14 1.39 1.55

0

5.16 5.60 6.32 10.88 13.87

9.53 9.29 9.16 8.93 8.78

I .oa 1.11 1.27 2.26 2.93

0.102

3-Methylcholanthrene

0.000 0.156 0.625 2.500 10.000

4.80 5.63 5.64 7.44 11.25

17.05 16.32 16.29 16.35 16.03

1.00 1.23 1.23 I .62 2.50

0.036

5.41 5.80 9.25 18.96 22.03

8.92 8.88 x.77 8.69 x.53

I .oo I .08 1.74 3.59 4.25

0.194

2-Methylphenanthrene

0.000 0.156 0.625 2.500 10.000

4.95 6.00 5.83 1.57 1.37

16.47 16.37 15.36 2.92 2.65

1.oo 1.22 1.26 1.79 1.73

0

5.43 6.12 7.28 10.92 9.08

9.39 9.21 9.35 9.25 9.31

1.00 1.15 I .35 2.04 I .6Y

o.ah8

7,12-Dimethylbenz[a]anthracene

Fluorene

0.000

SOSIP

P-gal (units)

aP (units)

ratio

SOSIP

1.38 2.14 b.06 8.43 1.oo

0

I .oo 1.02

Naphthalcne

-l.c)b

:7.1

I .oo

S.-u 5.20

16.7’) I(,.09

I.12 I.12

5.4x 5.4X

5.15 4.h4

I-l35 I I .85

I.20 I.36

5.11

5.20

17.37 17.29 17.11 17.OY

I .oo

s.3 5.29 5.27 S.23 Phrnanthrrnr

0

1)

I .02 I si3

5.01 5.h’)

1.32

lh.33 lb.15

I .oo 1.04 I.10 I.11

-1.89

15.0x IS.09 15.04

5.35 5.48 5.60

I.10

S.Yh

S.2-I _5 ._77

17.21 17.16

I .oo I.01

5.3 I

I7.04 17.13

I .02

h.0’) 7.4x

I.01 I .07

17.79 7’ 9’) __.

Ih.24

0

I .03

1000/r (A405 = optical density at 405 nm; t = substrate conversion time in minutes). The induction factor IF was calculated as the ratio Rx/R,, (R, = bg/ap determined for the test chemical; R,, = bg/ap determined for the negative control). The SOS-inducing potential (SOSIP) that describes a single and comparable parameter for the genotoxic potency of a compound was determined as the steepest slope of the IF dose-response curve (increase of IF per nmole of compound). A compound was classified as ‘non-reactive’ (‘not genotoxic’) if the induction factor remained < 1.5, as ‘marginal’ if the induction factor was between 1.5 and 2.0 and as ‘reactive’ (‘genotoxic’) if the induction factor was in excess of 2.0. Additionally, to avoid false-positive results due to bacteriotoxic effects (decrease of ap activity), a further requirement for genotoxicity was a

0

0.0 I 7

6.71

4.35

5.24 5.29

SOSIP

h.05 6.49

I .03 I .t17

I .03 1.34

-I.% 1.x’) 4.c)Y

ratio

5.43

IS.95 IO.39

4.81

ap (units)

S.48

I .oo

4.28 1.7h

Triphenylene

1h.h’)

(units)

lb.57 1b.M

511 S.23 5.07

Pyrene

I

SOSIP

,fz-gal

3P (units)

IF

(units)

p-g.31

S.!)7 5.31 6.49

0.053

K-3 I%4 0

0

continuous compound

>.73

5.16

0

0.260

increase in bg activity with increasing concentration.

Results and discussion The genotoxic activities of 32 PAHs on E. coli PQ37 are shown in Table 2. Anthracene (SOSIP = 0.01) (Fig. lA), benzo[a]fluorene (SOSIP = 0.0241, coronene (SOSIP = 0.027), 3,6-dimethylphenanthrene (SOSIP = 0.0071, fluorene (SOSIP = 01, naphthalene (SOSIP = O), perylene (SOSIP = 0.017) and pyrene (SOSIP = 0) showed little or no genotoxic activity (IF < 1.5) either in the presence or in the absence of S9. In addition benzo[e]pyrene (IF (max) = 1.9, SOSIP = 0.032) displayed a weak response. All the other compounds induced the SOS system of E. co/i PQ37 in the presence of S9 mix.

7

The highest activity was shown by dibenzo[~~./]pyrcne with a SOSIP = 2.1 (IF tmax) = 12.5) (Fig. 10. In the absence of a metabolizing system only benzo[a]pyrene (SOSIP = 0.243) and 3-methylcholanthrene (SOSIP = 0.036) showed genotoxic effects. The influence of the USCof S9 mix containing less 9000 x g supernatant from Aroclor 1254-induced rat livers than the standard S9 mix on the SOS response of E. co/i PQ37 is shown in Fig. 2. Whereas we had only a very weak or questionable

response testing O-634 ng benzo[alpyrcne/assay using the standard SC)mix (54 ~1 9000 x g supernatant/assay), the response was increased (up to IF = 2.0) (reactive) when using the ‘50% SC)mix (27 ~1 Sc)/assay) and only 312 ng benzo[a]pyrene/assay. Additionally the SOSIP was significantly higher using lower SC)concentrations (data not shown) (Mersch-Sundermann et al., 199lb). The cause is probably the inactivation of trace amounts of /I-galactosidase by components present in the 9000 X g supernatant. The SOS re-

induction factor 3.0

units A

units

Anthracene (+ S9)

15

inductton factor - 3.0

B Anthanthrene

15

(+ S9)

t

I; si

2.5

10 -.

10

0

2.0

. . 2.0

5 .. . . 1.5

1.5

0 .-

1.0 i

I

500

SOSIP = 0.142

. . 1.0

I

:,:~::~:.::~:~::~::‘:::‘!:

0

. . 2.5

t

1000 1500 nglassay

2000

_.0

2500

. 500

1000 1500 nglassay

2000

2500

induction facto! Dlbenzo(a,l)pyrene

I

+ + +

Fig. I. P-Galactwidase (nonreactive

compound),

and ;dkaline

:,

500

:: ::::,z: :::,:: 1000 1500 2000 nglassay

’ 2500

R-galactosidase activity alkaline phosphatase activity induction factor

phosphatnse

(5) anthanthrrnr

‘:;:’

0

(+ S9)

activity.

(reactive

calculated

compound)

induction

factor

and SOS inducing

and (C’) dihenzo[a.l]pyrcne

(extremely

potential

of (A) anthracent:

highly reactive

compound).

x inditctton 5--

factor

but only verified for the testing of PAHs (Mersch-Sundermann et al., 199lb). A comparison of the SOS chromotest results with those obtained in the Salmonella/microsome assay (Sakai et al., 1985) for 18 PAHs showed a good correspondence between genotox-

4-

3-

2r

TABLE

3

GENOTOXICITY

AND

MUTAGENICITY

OF PAHs

i-

Name

i

Q10

20

30

40

90009

supernatant

B(a)P

50

60

70

80

concentration

0.078

llg

4

0.156

ug

-i-

0.625

Ug

-

1.25 “9

-

0,312

-

2.5

tlg

ug

Fip. 2. Influence of the 9000 X !: supernatant concentration on the response of E. colr PQ37 testing hrnzo[a]pyrene.

sponse is further increased when using very low SC) concentrations (6 PI/assay) and a low compound concentration (Fig. 2). It is to be noted that the increase of SOS-inducing activities when using this modified S9 mix is not a general rule,

induction factor

8 testing5000

nella assay a

nglaasay 0 fluoranelerle

Anthanthrene

2.89

Anthracene Benz[a]anthracene

1.36 3.78

Benzo[b]fluoranthene Benzo[ g&]fluoranthene

3.21 8.11

BenzoIjJfluoranthene Benzo[ alfluorene Benzo[ blfluorene

4.44 1.01 2.23 2.14

Benzo[ &:lli]perylene Benzo[ cllpyrene Benzo[ rjpyrene

6.94 I .YO

Chrysene Coronene

7.43 I .47

Dibenz[u.c]anthracene

2.99

Dibenz[a,h]anthracene

2.62 12.55

Dibenzo[ a,l]pyrene Dibenzo[cr,h]pyrene

2.62 4.26

anthracene 3.6-Dimethylphenanthrene

3.66

Fluoranthene Fluorene

x.71

I so I .02

6

Indeno[l,2,3-cdlpyrene

2.59 2.35

5

2-Methylanthracene Y-Methylanthracene

8 Chrysene

2.93 4.84

3-Methylcholanthrene

2.04

2-Methylphenanthrene Naphthalene 7.1%Dimeth benz(a)amhacene e QMet 1cylanthracene Phenanthrene 0 2-Methylanthracene 2-MethylPhenanthrene ti @ Benzo(ghi)perylene

3 2

1.OY

1.46

Perylene Phenanthrene Pyrene Triphenylrne

+ _ + + + + + + + (+) + _

+ - 1) + + + + ? ‘> + + + + + +

+ + + + +

0 + +

+ -

+ _

+ _

+ -

+ + + + + -

+

2.94 I.21

-I-

5.03

+

-

+

+ + + 0 _ + - 1) + +

’ Data I’rom McCann et al. (1975), Brune et al. (1979), Bartsch et al. (1980). Haworth et al. (1983). Sakai et al. (1985).

0 0

100

200

cr::::::::::::::::::::::: 300 400

Brahms et al. (1987).

500

( + ) weak genotoxicity (I.5 < IF > 2.0); 0 data inadequate or

SJyphimurium TA97 revertants per plate Fig.

genotoxicitv

Dibenzo[u.i]pyrene 7.12-Dimethylbenz[a]-

7

Salmo-

IF (max) 90

(@assay)

-

SOS chromotest

3.

Correlation

of genotoxicity

on E

not available; ? conflicting reports; I) negative in TAl535, coli

PQ37

mutagenicity on Sulmonrlla ryphimurium TAY7.

and

TA1537, TA1538, et al.. 1385).

TA98,

TAlOO;

positive only TA97 (Sakai

icity in E. coli PQ37 and mutagenicity in Salmonella typhimurium TA97 (Fig. 3) (Table 3). In view of this and other studies (von der Hude et al., 1988) the SOS chromotest seems to possess some practical advantages over the widely used Salmonella,/microsome assay (Maron and Ames, 1983). The SOS chromotest is easy to perform, the results are obtained within a few hours and only a single bacterial strain is required. Thus, further characterization of the assay with respect to the response of diverse chemical classes, the standardization of the test protocol and the determination of the structural basis of SOS-inducing activity are warranted to evaluate the role of the SOS chromotest as part of a battery for the prediction of carcinogenicity.

Press, London. pp.

Maron. D.M.,

and B.N. Ames (1983) Revised methods for the Salmonella mutagenicity test. Mutation Rcs.. 113.175.-21.5. Marzin.D.R., P. Olivier and H. Vophi (1986) Kinetic detcrmination of enzymatic activity and modification of the metabolic activation system in the SOS chromotest. Mutation Res., 164, 353-359. McCann. J.. E. Choi. E. Yamasaki and B.N. Ames (1975) Detection of carcinogens as mutagens in the Salmonella/ microsome test: assays of 300 chemicals. Proc. Natl. Acad. Sci. (U.S.A.), 72, 5135-5139. Mersch-Sundermann.

V., A. Hofmeister.

G. Miiller

and H.

Hof (l989a) Untersuchungen zur Mutagenitat organischer Mikrokontaminationen in der Umwelt. III. Mitteilung: Die Mutagenitat ausgewahlter Herbizide und lnsektiride im H.

Hofmeister

(1989b) Untersuchungen zur Mutagenitat organischer Mikrokontaminationen in der Umwelt. IV. Mitteilung: Die

We thank Herbert S. Rosenkranz from the Department of Environmental and Occupational Health at Pittsburgh, PA for his advice and the reading of our manuscript. Moreover, we thank P. Quillardet and M. Hofnung from the Institut Pasteur, Paris, for the Escherichia coli strain PQ37 and J. Jacob from the Biochemical Department for Environmental Carcinogens, Ahrensburg, for a number of the test compounds. Furthermore, we thank W. Meister for his laboratory help.

Mutagenitiit leichtfliichtiger Organohalogene im SOSChromotest, Zbl. Hyg., 189. 266-271. Mersch-Sundermann. V.. S. Kevekordes and S. Mochayedi (1991a) Sources of variability of the Esrhericl~iu coli PQ37 genotoxicity assay (SOS chromotest). Mutation Res.. 252. 51-60. Mersch-Sundermann. V.. F. Wintermann and S. Kern (199lb) Sources of variability of the SOS chromotest: influence of the metabolizing system on the response oi E. ct,li PQ.77. in press. Quillardet. P.. and M. Hotnung (19X5) the SOS-Chromotest. a calorimetric bacterial assay for genotoxins: procedures, Mutation Res., 147, 65-78. Quillardet. P.. 0. Huisman. R. d’Ari and M. Hofnung (1982a) SOS chromotest. a direct assay of induction of an SOS

References Bartsch. H., C. Malaveille. A.-M. Camus, G. Martel-Planche. G. Brun. A. Hautefeuille, N. Sabadie and A. Barbin (1980) Validation and comparative studies on IX0 chemicals with Salmonel/u r)?phimrtr;um strains and V7Y Chinese hamster cells in the presence of various Mutation Res., 76, l-50.

metabolizing

Brams, A., J.P. Buchet. M.C. Crutzen-Fayt,

systems.

C. de Meester, R.

Lauwerys and A. Leonard (1987) A comparative study. with 40 chemicals, of the efficiency of the Salmonella assay and the SOS chromotest (kit procedure). Toxicol. Lett., 38, 123-133. Brune, H., R. Deutsch-Wentzel,

S. Dohbertin.

G. Grimmer,

M. Habs. J. Jacob J. Misfeld, U. Mohr. G. Obersdoerster. F. Pott, D. Schmaehl, P. Schneider and D. Steinhof (1979) Luftqualitatskriterien fiir ausgewlhlte polyzyklische aromatische Kohlenwasserstoffe, Erich Schmidt, Berlin. S.. L. Lawler.

Genetic Risk Assessment, Academic 325-136.

SOS-Chromutest. Zbl. Hyg., 189, 135146. Mersch-Sundermann, V., G. Miiller and

Acknowledgements

Haworth,

Hofnung. M.. P. Quillardet. 0. Goerhch and E. Touati (19x9) SOS chromotest and the use of hack% for the &tectjon and diagnosis of genotoxic agents. in: bie7.v Trends ;n

K. Mortelsman,

W. Speck and E.

Zeiger (1983) Salmonella mutagenicity test results for 250 chemicals, Environ. Mutagen.. Suppl. I. 3-142.

function in Eschericlri~ co/i K-12 to measure gecotoxicity. Proc. Natl. Acad. Sci. (U.S.A.!, 79, 5971-5975. Quillardet, P., 0. Huisman. R. d’Ari and M. Hofnung (1982h3 The SOS chromotest: direct assay of the expression of gcnc sfiA as a measure of genotoxicity of chemicals. Biochimie. 64. 797-801. Quillardet, P.. C. de Bellecombe and M. Hofnung (1985) the SOS chromotest. a calorimetric bacterial assay for genotoxins: validation study with X3 compounds, Mutation Res.. 147. 79-85. Sakai. M., Y. Daisuke and S. Mizusaki (19%) Mutagenicity of polycyclic aromatic hydrocarbons on Saimodh Qphimurium TA97. Mutation Res.. 156. 61-67. von der Hude. W., C. Behm. R. Giirtler and A. Basler (19x8) Evaluation of the SOS chromotest, Mutation Res.. 203.

x1-94. Walker, G.C. (1984) Mutagenesis and inducible response to desoxyribonucleic acids damage in Escherichia CO/~.Microbiol. Rev.. 48. 60-93.