Geochemistry articles – April 2013

Geochemistry articles – April 2013

Organic Geochemistry 60 (2013) e1–e29 Contents lists available at SciVerse ScienceDirect Organic Geochemistry journal homepage: www.elsevier.com/loc...

454KB Sizes 2 Downloads 147 Views

Organic Geochemistry 60 (2013) e1–e29

Contents lists available at SciVerse ScienceDirect

Organic Geochemistry journal homepage: www.elsevier.com/locate/orggeochem

Geochemistry Articles – April 2013 Analytical Chemistry

Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation Borràs, S., Kaufmann, A., Companyó, R., 2013. Analytica Chimica Acta 772, 47–58. http://www.sciencedirect.com/science/article/pii/S0003267013002262 Analysis of petroleum aromatics by laser-induced acoustic desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry Chen, J., Jia, L., Zhao, L., Lu, X., Guo, W., Weng, J., Qi, F., 2013. Energy & Fuels 27, 2010–2017. http://dx.doi.org/10.1021/ef3018207 Monitoring the liquid/liquid extraction of naphthenic acids in brazilian crude oil using electrospray ionization FT-ICR mass spectrometry (ESI FT-ICR MS) Colati, K.A.P., Dalmaschio, G.P., de Castro, E.V.R., Gomes, A.O., Vaz, B.G., Romaˇo, W., 2013. Fuel 108, 647–655. http://www.sciencedirect.com/science/article/pii/S0016236113000951 Py-GC/MS as a powerful and rapid tool for determining lignin compositional and structural changes in biological processes Dey Laskar, D., Ke, J., Zeng, J., Gao, X., Chen, S., 2013. Current Analytical Chemistry 9, 335–351. http://eurekaselect.com/node/109048 Quantitative measurements of small molecule mixtures using laser electrospray mass spectrometry Flanigan, P.M., Perez, J.J., Karki, S., Levis, R.J., 2013. Analytical Chemistry 85, 3629–3637. http://dx.doi.org/10.1021/ac303443q High speed Deans switch for low duty cycle comprehensive two-dimensional gas chromatography Ghosh, A., Bates, C.T., Seeley, S.K., Seeley, J.V., 2013. Journal of Chromatography A 1291, 146–154. http://www.sciencedirect.com/science/article/pii/S0021967313005621 Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry characterization of tunable carbohydrate-based materials for sorption of oil sands naphthenic acids Headley, J.V., Peru, K.M., Mohamed, M.H., Wilson, L., McMartin, D.W., Mapolelo, M.M., Lobodin, V.V., Rodgers, R.P., Marshall, A.G., 2013. Energy & Fuels 47, 1772–1778. http://dx.doi.org/10.1021/ef3014713 Tutorial: Simulating chromatography with Microsoft Excel macros Kadjo, A., Dasgupta, P.K., 2013. Analytica Chimica Acta 773, 1–8. http://www.sciencedirect.com/science/article/pii/S0003267012017321 Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques Kilár, A., Dörnyei, Á., Kocsis, B., 2013. Mass Spectrometry Reviews 32, 90–117. http://dx.doi.org/10.1002/mas.21352 Autophaser: An algorithm for automated generation of absorption mode spectra for FT-ICR MS Kilgour, D.P.A., Wills, R., Qi, Y., O’Connor, P.B., 2013. Analytical Chemistry 85, 3903–3911. http://dx.doi.org/10.1021/ac303289c

http://dx.doi.org/10.1016/j.orggeochem.2013.05.001

e2

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Monolithic column in gas chromatography Kurganov, A., 2013. Analytica Chimica Acta 775, 25–40. http://www.sciencedirect.com/science/article/pii/S0003267013002912 Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: Separating and assigning structures to ions Lapthorn, C., Pullen, F., Chowdhry, B.Z., 2013. Mass Spectrometry Reviews 32, 43–71. http://dx.doi.org/10.1002/mas.21349 Enhancing the sensitivity of molecular secondary ion mass spectrometry with C60+-O2+ cosputtering Liao, H.-Y., Lin, K.-Y., Kao, W.-L., Chang, H.-Y., Huang, C.-C., Shyue, J.-J., 2013. Analytical Chemistry 85, 3781–3788. http://dx.doi.org/10.1021/ac400214t Multidimensional gas chromatography using microfluidic switching and low thermal mass GC for the characterization of targeted volatile organic compounds Luong, J., Gras, R., Hawryluk, M., Shellie, R.A., Cortes, H.J., 2013. Journal of Chromatography A 1288, 105–110. http://www.sciencedirect.com/science/article/pii/S0021967313004020 Selectivity of bio-oils catalytic hydrotreatment assessed by petroleomic and GC*GC/MS-FID analysis Olcese, R., Carré, V., Aubriet, F., Dufour, A., 2013. Energy & Fuels 27, 2135–2145. http://dx.doi.org/10.1021/ef302145g Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatography Omais, B., Crepier, J., Charon, N., Courtiade, M., Quignard, A., Thiebaut, D., 2013. Analyst 138, 2258–2268. http://dx.doi.org/10.1039/C2AN35597C OmniSpect: An open MATLAB-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry images Parry, R.M., Galhena, A.S., Gamage, C.M., Bennett, R.V., Wang, M.D., Fernández, F.M., 2013. Journal of the American Society for Mass Spectrometry 24, 646–649. http://dx.doi.org/10.1007/s13361-012-0572-y MALDI TOF MS profiling of bacteria at the strain level: A review Sandrin, T.R., Goldstein, J.E., Schumaker, S., 2013. Mass Spectrometry Reviews 32, 188–217. http://dx.doi.org/10.1002/mas.21359 Large scale MALDI-TOF MS based taxa identification to identify novel pigment producers in a marine bacterial culture collection Stafsnes, M.H., Dybwad, M., Brunsvik, A., Bruheim, P., 2013. Antonie van Leeuwenhoek 103, 603–615. http://dx.doi.org/10.1007/s10482-012-9844-6 Directly coupled high-performance liquid chromatography–accelerator mass spectrometry measurement of chemically modified protein and peptides Thomas, A.T., Stewart, B.J., Ognibene, T.J., Turteltaub, K.W., Bench, G., 2013. Analytical Chemistry 85, 3644–3650. http://dx.doi.org/10.1021/ac303609n Isotope cluster-based compound matching in gas chromatography/mass spectrometry for non-targeted metabolomics Wegner, A., Sapcariu, S.C., Weindl, D., Hiller, K., 2013. Analytical Chemistry 85, 4030–4037. http://dx.doi.org/10.1021/ac303774z Mass spectrometry imaging under ambient conditions Wu, C., Dill, A.L., Eberlin, L.S., Cooks, R.G., Ifa, D.R., 2013. Mass Spectrometry Reviews 32, 218–243. http://dx.doi.org/10.1002/mas.21360 Archaeological/Art Organic Chemistry

A preliminary carbon and nitrogen isotopic investigation of bone collagen from skeletal remains recovered from a Pre-Columbian burial site, Matanzas Province, Cuba Buhay, W.M., Chinique de Armas, Y., Rodriguez Suárez, R., Arredondo, C., Smith, D.G., Armstrong, S.D., Roksandic, M., 2013. Applied Geochemistry 32, 76–84. http://www.sciencedirect.com/science/article/pii/S0883292712002454

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e3

Earliest evidence for the use of pottery Craig, O.E., Saul, H., Lucquin, A., Nishida, Y., Tache, K., Clarke, L., Thompson, A., Altoft, D.T., Uchiyama, J., Ajimoto, M., Gibbs, K., Isaksson, S., Heron, C.P., Jordan, P., 2013. Nature 496, 351–354. http://dx.doi.org/10.1038/nature12109 Illuminating the Late Mesolithic: Residue analysis of ’blubber’ lamps from northern Europe Heron, C., Andersen, S., Fischer, A., Glykou, A., Hartz, S., Saul, H., Steele, V., Craig, O., 2013. Antiquity 87, 178–188. http://antiquity.ac.uk/ant/087/ant0870178.htm Palaeodiet, horticultural transitions and human health during the Lapita and post-Lapita periods on Uripiv island, northeast Malekula, Vanuatu (3000-2300 BP) Kinaston, R., Buckley, H., Bedford, S., Hawkins, S., 2013. HOMO - Journal of Comparative Human Biology 64, 151. http://www.sciencedirect.com/science/article/pii/S0018442X13000383 Paleolithic human exploitation of plant foods during the last glacial maximum in North China Liu, L., Bestel, S., Shi, J., Song, Y., Chen, X., 2013. Proceedings of the National Academy of Sciences 110, 5380–5385. http://www.pnas.org/content/110/14/5380.abstract Stable isotopes and diet: Their contribution to Romano-British research Müldner, G., 2013. Antiquity 87, 137–149. http://antiquity.ac.uk/ant/087/ant0870137.htm Dead Sea asphalt in ancient Egyptian mummies—Why? Nissenbaum, A., Buckley, S., 2013. Archaeometry 55, 563–568. http://dx.doi.org/10.1111/j.1475-4754.2012.00713.x Role of the microboring marine organisms in the deterioration of archaeological submerged lapideous artifacts (Baia, Naples, Italy) Ricci, S., Pietrini, A.M., Bartolini, M., Perasso, C.S., 2013. International Biodeterioration & Biodegradation 82, 199–206. http://www.sciencedirect.com/science/article/pii/S0964830513001030 Palaeodietary reconstruction at An Son Willis, A., Oxenham, M., 2013. HOMO - Journal of Comparative Human Biology 64, 161. http://www.sciencedirect.com/science/article/pii/S0018442X13000632 Astrobiology The sample handling system for the Mars Icebreaker Life mission: From dirt to data Davé, A., Thompson, S.J., McKay, C.P., Stoker, C.R., Zacny, K., Paulsen, G., Mellerowicz, B., Glass, B.J., Willson, D., Bonaccorsi, R., Rask, J., 2013. Astrobiology 13, 354–369. http://dx.doi.org/10.1089/ast.2012.0911 The Icebreaker Life mission to Mars: A search for biomolecular evidence for life McKay, C.P., Stoker, C.R., Glass, B.J., Davé, A.I., Davila, A.F., Heldmann, J.L., Marinova, M.M., Fairen, A.G., Quinn, R.C., Zacny, K.A., Paulsen, G., Smith, P.H., Parro, V., Andersen, D.T., Hecht, M.H., Lacelle, D., Pollard, W.H., 2013. Astrobiology 13, 334–353. http://dx.doi.org/10.1089/ast.2012.0878 Selecting samples for Mars sample return: Triage by pyrolysis-FTIR Sephton, M.A., Court, R.W., Lewis, J.M., Wright, M.C., Gordon, P.R., 2013. Planetary and Space Science 78, 45–51. http://www.sciencedirect.com/science/article/pii/S0032063313000068 Biochemistry Fractionation and purification of membrane lipids from the archaeon Thermoplasma acidophilum DSM 1728/10217 Antonopoulos, E., Freisleben, H.J., Krisnamurti, D.G.B., Estuningtyas, A., Mulyanto, C., Ridwan, R., Freisleben, S.K.U., 2013. Separation and Purification Technology 110, 119–126. http://www.sciencedirect.com/science/article/pii/S1383586613001524 Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria Boldareva-Nuianzina, E.N., Bláhová, Z., Sobotka, R., Koblízˇek, M., 2013. Applied and Environmental Microbiology 79, 2596–2604. http://aem.asm.org/content/79/8/2596.abstract

e4

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Bacterial flagella explore microscale hummocks and hollows to increase adhesion Friedlander, R.S., Vlamakis, H., Kim, P., Khan, M., Kolter, R., Aizenberg, J., 2013. Proceedings of the National Academy of Sciences 110, 5624–5629. http://www.pnas.org/content/110/14/5624.abstract Squalene hopene cyclases: Highly promiscuous and evolvable catalysts for stereoselective CAC and CAX bond formation Hammer, S.C., Syrén, P.-O., Seitz, M., Nestl, B.M., Hauer, B., 2013. Current Opinion in Chemical Biology 17, 293–300. http://www.sciencedirect.com/science/article/pii/S1367593113000215 Extractable liquid, its energy and hydrocarbon content in the green alga Botryococcus braunii Li, Y., Moore, R.B., Qin, J.G., Scott, A., Ball, A.S., 2013. Biomass and Bioenergy 52, 103–112. http://www.sciencedirect.com/science/article/pii/S0961953413001281 Adjusting membrane lipids under salt stress: The case of the moderate halophilic organism Halobacillus halophilus Lopalco, P., Angelini, R., Lobasso, S., Köcher, S., Thompson, M., Müller, V., Corcelli, A., 2013. Environmental Microbiology 15, 1078–1087. http://dx.doi.org/10.1111/j.1462-2920.2012.02870.x Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria Ostroumov, E.E., Mulvaney, R.M., Cogdell, R.J., Scholes, G.D., 2013. Science 340, 52–56. http://www.sciencemag.org/content/340/6128/52.abstract The carotenoid biosynthetic pathway: Thinking in all dimensions Shumskaya, M., Wurtzel, E.T., 2013. Plant Science 208, 58–63. http://www.sciencedirect.com/science/article/pii/S016894521300068X High-rate, high-yield production of methanol by ammonia-oxidizing bacteria Taher, E., Chandran, K., 2013. Environmental Science & Technology 47, 3167–3173. http://dx.doi.org/10.1021/es3042912 Prokaryotic responses to hydrostatic pressure in the ocean – a review Tamburini, C., Boutrif, M., Garel, M., Colwell, R.R., Deming, J.W., 2013. Environmental Microbiology 15, 1262–1274. http://dx.doi.org/10.1111/1462-2920.12084 Release of dissolved carbohydrates by Emiliania huxleyi and formation of transparent exopolymer particles depend on algal life cycle and bacterial activity Van Oostende, N., Moerdijk-Poortvliet, T.C.W., Boschker, H.T.S., Vyverman, W., Sabbe, K., 2013. Environmental Microbiology 15, 1514–1531. http://dx.doi.org/10.1111/j.1462-2920.2012.02873.x Biodegradation

Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions El-Sheekh, M.M., Hamouda, R.A., Nizam, A.A., 2013. International Biodeterioration & Biodegradation 82, 67–72. http://www.sciencedirect.com/science/article/pii/S0964830513000516 Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps Jaekel, U., Musat, N., Adam, B., Kuypers, M., Grundmann, O., Musat, F., 2013. ISME Journal 7, 885–895. http://dx.doi.org/10.1038/ismej.2012.159 Biodegradation of alkyl branched aromatic alkanoic naphthenic acids by Pseudomonas putida KT2440 Johnson, R.J., Smith, B.E., Rowland, S.J., Whitby, C., 2013. International Biodeterioration & Biodegradation 81, 3–8. http://www.sciencedirect.com/science/article/pii/S0964830511002368 Microbial contamination and its control in fuels and fuel systems since 1980 – a review Passman, F.J., 2013. International Biodeterioration & Biodegradation 81, 88–104. http://www.sciencedirect.com/science/article/pii/S0964830512002120 Biological degradation and solubilisation of coal Sekhohola, L.M., Igbinigie, E.E., Cowan, A.K., 2013. Biodegradation 24, 305–318. http://dx.doi.org/10.1007/s10532-012-9594-1

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e5

Carrier mounted bacterial consortium facilitates oil remediation in the marine environment Simons, K.L., Sheppard, P.J., Adetutu, E.M., Kadali, K., Juhasz, A.L., Manefield, M., Sarma, P.M., Lal, B., Ball, A.S., 2013. Bioresource Technology 134, 107–116. http://www.sciencedirect.com/science/article/pii/S0960852413001843 Simultaneous biodegradation of phenanthrene and oxidation of arsenite by a dual-functional bacterial consortium Tang, J., Feng, T., Cui, C., Feng, Y., 2013. International Biodeterioration & Biodegradation 82, 173–179. http://www.sciencedirect.com/science/article/pii/S0964830513000838 Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system Vilchez-Vargas, R., Geffers, R., Suárez-Diez, M., Conte, I., Waliczek, A., Kaser, V.S., Kralova, M., Junca, H., Pieper, D.H., 2013. Environmental Microbiology 15, 1016–1039. http://dx.doi.org/10.1111/j.1462-2920.2012.02752.x Microbial functioning on crude oil in a gas-permeable single microfluidic channel Wang, L., Tang, Y.-Q., Guo, P., Luo, Y.-j., Wu, X.-L., Wang, H., 2013. Journal of Petroleum Science and Engineering 104, 38–48. http://www.sciencedirect.com/science/article/pii/S0920410513000661 Biodegradation of waste water-based drilling fluid from an offshore drilling operation Yang, Z.X., Zhou, Y.B., Xiang, X.Z., Zhu, Z.B., Pen, L., Luo, Y.W., Lu, J., 2013. Petroleum Science and Technology 31, 1001–1007. http://dx.doi.org/10.1080/10916466.2011.626007 Biodegradation pathways/genomics

Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium Wöhlbrand, L., Jacob, J.H., Kube, M., Mussmann, M., Jarling, R., Beck, A., Amann, R., Wilkes, H., Reinhardt, R., Rabus, R., 2013. Environmental Microbiology 15, 1334–1355. http://dx.doi.org/10.1111/j.1462-2920.2012.02885.x Biogeochemistry

Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces Anderson, R., Wylezich, C., Glaubitz, S., Labrenz, M., Jürgens, K., 2013. Environmental Microbiology 15, 1580–1594. http://dx.doi.org/10.1111/1462-2920.12078 Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients Bruckner, C.G., Mammitzsch, K., Jost, G., Wendt, J., Labrenz, M., Jürgens, K., 2013. Environmental Microbiology 15, 1505–1513. http://dx.doi.org/10.1111/j.1462-2920.2012.02880.x Influence of hydrogen in the presence of organic matter on bacterial activity under radioactive waste disposal conditions Chautard, C., Ritt, A., Libert, M., De Windt, L., 2013. Procedia Earth and Planetary Science 7, 147–150. http://www.sciencedirect.com/science/article/pii/S1878522013003020 Activity of sulfur reducing bacteria in deep bedrock fractures revealed by variability of d34S in pyrite and dissolved sulfate Drake, H., Åström, M.E., Tullborg, E.-L., Whitehouse, M., 2013. Procedia Earth and Planetary Science 7, 228–231. http://www.sciencedirect.com/science/article/pii/S1878522013001707 Assessment of microbiological development in nuclear waste geological disposal: A geochemical modeling approach Esnault, L., Libert, M., Bildstein, O., 2013. Procedia Earth and Planetary Science 7, 244–247. http://www.sciencedirect.com/science/article/pii/S1878522013002828 Competition for inorganic carbon between oxygenic and anoxygenic phototrophs in a hypersaline microbial mat, Guerrero Negro, Mexico Finke, N., Hoehler, T.M., Polerecky, L., Buehring, B., Thamdrup, B., 2013. Environmental Microbiology 15, 1532–1550. http://dx.doi.org/10.1111/1462-2920.12032 Internal wave-induced redox shifts affect biogeochemistry and microbial activity in sediments: A simulation experiment Frindte, K., Eckert, W., Attermeyer, K., Grossart, H.-P., 2013. Biogeochemistry 113, 423–434. http://dx.doi.org/10.1007/s10533-012-9769-1

e6

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Biogeochemical carbon coupling influences global precipitation in geoengineering experiments Fyfe, J.C., Cole, J.N.S., Arora, V.K., Scinocca, J.F., 2013. Geophysical Research Letters 40, 651–655. http://dx.doi.org/10.1002/grl.50166 Diversity of cyanobacterial biomarker genes from the stromatolites of Shark Bay, Western Australia Garby, T.J., Walter, M.R., Larkum, A.W.D., Neilan, B.A., 2013. Environmental Microbiology 15, 1464–1475. http://dx.doi.org/10.1111/j.1462-2920.2012.02809.x Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus Gupta, S., Bector, S., 2013. Antonie van Leeuwenhoek 103, 1113–1123. http://dx.doi.org/10.1007/s10482-013-9892-6 Water-rock interaction and life Hinman, N.W., 2013. Procedia Earth and Planetary Science 7, 354–359. http://www.sciencedirect.com/science/article/pii/S1878522013003093 Characterisation and isotopic evolution of saline waters of the Outokumpu Deep Drill Hole, Finland – Implications for water origin and deep terrestrial biosphere Kietdvdinen, R., Ahonen, L., Kukkonen, I.T., Hendriksson, N., Nyyssönen, M., Itdvaara, M., 2013. Applied Geochemistry 32, 37–51. http://www.sciencedirect.com/science/article/pii/S0883292712002867 Biological carbon precursor to diagenetic siderite with spherical structures in iron formations Köhler, I., Konhauser, K.O., Papineau, D., Bekker, A., Kappler, A., 2013. Nature Communications 4, Article No.: 1741. http://dx.doi.org/10.1038/ncomms2770 Biogeochemistry of encrusting sponges of the family Lubomirskiidae in southern Lake Baikal Kulikova, N.N., Saibatalova, E.V., Boiko, S.M., Semiturkina, N.A., Belozerova, O.Y., Mekhonoshin, A.S., Timoshkin, O.A., Suturin, A.N., 2013. Geochemistry International 51, 326–337. http://dx.doi.org/10.1134/S0016702913040046 Influence of sulfate-reducing bacteria, sulfide and molybdate on hydrogen photoproduction by purple nonsulfur bacteria Laurinavichene, T.V., Laurinavichius, K.S., Belokopytov, B.F., Laurinavichyute, D.K., Tsygankov, A.A., 2013. International Journal of Hydrogen Energy 38, 5545–5554. http://www.sciencedirect.com/science/article/pii/S0360319913005296 Archaeal (per)chlorate reduction at high temperature: An interplay of biotic and abiotic reactions Liebensteiner, M.G., Pinkse, M.W.H., Schaap, P.J., Stams, A.J.M., Lomans, B.P., 2013. Science 340, 85–87. http://www.sciencemag.org/content/340/6128/85.abstract STXM and nanoSIMS investigations on EPS fractions before and after adsorption to goethite Liu, X., Eusterhues, K., Thieme, J., Ciobota, V., Höschen, C., Mueller, C.W., Küsel, K., Kögel-Knabner, I., Rösch, P., Popp, J., Totsche, K.U., 2013. Environmental Science & Technology 47, 3158–3166. http://dx.doi.org/10.1021/es3039505 The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica Lyons, W.B., Leslie, D.L., Harmon, R.S., Neumann, K., Welch, K.A., Bisson, K.M., McKnight, D.M., 2013. Applied Geochemistry 32, 26–36. http://www.sciencedirect.com/science/article/pii/S0883292712002430 Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater Mailloux, B.J., Trembath-Reichert, E., Cheung, J., Watson, M., Stute, M., Freyer, G.A., Ferguson, A.S., Ahmed, K.M., Alam, M.J., Buchholz, B.A., Thomas, J., Layton, A.C., Zheng, Y., Bostick, B.C., van Geen, A., 2013. Proceedings of the National Academy of Sciences 110, 5331–5335. http://www.pnas.org/content/110/14/5331.abstract Virus and virus-sized microsphere transport in a dolomite rock fracture Mondal, P.K., Sleep, B.E., 2013. Water Resources Research 49, 808–824. http://dx.doi.org/10.1002/wrcr.20086 Geobacillus thermoglucosidasius endospores function as nuclei for the formation of single calcite crystals Murai, R., Yoshida, N., 2013. Applied and Environmental Microbiology 79, 3085–3090. http://aem.asm.org/content/79/9/3085.abstract

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e7

The role of microorganisms on the formation of a stalactite in Botovskaya Cave, Siberia – palaeoenvironmental implications Pacton, M., Breitenbach, S.F.M., Lechleitner, F.A., Vaks, A., Rollion-Bard, C., Gutareva, O.S., Osinzev, A.V., Vasconcelos, C., 2013. Biogeosciences Discussions 10, 6563–6603. http://www.biogeosciences-discuss.net/10/6563/2013/ Impact of microbial Mn oxidation on the remobilization of bioreduced U(IV) Plathe, K.L., Lee, S.-W., Tebo, B.M., Bargar, J.R., Bernier-Latmani, R., 2013. Environmental Science & Technology 47, 3606–3613. http://dx.doi.org/10.1021/es3036835 The effect of Aeromonas eucrenophila on microbiologically induced corrosion of nickel–zinc alloy San, N.O., Nazy´r, H., Dönmez, G., 2013. International Biodeterioration & Biodegradation 80, 34–40. http://www.sciencedirect.com/science/article/pii/S0964830513000632 Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphatereducing taxa Sherry, A., Gray, N.D., Ditchfield, A.K., Aitken, C.M., Jones, D.M., Röling, W.F.M., Hallmann, C., Larter, S.R., Bowler, B.F.J., Head, I.M., 2013. International Biodeterioration & Biodegradation 81, 105–113. http://www.sciencedirect.com/science/article/pii/S0964830512000959 Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of western Siberia Shirokova, L.S., Pokrovsky, O.S., Kirpotin, S.N., Desmukh, C., Pokrovsky, B.G., Audry, S., Viers, J., 2013. Biogeochemistry 113, 573–593. http://dx.doi.org/10.1007/s10533-012-9790-4 Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarum Webb, K.M., Yu, J., Robinson, C.K., Noboru, T., Lee, Y.C., DiRuggiero, J., 2013. Extremophiles 17, 485–497. http://dx.doi.org/10.1007/s00792-013-0533-9 Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals White, G.F., Shi, Z., Shi, L., Wang, Z., Dohnalkova, A.C., Marshall, M.J., Fredrickson, J.K., Zachara, J.M., Butt, J.N., Richardson, D.J., Clarke, T.A., 2013. Proceedings of the National Academy of Sciences 110, 6346–6351. http://www.pnas.org/content/110/16/6346.abstract Isotopic and chemical constraints on the biogeochemistry of dissolved inorganic carbon and chemical weathering in the karst watershed of Krka River (Slovenia) Zavadlav, S., Kanducˇ, T., McIntosh, J., Lojen, S., 2013. Aquatic Geochemistry 19, 209–230. http://dx.doi.org/10.1007/s10498-013-9188-5 Carbon Cycle

Global ocean storage of anthropogenic carbon Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S.C., Graven, H.D., Gruber, N., McKinley, G.A., Murata, A., Ríos, A.F., Sabine, C.L., 2013. Biogeosciences 10, 2169–2191. http://www.biogeosciences.net/10/2169/2013/ Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland Olson, D.M., Griffis, T.J., Noormets, A., Kolka, R., Chen, J., 2013. Journal of Geophysical Research: Biogeosciences 118, 226–238. http://dx.doi.org/10.1002/jgrg.20031 Carbon Sequestration

Preliminary results from the experimental study of CO2-brine-rock interactions at elevated T & P: Implications for the pilot plant for CO2 storage in Spain Galarza, C., Buil, B., Peña, J., Martín, P.L., Gómez, P., Garralón, A., 2013. Procedia Earth and Planetary Science 7, 272–275. http://www.sciencedirect.com/science/article/pii/S1878522013001781 Impact of supercritical CO2/water interaction on the caprock nanoporous structure Garrido, D.R.R., Lafortune, S., Souli, H., Dubujet, P., 2013. Procedia Earth and Planetary Science 7, 738–741. http://www.sciencedirect.com/science/article/pii/S187852201300204X

e8

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Water-rock interaction in CO2 sequestration in a depleted oil reservoir pilot test Pang, Z., Kong, Y., Li, Y., Li, J., 2013. Procedia Earth and Planetary Science 7, 656–659. http://www.sciencedirect.com/science/article/pii/S1878522013001793 Feasibility of CO2 geological storage in the Xingou oil field, Jianghan Basin, China Peng, S., Shan, H., Li, Y., Yang, Z., Zhong, Z., 2013. Procedia Earth and Planetary Science 7, 669–672. http://www.sciencedirect.com/science/article/pii/S1878522013002415 Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation Power, I.M., Harrison, A.L., Dipple, G.M., Southam, G., 2013. International Journal of Greenhouse Gas Control 16, 145–155. http://www.sciencedirect.com/science/article/pii/S175058361300131X CO2 mineral trapping: An experimental study on the carbonation of basalts from the eastern Deccan Volcanic Province, India Rani, N., Pathak, V., Shrivastava, J.P., 2013. Procedia Earth and Planetary Science 7, 806–809. http://www.sciencedirect.com/science/article/pii/S1878522013001501 Still needed data for successful deep CO2 sequestration Ulmer, G.C., 2013. Procedia Earth and Planetary Science 7, 850–854. http://www.sciencedirect.com/science/article/pii/S1878522013000799 Coal/Peat/Lignite Geochemistry

CH4 and CO2 sorption isotherms and kinetics for different size fractions of two coals Han, F., Busch, A., Krooss, B.M., Liu, Z., Yang, J., 2013. Fuel 108, 137–142. http://www.sciencedirect.com/science/article/pii/S001623611100768X The lower and upper coal seams of the Candiota Coalfield, Brazil — Geological setting, petrological and chemical characterization, and studies on reactivity and beneficiation related to their combustion potential Kalkreuth, W., Lunkes, M., Oliveira, J., Ghiggi, M.L., Osório, E., Souza, K., Sampaio, C.H., Hidalgo, G., 2013. International Journal of Coal Geology 111, 53–66. http://www.sciencedirect.com/science/article/pii/S016651621200225X Reservoir parameters and maceral composition of coal in different Carboniferous lithostratigraphical series of the Upper Silesian Coal Basin, Poland Ke˛dzior, S., Jelonek, I., 2013. International Journal of Coal Geology 111, 98–105. http://www.sciencedirect.com/science/article/pii/S0166516212002091 Permeability prediction of coalbed methane reservoirs during primary depletion Liu, S., Harpalani, S., 2013. International Journal of Coal Geology 113, 1–10. http://www.sciencedirect.com/science/article/pii/S0166516213000979 Determination of sulfur in coal using direct solid sampling and high-resolution continuum source molecular absorption spectrometry of the CS molecule in a graphite furnace Mior, R., Morés, S., Welz, B., Carasek, E., de Andrade, J.B., 2013. Talanta 106, 368–374. http://www.sciencedirect.com/science/article/pii/S0039914013000143 Sobol’ sensitivity analysis of the Holocene Peat Model: What drives carbon accumulation in peatlands? Quillet, A., Garneau, M., Frolking, S., 2013. Journal of Geophysical Research: Biogeosciences 118, 203–214. http://dx.doi.org/10.1029/2012JG002092 Molecular oriented domains (MOD) and their effect on technological parameters within the structure of cokes produced from binary and ternary coal blends Sme˛dowski, Ł., Krzesin´ska, M., 2013. International Journal of Coal Geology 111, 90–97. http://www.sciencedirect.com/science/article/pii/S0166516212002108 Investigating dissolved organic matter decomposition in northern peatlands using complimentary analytical techniques Tfaily, M.M., Hamdan, R., Corbett, J.E., Chanton, J.P., Glaser, P.H., Cooper, W.T., 2013. Geochimica et Cosmochimica Acta 112, 116–129. http://www.sciencedirect.com/science/article/pii/S0016703713001440 Relationships between the optical properties of coal macerals and the chars resulting from fluidized bed pyrolysis Valentim, B., Rodrigues, S., Ribeiro, S., Pereira, G., Guedes, A., Suárez-Ruiz, I., 2013. International Journal of Coal Geology 111, 80–89. http://www.sciencedirect.com/science/article/pii/S0166516212002819

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e9

Development of web-based organic petrology photomicrograph atlases and internet resources for professionals and students Valentine, B.J., Morrissey, E.A., Park, A.J., Reidy, M.E., Hackley, P.C., 2013. International Journal of Coal Geology 111, 106–111. http://www.sciencedirect.com/science/article/pii/S0166516212002248 The effect of supercritical water on coal pyrolysis and hydrogen production: A combined ReaxFF and DFT study Zhang, J., Weng, X., Han, Y., Li, W., Cheng, J., Gan, Z., Gu, J., 2013. Fuel 108, 682–690. http://www.sciencedirect.com/science/article/pii/S0016236113000732 Petrological and geochemical composition of lignite from the D field, Kolubara basin (Serbia) Zˇivotic´, D., Stojanovic´, K., Grzˇetic´, I., Jovancˇic´evic´, B., Cvetkovic´, O., Šajnovic´, A., Simic´, V., Stojakovic´, R., Scheeder, G., 2013. International Journal of Coal Geology 111, 5–22. http://www.sciencedirect.com/science/article/pii/S0166516212002583 Cosmochemistry

Far- and mid-infrared spectroscopy of complex organic matter of astrochemical interest: Coal, heavy petroleum fractions and asphaltenes Cataldo, F., García-Hernández, D.A., Manchado, A., 2013. Monthly Notices of the Royal Astronomical Society 429, 3025–3039. http://mnras.oxfordjournals.org/content/429/4/3025.abstract Photochemical activity of Titan’s low-altitude condensed haze Gudipati, M.S., Jacovi, R., Couturier-Tamburelli, I., Lignell, A., Allen, M., 2013. Nature Communications 4, Article number: 1648. http://dx.doi.org/10.1038/ncomms2649 Cryovolcanism on Titan: New results from Cassini RADAR and VIMS Lopes, R.M.C., Kirk, R.L., Mitchell, K.L., LeGall, A., Barnes, J.W., Hayes, A., Kargel, J., Wye, L., Radebaugh, J., Stofan, E.R., Janssen, M.A., Neish, C.D., Wall, S.D., Wood, C.A., Lunine, J.I., Malaska, M.J., 2013. Journal of Geophysical Research: Planets 118, 416–435. http://dx.doi.org/10.1002/jgre.20062 Type IV kerogens as analogues for organic macromolecular materials in aqueously altered carbonaceous chondrites Matthewman, R., Martins, Z., Sephton, M.A., 2013. Astrobiology 13, 324–333. http://dx.doi.org/10.1089/ast.2012.0820 Cosmic spherules from the Ordovician of Argentina Voldman, G.G., Genge, M.J., Albanesi, G.L., Barnes, C.R., Ortega, G., 2013. Geological Journal 48, 222–235. http://dx.doi.org/10.1002/gj.2418 Capture of terrestrial-sized moons by gas giant planets Williams, D.M., 2013. Astrobiology 13, 315–323. http://dx.doi.org/10.1089/ast.2012.0892 Environmental Geochemistry

Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts Al-Mailem, D.M., Eliyas, M., Radwan, S.S., 2013. Extremophiles 17, 463–470. http://dx.doi.org/10.1007/s00792-013-0530-z Biodegradation of petroleum hydrocarbons in contaminated clayey soils from a sub-arctic site: The role of aggregate size and microstructure Chang, W., Akbari, A., Snelgrove, J., Frigon, D., Ghoshal, S., 2013. Chemosphere 91, 1620–1626. http://www.sciencedirect.com/science/article/pii/S0045653513000064 Novel and nontraditional use of stable isotope tracers to study metal bioavailability from natural particles Croteau, M.-N., Cain, D.J., Fuller, C.C., 2013. Environmental Science & Technology 47, 3424–3431. http://dx.doi.org/10.1021/es400162f Assessment of effluent contaminants from three facilities discharging Marcellus shale wastewater to surface waters in Pennsylvania Ferrar, K.J., Michanowicz, D.R., Christen, C.L., Mulcahy, N., Malone, S.L., Sharma, R.K., 2013. Environmental Science & Technology 47, 3158–3166. http://dx.doi.org/10.1021/es301411q

e10

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations Gross, S.A., Avens, H.J., Banducci, A.M., Sahmel, J., Panko, J.M., Tvermoes, B.E., 2013. Journal of the Air & Waste Management Association 63, 424–432. http://dx.doi.org/10.1080/10962247.2012.759166 Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm community Huang, Y., Zhang, J., Zhu, L., 2013. Bioresource Technology 134, 17–23. http://www.sciencedirect.com/science/article/pii/S096085241300223X Generation, transport, and disposal of wastewater associated with Marcellus Shale gas development Lutz, B.D., Lewis, A.N., Doyle, M.W., 2013. Water Resources Research 49, 647–656. http://dx.doi.org/10.1002/wrcr.20096 Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20) Ramos, D.T., da Silva, M.L.B., Chiaranda, H.S., Alvarez, P.J.J., Corseuil, H.X., 2013. Biodegradation 24, 333–341. http://dx.doi.org/10.1007/s10532-012-9589-y Evaluation of anthropogenic inputs of hydrocarbons in sediment cores from a tropical Brazilian estuarine system Silva, T.R., Lopes, S.R.P., Spörl, G., Knoppers, B.A., Azevedo, D.A., 2013. Microchemical Journal 109, 178–188. http://www.sciencedirect.com/science/article/pii/S0026265X1200046X?v=s5 Chemical and biological assessment of two offshore drilling sites in the Alaskan Arctic Trefry, J.H., Dunton, K.H., Trocine, R.P., Schonberg, S.V., McTigue, N.D., Hersh, E.S., McDonald, T.J., 2013. Marine Environmental Research 86, 35–45. http://www.sciencedirect.com/science/article/pii/S0141113613000378 The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States Vengosh, A., Warner, N., Jackson, R., Darrah, T., 2013. Procedia Earth and Planetary Science 7, 863–866. http://www.sciencedirect.com/science/article/pii/S1878522013002944 Evolution/Paleontology/Palynology

The African coelacanth genome provides insights into tetrapod evolution Amemiya, C.T., et al., 2013. Nature 496, 311–316. http://dx.doi.org/10.1038/nature12027 The oldest evidence of bioturbation on Earth: Comment Brasier, M.D., McIlroy, D., Liu, A.G., Antcliffe, J.B., Menon, L.R., 2013. Geology 41, e289. http://geology.gsapubs.org/content/41/5/e289.short Periodicities in the emplacement of large igneous provinces through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution Prokoph, A., El Bilali, H., Ernst, R., 2013. Geoscience Frontiers 4, 263–276. http://www.sciencedirect.com/science/article/pii/S1674987112001041 Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains Reisz, R.R., Huang, T.D., Roberts, E.M., Peng, S., Sullivan, C., Stein, K., LeBlanc, A.R.H., Shieh, D., Chang, R., Chiang, C., Yang, C., Zhong, S., 2013. Nature 496, 210–214. http://dx.doi.org/10.1038/nature11978 The oldest evidence of bioturbation on Earth: Reply Rogov, V., Marusin, V., Bykova, N., Goy, Y., Nagovitsin, K., Kochnev, B., Karlova, G., Grazhdankin, D., 2013. Geology 41, e290. http://geology.gsapubs.org/content/41/5/e290.short A terrestrial vegetation turnover in the middle of the Early Triassic Saito, R., Kaiho, K., Oba, M., Takahashi, S., Chen, Z.-Q., Tong, J., 2013. Global and Planetary Change 105, 152–159. http://www.sciencedirect.com/science/article/pii/S0921818112001488?v=s5

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e11

Evolution: Origins of Life/Microbial Genomics

Gene similarity networks provide tools for understanding eukaryote origins and evolution Alvarez-Ponce, D., Lopez, P., Bapteste, E., McInerney, J.O., 2013. Proceedings of the National Academy of Sciences 110, E1594–E1603. http://www.pnas.org/content/110/17/E1594.abstract Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation Bowler, F.R., Chan, C.K.W., Duffy, C.D., Gerland, B., Islam, S., Powner, M.W., Sutherland, J.D., Xu, J., 2013. Nature Chemistry 5, 383–389. http://dx.doi.org/10.1038/nchem.1626 Catalytic DNA with phosphatase activity Chandrasekar, J., Silverman, S.K., 2013. Proceedings of the National Academy of Sciences 110, 5315–5320. http://www.pnas.org/content/110/14/5315.abstract Functional RNAs exhibit tolerance for non-heritable 2’–5’ versus 3’–5’ backbone heterogeneity Engelhart, A.E., Powner, M.W., Szostak, J.W., 2013. Nature Chemistry 5, 390–394. http://dx.doi.org/10.1038/nchem.1623 Coevolution of bacteria and their viruses Golais, F., Holly´, J., Vítkovská, J., 2013. Folia Microbiologica 58, 177–186. http://dx.doi.org/10.1007/s12223-012-0195-5 Chemical origins of life: Prebiotic RNA unstuck Hernandez, A.R., Piccirilli, J.A., 2013. Nature Chemistry 5, 360–362. http://dx.doi.org/10.1038/nchem.1636 Broad nucleotide cofactor specificity of DNA ligase from the hyperthermophilic crenarchaeon Hyperthermus butylicus and its evolutionary significance Kim, J.-H., Lee, K.-K., Sun, Y., Seo, G.-J., Cho, S., Kwon, S., Kwon, S.-T., 2013. Extremophiles 17, 515–522. http://dx.doi.org/10.1007/s00792-013-0536-6 Genomes of marine cyanopodoviruses reveal multiple origins of diversity Labrie, S.J., Frois-Moniz, K., Osburne, M.S., Kelly, L., Roggensack, S.E., Sullivan, M.B., Gearin, G., Zeng, Q., Fitzgerald, M., Henn, M.R., Chisholm, S.W., 2013. Environmental Microbiology 15, 1356–1376. http://dx.doi.org/10.1111/1462-2920.12053 The ‘‘strong’’ RNA World Hypothesis: Fifty years old Neveu, M., Kim, H.-J., Benner, S.A., 2013. Astrobiology 13, 391–403. http://dx.doi.org/10.1089/ast.2012.0868 The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications Schut, G.J., Boyd, E.S., Peters, J.W., Adams, M.W.W., 2013. FEMS Microbiology Reviews 37, 182–203. http://dx.doi.org/10.1111/j.1574-6976.2012.00346.x Emergence of life from multicomponent mixtures of chemicals: The case for experiments with cycling physicochemical gradients Spitzer, J., 2013. Astrobiology 13, 404–413. http://dx.doi.org/10.1089/ast.2012.0924 Fluid Inclusions

An activity model for phase equilibria in the H2O–CO2–NaCl system Dubacq, B., Bickle, M.J., Evans, K.A., 2013. Geochimica et Cosmochimica Acta 110, 229–252. http://www.sciencedirect.com/science/article/pii/S0016703713000938 Hydrocarbon charge history of the Tazhong Ordovician reservoirs, Tarim Basin as revealed from an integrated fluid inclusion study Liu, K., Bourdet, J., Zhang, B., Zhang, N., Lu, X., Liu, S., Pang, H., Li, Z., Guo, X., 2013. Petroleum Exploration and Development 40, 183–193. http://www.sciencedirect.com/science/article/pii/S187638041360021X

e12

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Choosing the best ancient analogue for projected future temperatures: A case using data from fluid inclusions of middle-late Eocene halites Meng, F.-W., Ni, P., Yuan, X.-L., Zhou, C.-M., Yang, C.-H., Li, Y.-P., 2013. Journal of Asian Earth Sciences 67–68, 46–50. http://www.sciencedirect.com/science/article/pii/S1367912013000953 Thermodynamic modeling of petroleum inclusions: Composition modeling and prediction of the trapping pressure of crude oils Ping, H., Chen, H., Thiéry, R., 2013. Fluid Phase Equilibria 346, 33–44. http://www.sciencedirect.com/science/article/pii/S0378381213001064 Geology

Ries crater and suevite revisited—Observations and modeling Part II: Modeling Artemieva, N.A., Wünnemann, K., Krien, F., Reimold, W.U., Stöffler, D., 2013. Meteoritics & Planetary Science 48, 590–627. http://dx.doi.org/10.1111/maps.12085 Boron, lithium and methane isotope composition of hyperalkaline waters (northern Apennines, Italy): Terrestrial serpentinization or mixing with brine? Boschetti, T., Etiope, G., Pennisi, M., Romain, M., Toscani, L., 2013. Applied Geochemistry 32, 17–25. http://www.sciencedirect.com/science/article/pii/S0883292712002429 The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems Davies, N.S., Gibling, M.R., 2013. Earth-Science Reviews 120, 40–79. http://www.sciencedirect.com/science/article/pii/S0012825213000378 Microstructural investigations of natural and synthetic graphites and semi-graphites Rodrigues, S., Marques, M., Suárez-Ruiz, I., Camean, I., Flores, D., Kwiecinska, B., 2013. International Journal of Coal Geology 111, 67–79. http://www.sciencedirect.com/science/article/pii/S0166516212001784 Implications of sulfur isotope fractionation in fracture-filling sulfides in crystalline bedrock, Olkiluoto, Finland Sahlstedt, E., Karhu, J.A., Pitkdnen, P., Whitehouse, M., 2013. Applied Geochemistry 32, 52–69. http://www.sciencedirect.com/science/article/pii/S0883292712002958 The formation of Pangea Stampfli, G.M., Hochard, C., Vérard, C., Wilhem, C., von Raumer, J., 2013. Tectonophysics 593, 1–19. http://www.sciencedirect.com/science/article/pii/S0040195113001479 Ries crater and suevite revisited—Observations and modeling Part I: Observations Stöffler, D., Artemieva, N.A., Wünnemann, K., Reimold, W.U., Jacob, J., Hansen, B.K., Summerson, I.A.T., 2013. Meteoritics & Planetary Science 48, 515–589. http://dx.doi.org/10.1111/maps.12086 The Ries impact, a double-layer rampart crater on Earth Sturm, S., Wulf, G., Jung, D., Kenkmann, T., 2013. Geology 41, 531–534. http://geology.gsapubs.org/content/41/5/531.abstract Expanding-contracting Earth Tsuchiya, T., Kawai, K., Maruyama, S., 2013. Geoscience Frontiers 4, 341–347. http://www.sciencedirect.com/science/article/pii/S167498711200148X Geochemical controls on shale microstructure Valenza, J.J., Drenzek, N., Marques, F., Pagels, M., Mastalerz, M., 2013. Geology 41, 611–614. http://geology.gsapubs.org/content/41/5/611.abstract Detecting sedimentary cycles using autocorrelation of grain size Xiao, S., Li, R., Chen, M., 2013. Scientific Reports 3, Article number:1653. http://dx.doi.org/10.1038/srep01653

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e13

Hydrates

The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions Best, A.I., Priest, J.A., Clayton, C.R.I., Rees, E.V.L., 2013. Earth and Planetary Science Letters 368, 78–87. http://www.sciencedirect.com/science/article/pii/S0012821X13001076 Influence of water flow on gas hydrate accumulation at cold vents Cao, Y., Su, Z., Chen, D., 2013. Science China Earth Sciences 56, 568–578. http://dx.doi.org/10.1007/s11430-012-4553-6 In situ observation for formation and dissociation of carbon dioxide hydrate in porous media by magnetic resonance imaging Cheng, C., Zhao, J., Song, Y., Zhu, Z., Liu, W., Zhang, Y., Yang, M., Yu, X., 2013. Science China Earth Sciences 56, 611–617. http://dx.doi.org/10.1007/s11430-012-4570-5 Short migration of methane into a gas hydrate-bearing sand layer at Walker Ridge, Gulf of Mexico Cook, A.E., Malinverno, A., 2013. Geochemistry, Geophysics, Geosystems 14, 283–291. http://dx.doi.org/10.1002/ggge.20040 Factors influencing the porosity of gas hydrate bearing sediments He, J., Liu, X., Yu, Z., Xie, C., Li, Z., 2013. Science China Earth Sciences 56, 557–567. http://dx.doi.org/10.1007/s11430-012-4452-x Numerical simulation of bubble plumes in overlying water of gas hydrate in the cold seepage active region Li, C., Liu, X., Gou, L., Wang, X., Yin, J., Xie, C., 2013. Science China Earth Sciences 56, 579–587. http://dx.doi.org/10.1007/s11430-012-4508-y Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems Liu, C., Ye, Y., Sun, S., Chen, Q., Meng, Q., Hu, G., 2013. Science China Earth Sciences 56, 594–600. http://dx.doi.org/10.1007/s11430-012-4564-3 Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai Lu, Z., Zhu, Y., Liu, H., Zhang, Y., Jin, C., Huang, X., Wang, P., 2013. Marine and Petroleum Geology 43, 341–348. http://www.sciencedirect.com/science/article/pii/S0264817213000081 Gas hydrates as a potential energy source: State of knowledge and challenges Moridis, G.J., Collett, T.S., Boswell, R., Hancock, S., Rutqvist, J., Santamarina, C., Kneafsey, T., Reagan, M.T., Pooladi-Darvish, M., Kowalsky, M., Sloan, E.D., Coh, C., 2013. In: Lee, J.W. (Ed.), Advanced Biofuels and Bioproducts, Springer New York, 977–1033. http://dx.doi.org/10.1007/978-1-4614-3348-4_37 Heat flow and gas hydrate saturation estimates from Andaman Sea, India Shankar, U., Riedel, M., 2013. Marine and Petroleum Geology 43, 434–449. http://www.sciencedirect.com/science/article/pii/S0264817212002620 Effect of thermal stimulation on gas production from hydrate deposits in Shenhu area of the South China Sea Su, Z., Huang, L., Wu, N., Yang, S., 2013. Science China Earth Sciences 56, 601–610. http://dx.doi.org/10.1007/s11430-013-4587-4 Controlling factors for gas hydrate occurrence in Shenhu area on the northern slope of the South China Sea Wang, H., Yang, S., Wu, N., Zhang, G., Liang, J., Chen, D., 2013. Science China Earth Sciences 56, 513–520. http://dx.doi.org/10.1007/s11430-013-4596-3 Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu area, the South China Sea Wu, L., Yang, S., Liang, J., Su, X., Fu, S., Sha, Z., Yang, T., 2013. Science China Earth Sciences 56, 530–540. http://dx.doi.org/10.1007/s11430-012-4545-6 Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration Yang, T., Jiang, S., Ge, L., Yang, J., Wu, N., Zhang, G., Liu, J., Chen, D., 2013. Science China Earth Sciences 56, 521–529. http://dx.doi.org/10.1007/s11430-012-4560-7

e14

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Experimental simulation of gas hydrate decomposition in porous sediment Yu, X., Li, G., Li, Q., Li, X., Zhang, Y., Pang, W., Bai, Y., 2013. Science China Earth Sciences 56, 588–593. http://dx.doi.org/10.1007/s11430-012-4549-2 Gas hydrate formation in fine sand Zang, X., Liang, D., Wu, N., 2013. Science China Earth Sciences 56, 549–556. http://dx.doi.org/10.1007/s11430-012-4546-5 Isotope Geochemistry

Stable isotope deltas: Tiny, yet robust signatures in nature Brand, W.A., Coplen, T.B., 2012. Isotopes in Environmental and Health Studies 48, 393–409. http://dx.doi.org/10.1080/10256016.2012.666977 Stable isotope terminology Krumbiegel, P., 2012. Isotopes in Environmental and Health Studies 48, 384-390. http://dx.doi.org/10.1080/10256016.2012.705839 Stable-isotope geochemistry of vertisols formed on marine limestone and implications for deep-time paleoenvironmental reconstructions Michel, L.A., Driese, S.G., Nordt, L.C., Breecker, D.O., Labotka, D.M., Dworkin, S.I., 2013. Journal of Sedimentary Research 83, 300–308. http://jsedres.sepmonline.org/content/83/4/300.abstract Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis Ono, S., Whitehill, A.R., Lyons, J.R., 2013. Journal of Geophysical Research: Atmospheres 118, 2444–2454. http://dx.doi.org/10.1002/jgrd.50183 Environmental factors controlling the d13C and d18O variations of recent fluvial tufas: A 12-year record from the Monasterio de Piedra Natural Park (NE Iberian Peninsula) Osácar, M.C., Arenas, C., Vázquez-Urbez, M., Sancho, C., Auqué, L.F., Pardo, G., 2013. Journal of Sedimentary Research 83, 309–322. http://jsedres.sepmonline.org/content/83/4/309.abstract Cenozoic boron isotope variations in benthic foraminifers Raitzsch, M., Hönisch, B., 2013. Geology 41, 591–594. http://geology.gsapubs.org/content/41/5/591.abstract Differing source water inputs, moderated by evaporative enrichment, determine the contrasting d18OCELLULOSE signals in maritime Antarctic moss peat banks Royles, J., Sime, L.C., Hodgson, D.A., Convey, P., Griffiths, H., 2013. Journal of Geophysical Research: Biogeosciences 118, 184–194. http://dx.doi.org/10.1002/jgrg.20021 Estimating changes of isotopic fractionation based on chemical kinetics and microbial dynamics during anaerobic methane oxidation: Apparent zero- and first-order kinetics at high and low initial methane concentrations Vavilin, V.A., 2013. Antonie van Leeuwenhoek 103, 375–383. http://dx.doi.org/10.1007/s10482-012-9818-8 Isotope tracers for deep-seated fluids and noble gases Wang, B., Niu, S., Sun, A., Zhang, J., Wang, X., Wang, C., 2013. Chinese Journal of Geochemistry 32, 195–202. http://dx.doi.org/10.1007/s11631-013-0622-6 Analysis of carbon and oxygen stable isotopes in carbonate rocks by the laser micro-sampling technique Zheng, P., Wang, L., Yang, Y., Gao, X., Zhang, Z., 2013. Chinese Journal of Geochemistry 32, 235–240. http://dx.doi.org/10.1007/s11631-013-0627-1 Microbiology/Extremophiles - Microbial Ecology

Microbial community structure and microbial activities related to CO2 storage capacities of a salt cavern Bordenave, S., Chatterjee, I., Voordouw, G., 2013. International Biodeterioration & Biodegradation 81, 82–87. http://www.sciencedirect.com/science/article/pii/S0964830512002090

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e15

Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway) Canion, A., Prakash, O., Green, S.J., Jahnke, L., Kuypers, M.M.M., Kostka, J.E., 2013. Environmental Microbiology 15, 1606-1618. http://dx.doi.org/10.1111/1462-2920.12110 Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania Coman, C., Drugaˇ, B., Hegedus, A., Sicora, C., Dragosß, N., 2013. Extremophiles 17, 523–534. http://dx.doi.org/10.1007/s00792-013-0537-5 Molecular characterisation of high-strength polycyclic aromatic hydrocarbon (PAH)-degrading and phenol-tolerant bacteria obtained from thermal power plant wastewater Dalal, S., Panigrahi, D.P., Randhawa, G.S., Dubey, R.C., 2012. Chemistry and Ecology 28, 187–192. http://dx.doi.org/10.1080/02757540.2011.650166 Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert DiRuggiero, J., Wierzchos, J., Robinson, C.K., Souterre, T., Ravel, J., Artieda, O., Souza-Egipsy, V., Ascaso, C., 2013. Biogeosciences 10, 2439–2450. http://www.biogeosciences.net/10/2439/2013/ Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov., two non-pigmented halotolerant obligately methylotrophic bacteria isolated from the Ural saline environments Doronina, N.V., Poroshina, M.N., Kaparullina, E.N., Ezhov, V.A., Trotsenko, Y.A., 2013. Systematic and Applied Microbiology 36, 148–154. http://www.sciencedirect.com/science/article/pii/S0723202012001634 Bacterial and extracellular polysaccharide content of brine-wetted snow over Arctic winter first-year sea ice Ewert, M., Carpenter, S.D., Colangelo-Lillis, J., Deming, J.W., 2013. Journal of Geophysical Research: Oceans 118, 726–735. http://dx.doi.org/10.1002/jgrc.20055 Ecology of marine Bacteroidetes: A comparative genomics approach Fernández-Gómez, B., Richter, M., Schüler, M., Pinhassi, J., Acinas, S.G., González, J.M., Pedrós-Alió, C., 2013. ISME Journal 7, 1026–1037. http://dx.doi.org/10.1038/ismej.2012.169 Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea Gao, W., Cui, Z., Li, Q., Xu, G., Jia, X., Zheng, L., 2013. Antonie van Leeuwenhoek 103, 485–491. http://dx.doi.org/10.1007/s10482-012-9830-z SUP05 dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central Baltic and Black Seas Glaubitz, S., Kießlich, K., Meeske, C., Labrenz, M., Jürgens, K., 2013. Applied and Environmental Microbiology 79, 2767–2776. http://aem.asm.org/content/79/8/2767.abstract Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment Guazzaroni, M.-E., Morgante, V., Mirete, S., González-Pastor, J.E., 2013. Environmental Microbiology 15, 1088–1102. http://dx.doi.org/10.1111/1462-2920.12021 Comparative community gene expression analysis of Aquificales-dominated geothermal springs Hamamura, N., Meneghin, J., Reysenbach, A.-L., 2013. Environmental Microbiology 15, 1226–1237. http://dx.doi.org/10.1111/1462-2920.12061 The limits for life under multiple extremes Harrison, J.P., Gheeraert, N., Tsigelnitskiy, D., Cockell, C.S., 2013. Trends in Microbiology 21, 204–212. http://www.sciencedirect.com/science/article/pii/S0966842X13000206 How bacteria survive an acid trip Hingorani, K.S., Gierasch, L.M., 2013. Proceedings of the National Academy of Sciences 110, 5279–5280. http://www.pnas.org/content/110/14/5279.short Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics Hurwitz, B.L., Deng, L., Poulos, B.T., Sullivan, M.B., 2013. Environmental Microbiology 15, 1428–1440. http://dx.doi.org/10.1111/j.1462-2920.2012.02836.x

e16

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Use of Raman spectroscopy for identification of compatible solutes in halophilic bacteria Jehlicˇka, J., Oren, A., tek, P., 2012. Extremophiles 16, 507–514. http://dx.doi.org/10.1007/s00792-012-0450-3 A global perspective on marine photosynthetic picoeukaryote community structure Kirkham, A.R., Lepere, C., Jardillier, L.E., Not, F., Bouman, H., Mead, A., Scanlan, D.J., 2013. ISME Journal 7, 922–936. http://dx.doi.org/10.1038/ismej.2012.166 Clone libraries and single cell genome amplification reveal extended diversity of uncultivated magnetotactic bacteria from marine and freshwater environments Kolinko, S., Wanner, G., Katzmann, E., Kiemer, F., M. Fuchs, B., Schüler, D., 2013. Environmental Microbiology 15, 1290–1301. http://dx.doi.org/10.1111/1462-2920.12004 Contemporary environmental variation determines microbial diversity patterns in acid mine drainage Kuang, J.-L., Huang, L.-N., Chen, L.-X., Hua, Z.-S., Li, S.-J., Hu, M., Li, J.-T., Shu, W.-S., 2013. ISME Journal 7, 1038-1050. http://dx.doi.org/10.1038/ismej.2012.139 Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria Lin, W., Wang, Y., Gorby, Y., Nealson, K., Pan, Y., 2013. Scientific Reports 3, Article number:1643. http://dx.doi.org/10.1038/srep01643 Biogeography of bacterial communities exposed to progressive long-term environmental change Logares, R., Lindström, E.S., Langenheder, S., Logue, J.B., Paterson, H., Laybourn-Parry, J., Rengefors, K., Tranvik, L., Bertilsson, S., 2013. ISME Journal 7, 937–948. http://dx.doi.org/10.1038/ismej.2012.168 New insights into the archaeal diversity of a hypersaline microbial mat obtained by a metagenomic approach López-López, A., Richter, M., Peña, A., Tamames, J., Rosselló-Móra, R., 2013. Systematic and Applied Microbiology 36, 205–214. http://www.sciencedirect.com/science/article/pii/S072320201200166X Marine cyanophages exhibit local and regional biogeography Marston, M.F., Taylor, S., Sme, N., Parsons, R.J., Noyes, T.J.E., Martiny, J.B.H., 2013. Environmental Microbiology 15, 1452–1463. http://dx.doi.org/10.1111/1462-2920.12062 Eukaryotic versus prokaryotic marine picoplankton ecology Massana, R., Logares, R., 2013. Environmental Microbiology 15, 1254–1261. http://dx.doi.org/10.1111/1462-2920.12043 High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevance Matteson, A.R., Rowe, J.M., Ponsero, A.J., Pimentel, T.M., Boyd, P.W., Wilhelm, S.W., 2013. FEMS Microbiology Ecology 84, 223–234. http://dx.doi.org/10.1111/1574-6941.12060 Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia Milucka, J., Widdel, F., Shima, S., 2013. Environmental Microbiology 15, 1561–1571. http://dx.doi.org/10.1111/1462-2920.12003 Geodermatophilus tzadiensis sp. nov., a UV radiation-resistant bacterium isolated from sand of the Saharan desert Montero-Calasanz, M.d.C., Göker, M., Broughton, W.J., Cattaneo, A., Favet, J., Pötter, G., Rohde, M., Spröer, C., Schumann, P., Klenk, H.-P., Gorbushina, A.A., 2013. Systematic and Applied Microbiology 36, 177–182. http://www.sciencedirect.com/science/article/pii/S0723202013000039 Dominance of green sulfur bacteria in the chemocline of the meromictic Lake Suigetsu, Japan, as revealed by dissimilatory sulfite reductase gene analysis Mori, Y., Kataoka, T., Okamura, T., Kondo, R., 2013. Archives of Microbiology 195, 303–312. http://dx.doi.org/10.1007/s00203-013-0879-5 Salinibacter: An extremely halophilic bacterium with archaeal properties Oren, A., 2013. FEMS Microbiology Letters 342, 1–9. http://dx.doi.org/10.1111/1574-6968.12094 In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field Perner, M., Gonnella, G., Hourdez, S., Böhnke, S., Kurtz, S., Girguis, P., 2013. Environmental Microbiology 15, 1551–1560. http://dx.doi.org/10.1111/1462-2920.12038

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e17

Salinicoccus halitifaciens sp. nov., a novel bacterium participating in halite formation Ramana, C.V., Srinivas, A., Subhash, Y., Tushar, L., Mukherjee, T., Kiran, P.U., Sasikala, C., 2013. Antonie van Leeuwenhoek 103, 885–898. http://dx.doi.org/10.1007/s10482-012-9870-4 Chemosymbiotic species from the Gulf of Cadiz (NE Atlantic): Distribution, life styles and nutritional patterns Rodrigues, C.F., Hilário, A., Cunha, M.R., 2013. Biogeosciences 10, 2569–2581. http://www.biogeosciences.net/10/2569/2013/ Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring Rubiano-Labrador, C., Baena, S., Díaz-Cárdenas, C., Patel, B.K.C., 2013. International Journal of Systematic and Evolutionary Microbiology 63, 1396–1402. http://ijs.sgmjournals.org/content/63/Pt_4/1396.abstract Methanotrophic bacteria in oilsands tailings ponds of northern Alberta Saidi-Mehrabad, A., He, Z., Tamas, I., Sharp, C.E., Brady, A.L., Rochman, F.F., Bodrossy, L., Abell, G.C.J., Penner, T., Dong, X., Sensen, C.W., Dunfield, P.F., 2013. ISME Journal 7, 908–921. http://dx.doi.org/10.1038/ismej.2012.163 Haloferax chudinovii sp. nov., a halophilic archaeon from Permian potassium salt deposits Saralov, A.I., Baslerov, R.V., Kuznetsov, B.B., 2013. Extremophiles 17, 499–504. http://dx.doi.org/10.1007/s00792-013-0534-8 Chloride and organic osmolytes: A hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus Saum, S.H., Pfeiffer, F., Palm, P., Rampp, M., Schuster, S.C., Müller, V., Oesterhelt, D., 2013. Environmental Microbiology 15, 1619–1633. http://dx.doi.org/10.1111/j.1462-2920.2012.02770.x Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields Silva, T.R., Verde, L.C.L., Santos Neto, E.V., Oliveira, V.M., 2013. International Biodeterioration & Biodegradation 81, 57–70. http://www.sciencedirect.com/science/article/pii/S0964830512001059 Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean Sintes, E., Bergauer, K., De Corte, D., Yokokawa, T., Herndl, G.J., 2013. Environmental Microbiology 15, 1647–1658. http://dx.doi.org/10.1111/j.1462-2920.2012.02801.x Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China Song, Z.-Q., Wang, F.-P., Zhi, X.-Y., Chen, J.-Q., Zhou, E.-M., Liang, F., Xiao, X., Tang, S.-K., Jiang, H.-C., Zhang, C.L., Dong, H., Li, W.-J., 2013. Environmental Microbiology 15, 1160–1175. http://dx.doi.org/10.1111/1462-2920.12025 Methanol oxidation by temperate soils and environmental determinants of associated methylotrophs Stacheter, A., Noll, M., Lee, C.K., Selzer, M., Glowik, B., Ebertsch, L., Mertel, R., Schulz, D., Lampert, N., Drake, H.L., Kolb, S., 2013. ISME Journal 7, 1051–1064. http://dx.doi.org/10.1038/ismej.2012.167 Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams Stanish, L.F., O’Neill, S.P., Gonzalez, A., Legg, T.M., Knelman, J., McKnight, D.M., Spaulding, S., Nemergut, D.R., 2013. Environmental Microbiology 15, 1115–1131. http://dx.doi.org/10.1111/j.1462-2920.2012.02872.x Does microbial stoichiometry modulate eutrophication of aquatic ecosystems? Steenbergh, A.K., Bodelier, P.L.E., Heldal, M., Slomp, C.P., Laanbroek, H.J., 2013. Environmental Microbiology 15, 1572–1579. http://dx.doi.org/10.1111/1462-2920.12042 Principal methods for isolation and identification of soil microbial communities Stefanis, C., Alexopoulos, A., Voidarou, C., Vavias, S., Bezirtzoglou, E., 2013. Folia Microbiologica 58, 61–68. http://dx.doi.org/10.1007/s12223-012-0179-5 Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using community isotope arrays Tourlousse, D.M., Kurisu, F., Tobino, T., Furumai, H., 2013. FEMS Microbiology Letters 342, 70–75. http://dx.doi.org/10.1111/1574-6968.12112

e18

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker Tourova, T.P., Slobodova, N.V., Bumazhkin, B.K., Kolganova, T.V., Muyzer, G., Sorokin, D.Y., 2013. FEMS Microbiology Ecology 84, 280–289. http://dx.doi.org/10.1111/1574-6941.12056 Microbiology: Intraterrestrial lifestyles Valentine, D.L., 2013. Nature 496, 176–177. http://dx.doi.org/10.1038/nature12088 Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores Vandieken, V., Thamdrup, B., 2013. FEMS Microbiology Ecology 84, 373–386. http://dx.doi.org/10.1111/1574-6941.12069 Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine pools Wang, Y., Cao, H., Zhang, G., Bougouffa, S., Lee, O.O., Al-Suwailem, A., Qian, P.-Y., 2013. Scientific Reports 3, Article number:1748. http://dx.doi.org/10.1038/srep01748 Going local: Technologies for exploring bacterial microenvironments Wessel, A.K., Hmelo, L., Parsek, M.R., Whiteley, M., 2013. Nature Reviews Microbiology 11, 337–348. http://dx.doi.org/10.1038/nrmicro3010 Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics Wilkins, D., Lauro, F.M., Williams, T.J., Demaere, M.Z., Brown, M.V., Hoffman, J.M., Andrews-Pfannkoch, C., McQuaid, J.B., Riddle, M.J., Rintoul, S.R., Cavicchioli, R., 2013. Environmental Microbiology 15, 1318–1333. http://dx.doi.org/10.1111/1462-2920.12035 Key microbial drivers in Antarctic aquatic environments Wilkins, D., Yau, S., Williams, T.J., Allen, M.A., Brown, M.V., DeMaere, M.Z., Lauro, F.M., Cavicchioli, R., 2013. FEMS Microbiology Reviews 37, 303–335. http://dx.doi.org/10.1111/1574-6976.12007 The molecular ecology analysis of microbial communities in waste water–based mud Yang, Z.X., Zhou, Y.B., Xiang, X.Z., Zhu, Z.B., Pen, L., Luo, Y.W., Lu, J., 2013. Petroleum Science and Technology 31, 887–894. http://dx.doi.org/10.1080/10916466.2011.608401 Genome sequence of a novel deep-sea vent epsilonproteobacterial phage provides new insight into the co-evolution of Epsilonproteobacteria and their phages Yoshida-Takashima, Y., Takaki, Y., Shimamura, S., Nunoura, T., Takai, K., 2013. Extremophiles 17, 405–419. http://dx.doi.org/10.1007/s00792-013-0529-5 Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard Zeng, Y.-X., Yan, M., Yu, Y., Li, H.-R., He, J.-F., Sun, K., Zhang, F., 2013. Archives of Microbiology 195, 313–322. http://dx.doi.org/10.1007/s00203-013-0880-z Novel rod-shaped magnetotactic bacteria belonging to the class Alphaproteobacteria Zhang, W.-Y., Zhou, K., Pan, H.-M., Du, H.-J., Chen, Y.-R., Zhang, R., Ye, W., Lu, C., Xiao, T., Wu, L.-F., 2013. Applied and Environmental Microbiology 79, 3137–3140. http://aem.asm.org/content/79/9/3137.abstract Adaptation of spherical multicellular magnetotactic prokaryotes to the geochemically variable habitat of an intertidal zone Zhou, K., Zhang, W.-Y., Pan, H.-M., Li, J.-H., Yue, H.-D., Xiao, T., Wu, L.-F., 2013. Environmental Microbiology 15, 1595–1605. http://dx.doi.org/10.1111/1462-2920.12057 Paleoclimatology/Palaeoceanography

Buried soil organic inclusions in non-sorted circles fields in northern Sweden: Age and paleoclimatic context Becher, M., Olid, C., Klaminder, J., 2013. Journal of Geophysical Research: Biogeosciences 118, 104–111. http://dx.doi.org/10.1002/jgrg.20016

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e19

Conodont biostratigraphy, and d13C and d34S isotope chemostratigraphy, of the uppermost Ordovician and Lower Silurian at Osmundsberget, Dalarna, Sweden Bergström, S.M., Eriksson, M.E., Young, S.A., Widmark, E.-M., 2012. GFF 134, 251–272. http://dx.doi.org/10.1080/11035897.2012.758169 Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? Borowski, W.S., Rodriguez, N.M., Paull, C.K., Ussler III, W., 2013. Marine and Petroleum Geology 43, 381–395. http://www.sciencedirect.com/science/article/pii/S0264817213000032 Repercussions of differential settling on sediment assemblages and multi-proxy palaeo-reconstructions Caromel, A.G.M., Schmidt, D.N., Phillips, J.C., 2013. Biogeosciences Discussions 10, 6763–6781. http://www.biogeosciences-discuss.net/10/6763/2013/ Calcification response to climate change in the Pliocene? Davis, C.V., Badger, M.P.S., Bown, P.R., Schmidt, D.N., 2013. Biogeosciences Discussions 10, 6839–6860. http://www.biogeosciences-discuss.net/10/6839/2013/ A latest Carboniferous warming spike recorded by a fusulinid-rich bioherm in Timor Leste: Implications for East Gondwana deglaciation Davydov, V.I., Haig, D.W., McCartain, E., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 22–38. http://www.sciencedirect.com/science/article/pii/S0031018213000527 Modern foraminifera, d13C, and bulk geochemistry of central Oregon tidal marshes and their application in paleoseismology Engelhart, S.E., Horton, B.P., Vane, C.H., Nelson, A.R., Witter, R.C., Brody, S.R., Hawkes, A.D., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 377, 13–27. http://www.sciencedirect.com/science/article/pii/S0031018213001181 Patterns and mechanisms of early Pliocene warmth Fedorov, A.V., Brierley, C.M., Lawrence, K.T., Liu, Z., Dekens, P.S., Ravelo, A.C., 2013. Nature 496, 43–49. http://dx.doi.org/10.1038/nature12003 Evaluation of paleoclimatic conditions east and west of the southern Canadian Cordillera in the mid-late Paleocene using bulk organic d13C records Foreman, B.Z., Clementz, M.T., Heller, P.L., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 103–113. http://www.sciencedirect.com/science/article/pii/S0031018213000990 Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France) Garel, S., Schnyder, J., Jacob, J., Dupuis, C., Boussafir, M., Le Milbeau, C., Storme, J.-Y., Iakovleva, A.I., Yans, J., Baudin, F., Fléhoc, C., Quesnel, F., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 184–199. http://www.sciencedirect.com/science/article/pii/S0031018213001223 The role of East-Tethys seaway closure in the middle Miocene climatic transition (ca. 14 Ma) Hamon, N., Sepulchre, P., Lefebvre, V., Ramstein, G., 2013. Climate of the Past Discussions 9, 2115–2152. http://www.clim-past-discuss.net/9/2115/2013/ Relative sea level variations in the Chukchi region - Arctic Ocean - since the late Eocene Hegewald, A., Jokat, W., 2013. Geophysical Research Letters 40, 803–807. http://dx.doi.org/10.1002/grl.50182 Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation Houben, A.J.P., Bijl, P.K., Pross, J., Bohaty, S.M., Passchier, S., Stickley, C.E., Röhl, U., Sugisaki, S., Tauxe, L., van de Flierdt, T., Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., Brinkhuis, H., Scientists, a.t.E., 2013. Science 340, 341–344. http://www.sciencemag.org/content/340/6130/341.abstract Comparison and implication of TEX86 and U37K’ temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea Li, D., Zhao, M., Tian, J., Li, L., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 213–223. http://www.sciencedirect.com/science/article/pii/S003101821300117X Contrasting long-term global and short-term local redox proxies during the Great Ordovician Biodiversification Event: A case study from Fossil Mountain, Utah, USA Marenco, P.J., Marenco, K.N., Lubitz, R.L., Niu, D., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 377, 45–51. http://www.sciencedirect.com/science/article/pii/S0031018213001272

e20

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Another rapid event in the carbon-14 content of tree rings Miyake, F., Masuda, K., Nakamura, T., 2013. Nature Communications 4, Article number 1748. http://dx.doi.org/10.1038/ncomms2783 Early Cretaceous chalks from the North Sea giving evidence for global change Mutterlose, J., Bottini, C., 2013. Nature Communications 4, Article number: 1686. http://dx.doi.org/10.1038/ncomms2698 ˇ durea Craiului (Apuseni Mountains, Carbon and oxygen-isotope stratigraphy of the Early Cretaceous carbonate platform of Pa Romania): A chemostratigraphic correlation and paleoenvironmental tool Papp, D.C., Cociuba, I., Lazaˇr, D.F., 2013. Applied Geochemistry 32, 3–16. http://www.sciencedirect.com/science/article/pii/S0883292712002570 Ocean lead at the termination of the Younger Dryas cold spell Pearce, C., Seidenkrantz, M.-S., Kuijpers, A., Massé, G., Reynisson, N.F., Kristiansen, S.M., 2013. Nature Communications 4, Article Number: 1664. http://dx.doi.org/10.1038/ncomms2686 Simulating the mid-Pliocene Warm Period with the CCSM4 model Rosenbloom, N.A., Otto-Bliesner, B.L., Brady, E.C., Lawrence, P.J., 2013. Geoscientific Model Development 6, 549–561. http://www.geosci-model-dev.net/6/549/2013/ Middle–Upper Permian carbon isotope stratigraphy at Chaotian, South China: Pre-extinction multiple upwelling of oxygen-depleted water onto continental shelf Saitoh, M., Isozaki, Y., Ueno, Y., Yoshida, N., Yao, J., Ji, Z., 2013. Journal of Asian Earth Sciences 67–68, 51–62. http://www.sciencedirect.com/science/article/pii/S1367912013000965 Reconciliation of marine and terrestrial carbon isotope excursions based on changing atmospheric CO2 levels Schubert, B.A., Hope Jahren, A., 2013. Nature Communications 4, Article number: 1653. http://dx.doi.org/10.1038/ncomms2659 A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa’s Iron Age Sletten, H.R., Railsback, L.B., Liang, F., Brook, G.A., Marais, E., Hardt, B.F., Cheng, H., Edwards, R.L., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 149–162. http://www.sciencedirect.com/science/article/pii/S0031018213001065 Post-Pliocene establishment of the present monsoonal climate in SW China: Evidence from the late Pliocene Longmen megaflora Su, T., Jacques, F.M.B., Spicer, R.A., Liu, Y.S., Huang, Y.J., Xing, Y.W., Zhou, Z.K., 2013. Climate of the Past Discussions 9, 1675–1701. http://www.clim-past-discuss.net/9/1675/2013/ Speleothems reveal 500,000-year history of Siberian permafrost Vaks, A., Gutareva, O.S., Breitenbach, S.F.M., Avirmed, E., Mason, A.J., Thomas, A.L., Osinzev, A.V., Kononov, A.M., Henderson, G.M., 2013. Science 340, 183–186. http://www.sciencemag.org/content/340/6129/183.abstract Reconstructing tropical cyclone frequency using hydrogen isotope ratios of sedimentary n-alkanes in northern Queensland, Australia van Soelen, E.E., Wagner-Cremer, F., Sinninghe Damsté, J.S., Reichart, G.J., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 66–72. http://www.sciencedirect.com/science/article/pii/S0031018213000953 Marine black shale deposition and Hadley Cell dynamics: A conceptual framework for the Cretaceous Atlantic Ocean Wagner, T., Hofmann, P., Flögel, S., 2013. Marine and Petroleum Geology 43, 222–238. http://www.sciencedirect.com/science/article/pii/S0264817213000330 On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheets Willeit, M., Ganopolski, A., Feulner, G., 2013. Climate of the Past Discussions 9, 1703–1734. http://www.clim-past-discuss.net/9/1703/2013/ Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite Zambito, J.J., Benison, K.C., 2013. Geology 41, 587–590. http://geology.gsapubs.org/content/41/5/587.abstract

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e21

The mid-Pliocene climate simulated by FGOALS-g2 Zheng, W., Zhang, Z., Chen, L., Yu, Y., 2013. Geoscientific Model Development Discussions 6, 2403–2428. http://www.geosci-model-dev-discuss.net/6/2403/2013/ Paleoecology of Extinction Events

Permian–Triassic paleoceanography Algeo, T.J., Fraiser, M.L., Wignall, P.B., Winguth, A.M.E., 2013. Global and Planetary Change 105, 1–6. http://www.sciencedirect.com/science/article/pii/S0921818113000696 Plankton and productivity during the Permian-Triassic boundary crisis: An analysis of organic carbon fluxes Algeo, T.J., Henderson, C.M., Tong, J., Feng, Q., Yin, H., Tyson, R.V., 2013. Global and Planetary Change 105, 52–67. http://www.sciencedirect.com/science/article/pii/S0921818112000380?v=s5 The Hettangian corals of the Isle of Skye (Scotland): An opportunity to better understand the palaeoenvironmental conditions during the aftermath of the Triassic–Jurassic boundary crisis Gretz, M., Lathuilière, B., Martini, R., Bartolini, A., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 132–148. http://www.sciencedirect.com/science/article/pii/S0031018213001053 Ocean’s response to changing climate: Clues from variations in xarbonate mineralogy across the Permian–Triassic boundary of the Shareza section, Iran Heydari, E., Arzani, N., Safaei, M., Hassanzadeh, J., 2013. Global and Planetary Change 105, 79–90. http://www.sciencedirect.com/science/article/pii/S092181811200241X Conodont Sr/Ca and d18O record seawater changes at the Frasnian–Famennian boundary Le Houedec, S., Girard, C., Balter, V., 2013. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 114–121. http://www.sciencedirect.com/science/article/pii/S0031018213001016 Palaeoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China) Li, F., Yan, J., Algeo, T., Wu, X., 2013. Global and Planetary Change 105, 102–120. http://www.sciencedirect.com/science/article/pii/S0921818111001494 Microbial-algal community changes during the latest Permian ecological crisis: Evidence from lipid biomarkers at Cili, South China Luo, G., Wang, Y., Grice, K., Kershaw, S., Algeo, T.J., Ruan, X., Yang, H., Jia, C., Xie, S., 2013. Global and Planetary Change 105, 36–51. http://www.sciencedirect.com/science/article/pii/S0921818112002287 Sensitivity of Late Permian climate to bathymetric features and implications for the mass extinction Osen, A., Winguth, A.M.E., Winguth, C., Scotese, C.R., 2013. Global and Planetary Change 105, 171–179. http://www.sciencedirect.com/science/article/pii/S0921818112000288?v=s5 K-Pg extinction: Reevaluation of the heat-fire hypothesis Robertson, D.S., Lewis, W.M., Sheehan, P.M., Toon, O.B., 2013. Journal of Geophysical Research: Biogeosciences 118, 329–336. http://dx.doi.org/10.1002/jgrg.20018 Evidence for atmospheric carbon injection during the end-Permian extinction Schneebeli-Hermann, E., Kürschner, W.M., Hochuli, P.A., Ware, D., Weissert, H., Bernasconi, S.M., Roohi, G., ur-Rehman, K., Goudemand, N., Bucher, H., 2013. Geology 41, 579–582. http://geology.gsapubs.org/content/41/5/579.abstract Termination of a continent-margin upwelling system at the Permian-Triassic boundary (Opal Creek, Alberta, Canada) Schoepfer, S.D., Henderson, C.M., Garrison, G.H., Foriel, J., Ward, P.D., Selby, D., Hower, J.C., Algeo, T.J., Shen, Y., 2013. Global and Planetary Change 105, 21–35. http://www.sciencedirect.com/science/article/pii/S0921818112001452?v=s5 Volcanism in South China during the Late Permian and its relationship to marine ecosystem and environmental changes Shen, J., Algeo, T.J., Hu, Q., Xu, G., Zhou, L., Feng, Q., 2013. Global and Planetary Change 105, 121–134. http://www.sciencedirect.com/science/article/pii/S0921818112001191 Large vertical d13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism Song, H., Tong, J., Algeo, T.J., Horacek, M., Qiu, H., Song, H., Tian, L., Chen, Z.-Q., 2013. Global and Planetary Change 105, 7–20. http://www.sciencedirect.com/science/article/pii/S0921818112002135?v=s5

e22

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian-Triassic transition Takahashi, S., Kaiho, K., Hori, R., Gorjan, P., Watanabe, T., Yamakita, S., Aita, Y., Takemura, A., Spörli, K.B., Kakegawa, T., Oba, M., 2013. Global and Planetary Change 105, 68–78. http://www.sciencedirect.com/science/article/pii/S0921818112002342 Precession-driven monsoon variability at the Permian–Triassic boundary — Implications for anoxia and the mass extinction Winguth, A., Winguth, C., 2013. Global and Planetary Change 105, 160–170. http://www.sciencedirect.com/science/article/pii/S0921818112001208 Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments Woods, A.D., 2013. Global and Planetary Change 105, 91–101. http://www.sciencedirect.com/science/article/pii/S0921818112001592?v=s5 Petroleum/Source Rock Geochemistry

Magmatic events and sour crude oils in the Malargüe area of the Neuquén Basin, Argentina Alberdi-Genolet, M., Cavallaro, A., Hernandez, N., Crosta, D.E., Martinez, L., 2013. Marine and Petroleum Geology 43, 48–62. http://www.sciencedirect.com/science/article/pii/S0264817212002346 Deep gases discharged from mud volcanoes of Azerbaijan: New geochemical evidence Bonini, M., Tassi, F., Feyzullayev, A.A., Aliyev, C.S., Capecchiacci, F., Minissale, A., 2013. Marine and Petroleum Geology 43, 450–463. http://www.sciencedirect.com/science/article/pii/S0264817212002619 Abiotic methane in the hyperalkaline springs of Genova, Italy Boschetti, T., Etiope, G., Toscani, L., 2013. Procedia Earth and Planetary Science 7, 248–251. http://www.sciencedirect.com/science/article/pii/S1878522013000817 Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization Cobbold, P.R., Zanella, A., Rodrigues, N., Løseth, H., 2013. Marine and Petroleum Geology 43, 1–20. http://www.sciencedirect.com/science/article/pii/S0264817213000299 The characteristics of unconformity surface at the bottom of the Paleogene and its significance in hydrocarbon migration in the Sikeshu Sag of the Junggar Basin, northwest China Gao, X., Liu, L., Wang, Y., Jiang, Z., Liu, G., Shang, X., 2013. Chinese Journal of Geochemistry 32, 181–190. http://dx.doi.org/10.1007/s11631-013-0620-8 Key controls on accumulation and high production of large non-marine gas fields in northern Sichuan Basin Guo, T., 2013. Petroleum Exploration and Development 40, 150–160. http://www.sciencedirect.com/science/article/pii/S187638041360018X Compositional analysis of oil residues by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry Kekdldinen, T., Pakarinen, J.M.H., Wickström, K., Lobodin, V.V., McKenna, A.M., Jdnis, J., 2013. Energy & Fuels 27, 2002–2009. http://dx.doi.org/10.1021/ef301762v Source potential of the upper Jurassic rocks of the Barents Sea petroleum basin Kiryukhina, N.M., Kiryukhina, T.A., 2013. Moscow University Geology Bulletin 68, 26–34. http://dx.doi.org/10.3103/S0145875213010055 Organic geochemistry of the Lower Cretaceous black shales and oil seep in the Sinop Basin, northern Turkey: An oil–source rock correlation study Korkmaz, S., Kara-Gülbay, R., Y´ztan, Y.H., 2013. Marine and Petroleum Geology 43, 272–283. http://www.sciencedirect.com/science/article/pii/S0264817213000305 Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada La Croix, A.D., Gingras, M.K., Pemberton, S.G., Mendoza, C.A., MacEachern, J.A., Lemiski, R.T., 2013. Marine and Petroleum Geology 43, 464–477. http://www.sciencedirect.com/science/article/pii/S0264817212002607 The generation kinetics of natural gases in the Kela-2 gas field from the Kuqa Depression, Tarim Basin, northwestern China Li, X., Feng, S., Xiao, X., Tang, Y., Xiao, Z., Mi, J., Tian, H., Liu, D., Shen, J., 2013. Chinese Journal of Geochemistry 32, 157–169. http://dx.doi.org/10.1007/s11631-013-0618-2

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e23

Dynamics of hydrocarbon accumulation in the west section of the northern margin of the Qaidam Basin, NW China Luo, X., Sun, Y., Wang, L., Xiao, A., Ma, L., Zhang, X., Wang, Z., Song, C., 2013. Petroleum Exploration and Development 40, 170–182. http://www.sciencedirect.com/science/article/pii/S1876380413600208 Permian carbonaceous rocks from the Bonito Coalfield, Santa Catarina, Brazil: Organic facies approaches Mendonça Filho, J.G., Sommer, M.G., Klepzig, M.C., Mendonça, J.O., Silva, T.F., Kern, M.L., Menezes, T.R., Jasper, A., Silva, M.C., Santos, L.G.C., 2013. International Journal of Coal Geology 111, 23–36. http://www.sciencedirect.com/science/article/pii/S0166516212001838 Estimation of water film thickness in geological media associated with the occurrence of gas entrapment Nishiyama, N., Yokoyama, T., 2013. Procedia Earth and Planetary Science 7, 620–623. http://www.sciencedirect.com/science/article/pii/S1878522013001574 Key factors controlling hydrocarbon accumulations in Ordovician carbonate reservoirs in the Tazhong area, Tarim basin, western China Pang, H., Chen, J., Pang, X., Liu, L., Liu, K., Xiang, C., 2013. Marine and Petroleum Geology 43, 88–101. http://www.sciencedirect.com/science/article/pii/S0264817213000573 Palynofacies and organic geochemistry of the Sinemurian carbonate deposits in the western Lusitanian Basin (Portugal): Coimbra and Água de Madeiros formations Poças Ribeiro, N., Mendonça Filho, J.G., Duarte, L.V., Silva, R.L., Mendonça, J.O., Silva, T.F., 2013. International Journal of Coal Geology 111, 37–52. http://www.sciencedirect.com/science/article/pii/S016651621200287X Petroleum potential of the Chalbi basin, NW Kenya Rop, B., 2013. Journal of the Geological Society of India 81, 405–414. http://dx.doi.org/10.1007/s12594-013-0051-5 Water consumption in hydrocarbon generation and its significance to reservoir formation Wang, Y., Zhang, S., Zhu, R., 2013. Petroleum Exploration and Development 40, 259–267. http://www.sciencedirect.com/science/article/pii/S1876380413600324 Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin Yao, J., Deng, X., Zhao, Y., Han, T., Chu, M., Pang, J., 2013. Petroleum Exploration and Development 40, 161–169. http://www.sciencedirect.com/science/article/pii/S1876380413600191 A review of alkane gas geochemistry in the Xujiaweizi fault-depression, Songliao Basin Zeng, H., Li, J., Huo, Q., 2013. Marine and Petroleum Geology 43, 284–296. http://www.sciencedirect.com/science/article/pii/S0264817213000263 A well-preserved 250 million-year-old oil accumulation in the Tarim Basin, western China: Implications for hydrocarbon exploration in old and deep basins Zhu, G., Zhang, S., Liu, K., Yang, H., Zhang, B., Su, J., Zhang, Y., 2013. Marine and Petroleum Geology 43, 478–488. http://www.sciencedirect.com/science/article/pii/S0264817212002590 Precambrian Geochemistry

Mo isotopic composition of the mid-Neoproterozoic ocean: An iron formation perspective Baldwin, G.J., Ndgler, T.F., Greber, N.D., Turner, E.C., Kamber, B.S., 2013. Precambrian Research 230, 168–178. http://www.sciencedirect.com/science/article/pii/S0301926813000831 Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust Cabral, R.A., Jackson, M.G., Rose-Koga, E.F., Koga, K.T., Whitehouse, M.J., Antonelli, M.A., Farquhar, J., Day, J.M.D., Hauri, E.H., 2013. Nature 496, 490–493. http://dx.doi.org/10.1038/nature12020 Anoxia in the terrestrial environment during the late Mesoproterozoic Cumming, V.M., Poulton, S.W., Rooney, A.D., Selby, D., 2013. Geology 41, 583–586. http://geology.gsapubs.org/content/41/5/583.abstract

e24

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Were the 2.1-Gyr fossil colonial organisms discovered in the Francevillian basin (Palaeoproterozoic, Gabon) buried by turbidites? Parize, O., Feybesse, J.-L., Guillocheau, F., Mulder, T., 2013. Comptes Rendus Geoscience 345, 101–110. http://www.sciencedirect.com/science/article/pii/S1631071313000023 Proterozoic ocean redox and biogeochemical stasis Reinhard, C.T., Planavsky, N.J., Robbins, L.J., Partin, C.A., Gill, B.C., Lalonde, S.V., Bekker, A., Konhauser, K.O., Lyons, T.W., 2013. Proceedings of the National Academy of Sciences 110, 5357–5362. http://www.pnas.org/content/110/14/5357.abstract Age, origin and significance of nodular sulfides in 2680 Ma carbonaceous black shale of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia Steadman, J.A., Large, R.R., Meffre, S., Bull, S.W., 2013. Precambrian Research 230, 227–247. http://www.sciencedirect.com/science/article/pii/S0301926813000855 Microfabrics in Mesoproterozoic microdigitate stromatolites: Evidence of biogenicity and organomineralization at micron and nanometer scales Tang, D., Shi, X., Jiang, G., Zhang, W., 2013. Palaios 28, 178–194. http://palaios.sepmonline.org/content/28/3/178.abstract Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history Young, G.M., 2013. Geoscience Frontiers 4, 247–261. http://www.sciencedirect.com/science/article/pii/S1674987112000898?v=s5 Production/Engineering Geochemistry

Island versus archipelago architecture for asphaltenes: Polycyclic aromatic hydrocarbon dimer theoretical studies Alvarez-Ramírez, F., Ruiz-Morales, Y., 2013. Energy & Fuels 27, 1791–1808. http://dx.doi.org/10.1021/ef301522m Removal of naphthenic acids from crude oil using amino acid ionic liquids Anderson, K., Goodrich, P., Hardacre, C., Hussain, A., Rooney, D.W., Wassell, D., 2013. Fuel 108, 715–722. http://www.sciencedirect.com/science/article/pii/S0016236113001221 High temperature simulated distillation of bitumen fractions with open tubular capillary columns depleted in silicone/siloxane stationary phases Carbognani, L., Carbognani Arambarri, J., Molero, H., Pereira-Almao, P., 2013. Energy & Fuels 27, 2033–2041. http://dx.doi.org/10.1021/ef400012e Study of the aggregation and adsorption of asphaltene sub-fractions A1 and A2 by white light interferometry: Importance of A1 subfraction in the aggregation process Castillo, J., Ranaudo, M.A., Fernández, A., Piscitelli, V., Maza, M., Navarro, A., 2013. Colloids and Surfaces A: Physicochemical and Engineering Aspects 427, 41–46. http://www.sciencedirect.com/science/article/pii/S0927775713002057 Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure iterpretation of asphaltenes and related compounds Cataldo, F., Angelini, G., Aníbal García-Hernández, D., Manchado, A., 2013. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 111, 68–79. http://www.sciencedirect.com/science/article/pii/S1386142513002989 Occlusion of polyaromatic compounds in asphaltene precipitates suggests porous nanoaggregates Derakhshesh, M., Bergmann, A., Gray, M.R., 2013. Energy & Fuels 27, 1748–1751. http://pubs.acs.org/doi/abs/10.1021/ef3012189 Investigation of asphaltene aggregate size distribution under aggregation and breakage phenomena using Monte Carlo simulation Faraji, M., Nazar, A.R.S., 2012. Journal of Dispersion Science and Technology 34, 455–461. http://dx.doi.org/10.1080/01932691.2012.681609 Oil recovery from thin heavy-oil reservoirs: The case of the combined-thermal-drive pilot in the Morgan Field Gutiérrez, D., Ursenbach, M.G., Moore, R.G., Mehta, S.A., 2013. Journal of Canadian Petroleum Technology 52, 120–130. http://www.spe.org/ejournals/jsp/journalapp.jsp?pageType=Preview&jid=JCPT&mid=SPE-150593-PA&pdfChronicleId= 0901476280288b53

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e25

Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: A study of hot fluid flooding for Athabasca bitumen recovery Hashemi, R., Nassar, N.N., Pereira Almao, P., 2013. Energy & Fuels 27, 2194–2201. http://dx.doi.org/10.1021/ef3020537 Establishing the maximum carbon number for reliable quantitative gas chromatographic analysis of heavy ends hydrocarbons. Part 2. Migration and separation gas chromatography modeling Hernandez-Baez, D.M., Reid, A., Chapoy, A., Tohidi, B., Bounaceur, R., 2013. Energy & Fuels 27, 2336–2350. http://dx.doi.org/10.1021/ef302009n Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations Jian, C., Tang, T., Bhattacharjee, S., 2013. Energy & Fuels 27, 2057–2067. http://dx.doi.org/10.1021/ef400097h Joint industrial case study for asphaltene deposition Juyal, P., McKenna, A.M., Fan, T., Cao, T., Rueda-Velásquez, R.I., Fitzsimmons, J.E., Yen, A., Rodgers, R.P., Wang, J., Buckley, J.S., Gray, M.R., Allenson, S.J., Creek, J., 2013. Energy & Fuels 27, 1899–1908. http://dx.doi.org/10.1021/ef301956x Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recovery Kryachko, Y., Nathoo, S., Lai, P., Voordouw, J., Prenner, E.J., Voordouw, G., 2013. International Biodeterioration & Biodegradation 81, 133–140. http://www.sciencedirect.com/science/article/pii/S0964830512002697 Phase behaviour of C3H8/n-C4H10/heavy-oil systems at high pressures and elevated temperatures Li, H., Yang, D., 2013. Journal of Canadian Petroleum Technology 52, 30–40. http://www.spe.org/ejournals/jsp/journalapp.jsp?pageType=Preview&jid=JCPT&mid=SPE-157744-PA&pdfChronicleId= 090147628027db20 Impact of liquid–vapor to liquid–liquid–vapor phase transitions on asphaltene-rich nanoaggregate behavior in Athabasca vacuum residue + pentane mixtures Long, B., Chodakowski, M., Shaw, J.M., 2013. Energy & Fuels 27, 1779–1790. http://dx.doi.org/10.1021/ef301475f Molecular dynamics simulations of asphaltenes at the oil–water interface: From nanoaggregation to thin-film formation Mikami, Y., Liang, Y., Matsuoka, T., Boek, E.S., 2013. Energy & Fuels 27, 1838–1845. http://dx.doi.org/10.1021/ef301610q Extension of the Expanded Fluid viscosity model to characterized oils Motahhari, H., Satyro, M.A., Taylor, S.D., Yarranton, H.W., 2013. Energy & Fuels 27, 1881–1898. http://dx.doi.org/10.1021/ef301575n Clusters of asphaltene nanoaggregates observed in oilfield reservoirs Mullins, O.C., Seifert, D.J., Zuo, J.Y., Zeybek, M., 2013. Energy & Fuels 27, 1752–1761. http://dx.doi.org/10.1021/ef301338q Revisiting the PC-SAFT characterization procedure for an improved asphaltene precipitation prediction Punnapala, S., Vargas, F.M., 2013. Fuel 108, 417–429. http://www.sciencedirect.com/science/article/pii/S0016236112010824 Prediction of asphaltene precipitation in live and tank crude oil using Gaussian process regression Rostami, H., Khaksar Manshad, A., 2013. Petroleum Science and Technology 31, 913–922. http://dx.doi.org/10.1080/10916466.2010.531349 Characterization of asphaltene building blocks by cracking under favorable hydrogenation conditions Rueda-Velásquez, R.I., Freund, H., Qian, K., Olmstead, W.N., Gray, M.R., 2013. Energy & Fuels 27, 1817–1829. http://dx.doi.org/10.1021/ef301521q Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning microscopy Seifried, C.M., Crawshaw, J., Boek, E.S., 2013. Energy & Fuels 27, 1865–1872. http://dx.doi.org/10.1021/ef301594j

e26

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Predictive petroleomics: Measurement of the total acid number by electrospray Fourier transform mass spectrometry and chemometric analysis Vaz, B.G., Abdelnur, P.V., Rocha, W.F.C., Gomes, A.O., Pereira, R.C.L., 2013. Energy & Fuels 27, 1873–1880. http://dx.doi.org/10.1021/ef301515y Advances in the Flory–Huggins–Zuo equation of state for asphaltene gradients and formation evaluation Zuo, J.Y., Mullins, O.C., Freed, D., Elshahawi, H., Dong, C., Seifert, D.J., 2013. Energy & Fuels 27, 1722–1735. http://dx.doi.org/10.1021/ef301239h Recent Sediments/Hydrosphere

Two dimensional correlation analysis of Fourier transform ion cyclotron resonance mass spectra of dissolved organic matter: A new graphical analysis of trends Abdulla, H.A.N., Sleighter, R.L., Hatcher, P.G., 2013. Analytical Chemistry 85, 3895–3902. http://dx.doi.org/10.1021/ac303221j Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea Blumenberg, M., Berndmeyer, C., Moros, M., Muschalla, M., Schmale, O., Thiel, V., 2013. Biogeosciences 10, 2725–2735. http://www.biogeosciences.net/10/2725/2013/ Tracing estuarine organic matter sources into the southern North Sea using C and N isotopic signatures Bristow, L.A., Jickells, T.D., Weston, K., Marca-Bell, A., Parker, R., Andrews, J.E., 2013. Biogeochemistry 113, 9–22. http://dx.doi.org/10.1007/s10533-012-9758-4 Water column distribution and carbon isotopic signal of cholesterol, brassicasterol and particulate organic carbon in the Atlantic sector of the Southern Ocean Cavagna, A.J., Dehairs, F., Bouillon, S., Woule-Ebongué, V., Planchon, F., Delille, B., Bouloubassi, I., 2013. Biogeosciences 10, 2787–2801. http://www.biogeosciences.net/10/2787/2013/ Complex-forming properties of peat humic acids from a raised bog profiles Dudare, D., Klavins, M., 2013. Journal of Geochemical Exploration 129, 18–22. http://www.sciencedirect.com/science/article/pii/S0375674212002622 Effect of sulfate availability on the isotopic signature of reduced sulfurous compounds in the sediments of a subtropical estuary Fan, L.-F., Lin, S., He, W.-G., Huang, K.-M., Chen, C.-P., Hsieh, H.-L., 2012. Wetlands 32, 907–917. http://dx.doi.org/10.1007/s13157-012-0323-7 Hydroxylated isoprenoidal GDGTs in the Nordic Seas Fietz, S., Huguet, C., Rueda, G., Hambach, B., Rosell-Melé, A., 2013. Marine Chemistry 152, 1–10. http://www.sciencedirect.com/science/article/pii/S0304420313000376 Particulate organic matter export by two contrasting small mountainous rivers from the Pacific Northwest, U.S.A Goñi, M.A., Hatten, J.A., Wheatcroft, R.A., Borgeld, J.C., 2013. Journal of Geophysical Research: Biogeosciences 118, 112–134. http://dx.doi.org/10.1002/jgrg.20024 Response of halocarbons to ocean acidification in the Arctic Hopkins, F.E., Kimmance, S.A., Stephens, J.A., Bellerby, R.G.J., Brussaard, C.P.D., Czerny, J., Schulz, K.G., Archer, S.D., 2013. Biogeosciences 10, 2331–2345. http://www.biogeosciences.net/10/2331/2013/ Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters Hugoni, M., Taib, N., Debroas, D., Domaizon, I., Jouan Dufournel, I., Bronner, G., Salter, I., Agogué, H., Mary, I., Galand, P.E., 2013. Proceedings of the National Academy of Sciences 110, 6004–6009. http://www.pnas.org/content/110/15/6004.abstract Global charcoal mobilization from soils via dissolution and riverine transport to the oceans Jaffé, R., Ding, Y., Niggemann, J., Vdhdtalo, A.V., Stubbins, A., Spencer, R.G.M., Campbell, J., Dittmar, T., 2013. Science 340, 345–347. http://www.sciencemag.org/content/340/6130/345.abstract 100-year ecosystem history elucidated from inner shelf sediments off the Pearl River estuary, China Jia, G., Xu, S., Chen, W., Lei, F., Bai, Y., Huh, C.-A., 2013. Marine Chemistry 151, 47–55. http://www.sciencedirect.com/science/article/pii/S0304420313000352

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e27

Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin Komada, T., Burdige, D.J., Crispo, S.M., Druffel, E.R.M., Griffin, S., Johnson, L., Le, D., 2013. Geochimica et Cosmochimica Acta 110, 253–273. http://www.sciencedirect.com/science/article/pii/S0016703713001129 Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing Lin, Y.-S., Lipp, J.S., Elvert, M., Holler, T., Hinrichs, K.-U., 2013. Environmental Microbiology 15, 1634–1646. http://dx.doi.org/10.1111/j.1462-2920.2012.02888.x Predominant archaea in marine sediments degrade detrital proteins Lloyd, K.G., Schreiber, L., Petersen, D.G., Kjeldsen, K.U., Lever, M.A., Steen, A.D., Stepanauskas, R., Richter, M., Kleindienst, S., Lenk, S., Schramm, A., Jørgensen, B.B., 2013. Nature 496, 215–218. http://dx.doi.org/10.1038/nature12033 Different methanotrophic potentials in stratified polar fjord waters (Storfjorden, Spitsbergen) identified by using a combination of methane oxidation techniques Mau, S., Blees, J., Helmke, E., Niemann, H., Damm, E., 2013. Biogeosciences Discussions 10, 6461–6491. http://www.biogeosciences-discuss.net/10/6461/2013/ Differential response of fatty acid composition in the different lipid classes from particulate matter in a high arctic fjord (Kongsfjorden, Svalbard) Mayzaud, P., Boutoute, M., Gasparini, S., 2013. Marine Chemistry 151, 23–34. http://www.sciencedirect.com/science/article/pii/S030442031300039X On the abundances of noble and biologically relevant gases in Lake Vostok, Antarctica Mousis, O., Lakhlifi, A., Picaud, S., Pasek, M., Chassefière, E., 2013. Astrobiology 13, 380–390. http://dx.doi.org/10.1089/ast.2012.0907 Sources and fate of terrestrial dissolved organic carbon in lakes of a Boreal Plains region recently affected by wildfire Olefeldt, D., Devito, K.J., Turetsky, M.R., 2013. Biogeosciences Discussions 10, 6093–6141. http://www.biogeosciences-discuss.net/10/6093/2013/ Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: Trends, mechanisms and heterogeneity Oni, S.K., Futter, M.N., Bishop, K., Köhler, S.J., Ottosson-Löfvenius, M., Laudon, H., 2013. Biogeosciences 10, 2315–2330. http://www.biogeosciences.net/10/2315/2013/ Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation Preuss, I., Knoblauch, C., Gebert, J., Pfeiffer, E.M., 2013. Biogeosciences 10, 2539–2552. http://www.biogeosciences.net/10/2539/2013/ Different pools of black carbon in sediments from the Gulf of Cádiz (SW Spain): Method comparison and spatial distribution Sánchez-García, L., de Andrés, J.R., Gélinas, Y., Schmidt, M.W.I., Louchouarn, P., 2013. Marine Chemistry 151, 13–22. http://www.sciencedirect.com/science/article/pii/S0304420313000364 Differential production yet chemical similarity of dissolved organic matter across a chronosequence with contrasting nutrient availability in Hawaii Sanderman, J., Kramer, M.G., 2013. Biogeochemistry 113, 259–269. http://dx.doi.org/10.1007/s10533-012-9821-1 Prominent bacterial heterotrophy and sources of 13C-depleted fatty acids to the interior Canada Basin Shah, S.R., Griffith, D.R., Galy, V., McNichol, A.P., Eglinton, T.I., 2013. Biogeosciences Discussions 10, 6695–6736. http://www.biogeosciences-discuss.net/10/6695/2013/ The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics Williams, T.J., Wilkins, D., Long, E., Evans, F., DeMaere, M.Z., Raftery, M.J., Cavicchioli, R., 2013. Environmental Microbiology 15, 1302–1317. http://dx.doi.org/10.1111/1462-2920.12017 Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations Xie, S., Lipp, J.S., Wegener, G., Ferdelman, T.G., Hinrichs, K.-U., 2013. Proceedings of the National Academy of Sciences 110, 6010–6014. http://www.pnas.org/content/110/15/6010.abstract

e28

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

Seepage-Remote Detection

Gas-seep related carbonate and barite authigenic mineralization in the northern Gulf of California Canet, C., Anadón, P., Alfonso, P., Prol-Ledesma, R.M., Villanueva-Estrada, R.E., García-Vallès, M., 2013. Marine and Petroleum Geology 43, 147–165. http://www.sciencedirect.com/science/article/pii/S0264817213000391 Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USA Crutchley, G.J., Berndt, C., Geiger, S., Klaeschen, D., Papenberg, C., Klaucke, I., Hornbach, M.J., Bangs, N.L.B., Maier, C., 2013. Geology 41, 551– 554. http://geology.gsapubs.org/content/41/5/551.abstract High density of structurally controlled, shallow to deep water fluid seep indicators imaged offshore Costa Rica Kluesner, J.W., Silver, E.A., Bangs, N.L., McIntosh, K.D., Gibson, J., Orange, D., Ranero, C.R., von Huene, R., 2013. Geochemistry, Geophysics, Geosystems 14, 519–539. http://dx.doi.org/10.1002/ggge.20058 Hydrocarbon plumbing systems above the Snøhvit gas field: Structural control and implications for thermogenic methane leakage in the Hammerfest Basin, SW Barents Sea Ostanin, I., Anka, Z., di Primio, R., Bernal, A., 2013. Marine and Petroleum Geology 43, 127–146. http://www.sciencedirect.com/science/article/pii/S0264817213000408 Investigation on the geochemical dynamics of a hydrate-bearing pockmark in the Niger Delta Ruffine, L., Caprais, J.-C., Bayon, G., Riboulot, V., Donval, J.-P., Etoubleau, J., Birot, D., Pignet, P., Rongemaille, E., Chazallon, B., Grimaud, S., Adamy, J., Charlou, J.-L., Voisset, M., 2013. Marine and Petroleum Geology 43, 297–309. http://www.sciencedirect.com/science/article/pii/S0264817213000251 Conceptual modeling of onshore hydrocarbon seep occurrence in the Dezful Embayment, SW Iran Salati, S., van Ruitenbeek, F.J.A., Carranza, E.J.M., van der Meer, F.D., Tangestani, M.H., 2013. Marine and Petroleum Geology 43, 102–120. http://www.sciencedirect.com/science/article/pii/S0264817213000561 Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology Tong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A.G., Edwards, R.L., Chen, Z., Chen, D., 2013. Marine and Petroleum Geology 43, 260– 271. http://www.sciencedirect.com/science/article/pii/S0264817213000317 Distribution of subsurface fluid-flow systems in the SW Barents Sea Vadakkepuliyambatta, S., Bünz, S., Mienert, J., Chand, S., 2013. Marine and Petroleum Geology 43, 208–221. http://www.sciencedirect.com/science/article/pii/S0264817213000354 Soil Geochemistry

Prediction of humic acids bioactivity using spectroscopy and multivariate analysis Aguiar, N.O., Novotny, E.H., Oliveira, A.L., Rumjanek, V.M., Olivares, F.L., Canellas, L.P., 2013. Journal of Geochemical Exploration 129, 95–102. http://www.sciencedirect.com/science/article/pii/S0375674212002051 Spin labeling ESR investigation of the molecular environment of soil interacting with chemical organic contaminants Aleksandrova, O.N., 2013. Journal of Geochemical Exploration 129, 6–13. http://www.sciencedirect.com/science/article/pii/S0375674213000034 Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic Cory, R.M., Crump, B.C., Dobkowski, J.A., Kling, G.W., 2013. Proceedings of the National Academy of Sciences 110, 3429–3434. http://www.pnas.org/content/110/9/3429.abstract Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient Drahorad, S., Felix-Henningsen, P., Eckhardt, K.U., Leinweber, P., 2013. Journal of Arid Environments 94, 18–26. http://www.sciencedirect.com/science/article/pii/S014019631300030X

Geochemistry Articles / Organic Geochemistry 60 (2013) e1–e29

e29

Carbon sequestration in iron-nodules in moist semi-deciduous tropical forest soil Elberling, B., Breuning-Madsen, H., Knicker, H., 2013. Geoderma 200–201, 202–207. http://www.sciencedirect.com/science/article/pii/S0016706113000785 Differences in fluorescence properties between humic acid and its size fractions separated by preparative HPSEC Halim, M., Spaccini, R., Parlanti, E., Amezghal, A., Piccolo, A., 2013. Journal of Geochemical Exploration 129, 23–27. http://www.sciencedirect.com/science/article/pii/S0375674212002373 Mass spectrometry-based metabolomics towards understanding of gene functions with a diversity of biological contexts Lv, H., 2013. Mass Spectrometry Reviews 32, 118–128. http://dx.doi.org/10.1002/mas.21354 Conformational changes of dissolved humic and fulvic superstructures with progressive iron complexation Nuzzo, A., Sánchez, A., Fontaine, B., Piccolo, A., 2013. Journal of Geochemical Exploration 129, 1–5. http://www.sciencedirect.com/science/article/pii/S0375674213000241 Isopentenyladenosine and cytokinin-like activity of different humic substances Pizzeghello, D., Francioso, O., Ertani, A., Muscolo, A., Nardi, S., 2013. Journal of Geochemical Exploration 129, 70–75. http://www.sciencedirect.com/science/article/pii/S0375674212002075?v=s5 Expanded compilations of references with abstracts in Microsoft Word and ISI EndNote formats are available at: http://www.eaog.org/ other/ref_update.html. Compiled by Clifford C. Walters