Organic Geochemistry 42 (2011) e25–e52
Contents lists available at ScienceDirect
Organic Geochemistry journal homepage: www.elsevier.com/locate/orggeochem
Geochemistry Articles – October 2010 Analytical Chemistry
Comparison of inductively coupled plasma spectrometry techniques for the direct determination of rare earth elements in digests from geological samples Ardini F., Soggia F., Rugi F., Udisti R., Grotti M., 2010. Analytica Chimica Acta 678, 18–25. http://www.sciencedirect.com/science/article/B6TF4-50NBNT6-7/2/42b7e6330160c29ebf8b7397fdcb65bc Accurate mass measurement: terminology and treatment of data Brenton A.G., Godfrey A.R., 2010. Journal of the American Society for Mass Spectrometry 21, 1821–1835. http://www.sciencedirect.com/science/article/B6TH2-50BJNNJ-2/2/badd17f1c2fb0682aa8f0ee19d098d43 Comprehensive two-dimensional liquid chromatography: ion chromatography reversed-phase liquid chromatography for separation of low-molar-mass organic acids Brudin S.S., Shellie R.A., Haddad P.R., Schoenmakers P.J., 2010. Journal of Chromatography A 1217, 6742–6746. http://www.sciencedirect.com/science/article/B6TG8-50860DW-4/2/5cac7ac677aabc9f3463dbb4465d1b87 Chromatographic reduction of isobaric and isomeric complexity of fulvic acids to enable multistage tandem mass spectral characterization Capley E.N., Tipton J.D., Marshall A.G., Stenson A.C., 2010. Analytical Chemistry 82, 8194–8202. http://dx.doi.org/10.1021/ac1016216 Advances of modern gas chromatography and hyphenated techniques for analysis of plant extracts Costa R., Dugo P., Santi L., Dugo G., Mondello L., 2010. Current Organic Chemistry 14, 1752–1768. http://www.bentham.org/coc/contabs/coc14-16.html#7 The construction and development of SHRIMP I: An historical outline Foster J.J., 2010. Precambrian Research 183, 1–8. http://www.sciencedirect.com/science/article/B6VBP-50T41PJ-1/2/e59d67e0b702d85b140fa0e40f064a7c A scanning frequency mode for ion cyclotron mobility spectrometry Glaskin R.S., Valentine S.J., Clemmer D.E., 2010. Analytical Chemistry 82, 8266–8271. http://dx.doi.org/10.1021/ac1017474 Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass database Gómez M.J., Gómez-Ramos M.M., Malato O., Mezcua M., Férnandez-Alba A.R., 2010. Journal of Chromatography A 1217, 7038–7054. http://www.sciencedirect.com/science/article/B6TG8-50XCY34-5/2/e0966407dd5acb15fb5389f17672cdfd Molecular complex-based dispersive liquid–liquid microextraction: Analysis of polar compounds in aqueous solution Hu X.-Z., Wu J.-H., Feng Y.-Q., 2010. Journal of Chromatography A 1217, 7010–7016. http://www.sciencedirect.com/science/article/B6TG8-512MHCH-2/2/d9c08baefb9938a83ac2199fec899c8e Determination of carboxylic acids in water by gas chromatography using several detectors after flow preconcentration Jurado-Sánchez B., Ballesteros E., Gallego M., 2010. Journal of Chromatography A 1217, 7440–7447. http://www.sciencedirect.com/science/article/B6TG8-5161PCB-2/2/1a934f260a8f827ee20bdf4e79abd33d doi:10.1016/j.orggeochem.2010.11.001
e26
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
A review of recent trends in electrospray ionisation mass spectrometry for the analysis of metal–organic ligand complexes Keith-Roach M.J., 2010. Analytica Chimica Acta 687, 140–148. http://www.sciencedirect.com/science/article/B6TF4-50W1TJ6-4/2/12153d0aacdacfa03e150c38827fd561 Coupling of planar chromatography to mass spectrometry Morlock G., Schwack W., 2010. TrAC Trends in Analytical Chemistry 29, 1157–1171. http://www.sciencedirect.com/science/article/B6V5H-50V206G-2/2/051272558dafa26c97c00159cdea31ca Hyphenations in planar chromatography Morlock G., Schwack W., 2010. Journal of Chromatography A 1217, 6600–6609. http://www.sciencedirect.com/science/article/B6TG8-4YYXJPT-1/2/bc2ecad838d52a42c476ea645d137cb6 Classification and prediction of retention indices in one-dimensional capillary gas chromatographic separation of petroleum hydrocarbons Moustafa N.E., Mahmoud K.E.k.F., 2010. Chromatographia 72, 905–912. http://dx.doi.org/10.1365/s10337-010-1734-3 Adsorptive micro-extraction techniques – Novel analytical tools for trace levels of polar solutes in aqueous media Neng N.R., Silva A.R.M., Nogueira J.M.F., 2010. Journal of Chromatography A 1217, 7303–7310. http://www.sciencedirect.com/science/article/B6TG8-5137FB1-1/2/fc5fa0be578c27cf41da73d5b31e13d9 Development and characterization of a GC-enabled QLT-Orbitrap for high-resolution and high-mass accuracy GC/MS Peterson A.C., McAlister G.C., Quarmby S.T., Griep-Raming J., Coon J.J., 2010. Analytical Chemistry 82, 8618–8628. http://dx.doi.org/10.1021/ac101757m Effects of cryogenic sample analysis on molecular depth profiles with TOF-secondary ion mass spectrometry Piwowar A.M., Fletcher J.S., Kordys J., Lockyer N.P., Winograd N., Vickerman J.C., 2010. Analytical Chemistry 82, 8291–8299. http://dx.doi.org/10.1021/ac101746h Evaluation of a rapid-scanning quadrupole mass spectrometer in an apolar ionic-liquid comprehensive two-dimensional gas chromatography system Purcaro G., Tranchida P.Q., Ragonese C., Conte L., Dugo P., Dugo G., Mondello L., 2010. Analytical Chemistry 82, 8583–8590. http://dx.doi.org/10.1021/ac101678r Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: Organosulfates as photochemical smog constituents Schmitt-Kopplin P., Gelencsér A., Dabek-Zlotorzynska E., Kiss G., Hertkorn N., Harir M., Hong Y., Gebefügi I., 2010. Analytical Chemistry 82, 8017–8026. http://dx.doi.org/10.1021/ac101444r Dioxin analysis by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry (GC-FTICRMS) Taguchi V.Y., Nieckarz R.J., Clement R.E., Krolik S., Williams R., 2010. Journal of the American Society for Mass Spectrometry 21, 1918– 1921. http://www.sciencedirect.com/science/article/B6TH2-50NYWV3-2/2/3dbbe44a25137e46d97650d5e9490e76 Fast determination of arsenosugars in algal extracts by narrow bore high-performance liquid chromatography-inductively coupled plasma mass spectrometry Todolí J.L., Grotti M., 2010. Journal of Chromatography A 1217, 7428–7433. http://www.sciencedirect.com/science/article/B6TG8-514R68P-3/2/34353ee4a552f79d7c355870b7969ed5 Use of comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for the characterization of biodegradation and unresolved complex mixtures in petroleum Tran T.C., Logan G.A., Grosjean E., Ryan D., Marriott P.J., 2010. Geochimica et Cosmochimica Acta 74, 6468–6484. http://www.sciencedirect.com/science/article/B6V66-50VTWP4-3/2/0bbb033949f5f227c2b2bd9f99aaac7e
Investigation of modulation parameters in multiplexing gas chromatography Trapp O., 2010. Journal of Chromatography A 1217, 6640–6645. http://www.sciencedirect.com/science/article/B6TG8-4YVY75N-F/2/c83a068d68f8d081c7d197df7f25e238 Quantification of carbonate by gas chromatography-mass spectrometry Tsikas D., Chobanyan-Jürgens K., 2010. Analytical Chemistry 82, 7897–7905. http://dx.doi.org/10.1021/ac1007688
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e27
On-line analysis of complex hydrocarbon mixtures using comprehensive two-dimensional gas chromatography Van Geem K.M., Pyl S.P., Reyniers M.-F., Vercammen J., Beens J., Marin G.B., 2010. Journal of Chromatography A 1217, 6623–6633. http://www.sciencedirect.com/science/article/B6TG8-4YVY75N-1/2/0dd2c8ca4bf0da523e5ba5447f1e487e Novel reduced pressure-balance syringe for chromatographic analysis Windom B.C., Bruno T.J., 2010. Journal of Chromatography A 1217, 7434–7439. http://www.sciencedirect.com/science/article/B6TG8-5125R58-7/2/0bd599682185d006192a68b0a0512e22 Elution, partial separation, and identification of lipids directly from tissue slices on planar chromatography media by desorption electrospray ionization mass spectrometry Wiseman J.M., Li J.B., 2010. Analytical Chemistry 82, 8866–8874. http://pubs.acs.org/doi/abs/10.1021/ac1016453 Automated broadband phase correction of Fourier transform ion cyclotron resonance mass spectra Xian F., Hendrickson C.L., Blakney G.T., Beu S.C., Marshall A.G., 2010. Analytical Chemistry 82, 8807–8812. http://pubs.acs.org/doi/abs/10.1021/ac101091w A cost effective, sensitive, and environmentally friendly sample preparation method for determination of polycyclic aromatic hydrocarbons in solid samples Yamaguchi C., Lee W.-Y., 2010. Journal of Chromatography A 1217, 6816–6823. http://www.sciencedirect.com/science/article/B6TG8-50X4C05-2/2/53e24690097fa2b03bd21169d7e2857f
Archaeological/Art Organic Chemistry Alkali extraction of archaeological and geological charcoal: Evidence for diagenetic degradation and formation of humic acids Ascough P.L., Bird M.I., Francis S.M., Lebl T., 2011. Journal of Archaeological Science 38, 69–78. http://www.sciencedirect.com/science/article/B6WH8-50SGPKP-2/2/188e62f0fb680df7d6a7dd7a92df41c5 New perspectives in biomolecular paleopathology of ancient tuberculosis: a proteomic approach Boros-Major A., Bona A., Lovasz G., Molnar E., Marcsik A., Palfi G., Mark L., 2011. Journal of Archaeological Science 38, 197–201. http://www.sciencedirect.com/science/article/B6WH8-511G1XJ-4/2/3d9d888b106a5b65bd2a29f64b4c6d1b Stable isotope chemistry, population histories and Late Prehistoric subsistence change in the Aleutian Islands Byers D.A., Yesner D.R., Broughton J.M., Coltrain J.B., 2011. Journal of Archaeological Science 38, 183–196. http://www.sciencedirect.com/science/article/B6WH8-511G1XJ-3/2/f0dacacd17a5fbb280c0d966a5a4e0f2 Stable isotope analysis of prehistoric populations from the cemeteries of the Middle and Lower Dnieper Basin, Ukraine Lillie M., Budd C., Potekhina I., 2011. Journal of Archaeological Science 38, 57–68. http://www.sciencedirect.com/science/article/B6WH8-50SGPKP-1/2/3bb8c19231d9e7e1d826d5a5d879effa
Scientific investigations of antique lacquers from a 17th-century Japanese ornamental cabinet Pitthard V., Wei S., Miklin-Kniefacz S., Stanek S., Griesser M., Schreiner M., 2010. Archaeometry 52, 1044–1056. http://dx.doi.org/10.1111/j.1475-4754.2009.00513.x Astrobiology Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria Dartnell L.R., Hunter S.J., Lovell K.V., Coates A.J., Ward J.M., 2010. Astrobiology 10, 717–732. http://www.liebertonline.com/doi/abs/10.1089/ast.2009.0439 Determining habitability: which exoEarths should we search for life? Horner J., Jones B.W., 2010. International Journal of Astrobiology 9, 273–291. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7909965&fulltextType=RA&fileId=S1473550410000261 Pervasive orbital eccentricities dictate the habitability of extrasolar Earths Kita R., Rasio F., Takeda G., 2010. Astrobiology 10, 733–741. http://www.liebertonline.com/doi/abs/10.1089/ast.2009.0459 The Mawrth Vallis region of Mars: a potential landing site for the Mars Science Laboratory (MSL) Mission Michalski J.R., Bibring J.-P., Poulet F., Loizeau D., Mangold N., Dobrea E.N., Bishop J.L., Wray J.J., McKeown N.K., Parente M., Hauber E., Altieri F., Carrozzo F.G., Niles P.B., 2010. Astrobiology 10, 687–703. http://www.liebertonline.com/doi/abs/10.1089/ast.2010.0491
e28
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Implications of stellar activity for exoplanetary atmospheres Odert P., Leitzinger M., Hanslmeier A., Lammer H., Khodachenko M.L., Ribas I., 2010. International Journal of Astrobiology 9, 239–243. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7909977&fulltextType=RA&fileId=S1473550410000315 Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars Parnell J., Boyce A.J., Blamey N.J.F., 2010. International Journal of Astrobiology 9, 193–200. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7909956&fulltextType=RA&fileId=S1473550410000200 The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M dwarf Segura A., Walkowicz L.M., Meadows V., Kasting J., Hawley S., 2010. Astrobiology 10, 751–771. http://www.liebertonline.com/doi/abs/10.1089/ast.2009.0376 Biochemistry Nitrogen fixation and nitrogen transformations in marine symbioses Fiore C.L., Jarett J.K., Olson N.D., Lesser M.P., 2010. Trends in Microbiology 18, 455–463. http://www.sciencedirect.com/science/article/B6TD0-50N9C2G-1/2/ed3187887262ae2c23c0d0a02c45a0c5 Natural sesquiterpenoids Fraga B.M., 2010. Natural Product Reports 27, 1681–1708. http://dx.doi.org/10.1039/C0NP00007H Air/water interface study of cyclopentane-containing archaeal bipolar lipid analogues Jacquemet A., Vié V., Lemiègre L., Barbeau J., Benvegnu T., 2010. Chemistry and Physics of Lipids 163, 800–808. http://www.sciencedirect.com/science/article/B6T2N-5137FD0-1/2/91f19a29f2dfe0acbd8fa596a5a59481 Metabolic fluxes and beyond—Systems biology understanding and engineering of microbial metabolism Kohlstedt M., Becker J., Wittmann C., 2010. Applied Microbiology and Biotechnology 88, 1065–1075. http://dx.doi.org/10.1007/s00253-010-2854-2 Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well Najafi A.R., Rahimpour M.R., Jahanmiri A.H., Roostaazad R., Arabian D., Soleimani M., Jamshidnejad Z., 2011. Colloids and Surfaces B: Biointerfaces 82, 33–39. http://www.sciencedirect.com/science/article/B6TFS-50S8PJH-2/2/179df15085af9e520a3ce7382c41e3ae Two rings in them all: the labdane-related diterpenoids Peters R.J., 2010. Natural Product Reports 27, 1521–1530. http://dx.doi.org/10.1039/C0NP00019A Carotenoid biosynthesis in extremophilic Deinococcus–Thermus bacteria Tian B., Hua Y., 2010. Trends in Microbiology 18, 512–520. http://www.sciencedirect.com/science/article/B6TD0-5101028-2/2/a555b16049174304679763af55f0106c Iron-scytonemin complexes: DFT calculations on new UV protectants for terrestrial cyanobacteria and astrobiological implications Varnali T., Edwards H.G.M., 2010. Astrobiology 10, 711–716. http://www.liebertonline.com/doi/abs/10.1089/ast.2009.0457
Biodegradation Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils Dandie C.E., Weber J., Aleer S., Adetutu E.M., Ball A.S., Juhasz A.L., 2010. Chemosphere 81, 1061–1068. http://www.sciencedirect.com/science/article/B6V74-5178VHV-5/2/697ea4378c442536539a1c8feefb195b Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium Jones E.J.P., Voytek M.A., Corum M.D., Orem W.H., 2010. Applied and Environmental Microbiology 76, 7013–7022. http://aem.asm.org/cgi/content/abstract/76/21/7013 Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it Morlett-Chávez J.A., Ascacio-Martínez J.Á., Rivas-Estilla A.M., Velázquez-Vadillo J.F., Haskins W.E., Barrera-Saldaña H.A., Acuña-Askar K., 2010. International Biodeterioration & Biodegradation 64, 581–587. http://www.sciencedirect.com/science/article/B6VG6-50TYGY7-1/2/6b4739b0c512bdd6a722d7c1d1b1040b
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e29
Meiofauna reduces bacterial mineralization of naphthalene in marine sediment Naslund J., Nascimento F.J.A., Gunnarsson J.S., 2010. ISME Journal 4, 1421–1430. http://dx.doi.org/10.1038/ismej.2010.63 How to live at very low substrate concentration Thomas E., 2010. Water Research 44, 4826–4837. http://www.sciencedirect.com/science/article/B6V73-50J9GST-7/2/c689861ed215c2f2f3e2086012268073 Effects of pyrene and fluoranthene on the degradation characteristics of phenanthrene in the cometabolism process by Sphingomonas sp. strain PheB4 isolated from mangrove sediments Zhong Y., Zou S., Lin L., Luan T., Qiu R., Tam N.F.Y., 2010. Marine Pollution Bulletin 60, 2043–2049. http://www.sciencedirect.com/science/article/B6V6N-50S8C5J-1/2/f88097d440ee9415709959d1c001c4b0 Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil Zhu H., Aitken M.D., 2010. Environmental Science & Technology 44, 7260–7265. http://dx.doi.org/10.1021/es100112a Biodegradation Pathways/Genomics
Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture Abu Laban N., Selesi D., Rattei T., Tischler P., Meckenstock R.U., 2010. Environmental Microbiology 12, 2783–2796. http://dx.doi.org/10.1111/j.1462-2920.2010.02248.x Diversity of benyzl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures Callaghan A.V., Davidova I.A., Savage-Ashlock K., Parisi V.A., Gieg L.M., Suflita J.M., Kukor J.J., Wawrik B., 2010. Environmental Science & Technology 44, 7287–7294. http://dx.doi.org/10.1021/es1002023 Biodegradation: Gaining insight through proteomics Chauhan A., Jain R.K., 2010. Biodegradation 21, 861–879. http://dx.doi.org/10.1007/s10532-010-9361-0 Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation Penny C., Vuilleumier S., Bringel F., 2010. FEMS Microbiology Ecology 74, 257–275. http://dx.doi.org/10.1111/j.1574-6941.2010.00935.x Insights into enzyme kinetics of chloroethane biodegradation using compound specific stable isotopes Sherwood Lollar B., Hirschorn S., Mundle S.O.C., Grostern A., Edwards E.A., Lacrampe-Couloume G., 2010. Environmental Science & Technology 44, 7498–7503. http://dx.doi.org/10.1021/es101330r Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Stenuit B.A., Agathos S.N., 2010. Applied Microbiology and Biotechnology 88, 1043–1064. http://dx.doi.org/10.1007/s00253-010-2830-x mamO and mamE genes are essential for magnetosome crystal biomineralization in Magnetospirillum gryphiswaldense MSR-1 Yang W., Li R., Peng T., Zhang Y., Jiang W., Li Y., Li J., 2010. Research in Microbiology 161, 701–705. http://www.sciencedirect.com/science/article/B6VN3-50NBNS5-1/2/1b32629406d31fff223cab952d35e0f4 Biofuels/biomass Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion Adams J.M.M., Ross A.B., Anastasakis K., Hodgson E.M., Gallagher J.A., Jones J.M., Donnison I.S., 2011. Bioresource Technology 102, 226–234. http://www.sciencedirect.com/science/article/B6V24-50H224F-2T/2/9575851889c4606ab56bf22beb5319d1 Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae Batan L., Quinn J., Willson B., Bradley T., 2010. Environmental Science & Technology 44, 7975–7980. http://dx.doi.org/10.1021/es102052y Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content Biller P., Ross A.B., 2011. Bioresource Technology 102, 215–225. http://www.sciencedirect.com/science/article/B6V24-50G0DYX-4/2/6c5bb86517a8334ccfb55ee142d707b3
e30
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Life cycle assessment of biodiesel production from microalgae in ponds Campbell P.K., Beer T., Batten D., 2011. Bioresource Technology 102, 50–56. http://www.sciencedirect.com/science/article/B6V24-50F369X-F/2/8a75b452bc500a58109b7ce3fd63bb11 Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review Chen C.-Y., Yeh K.-L., Aisyah R., Lee D.-J., Chang J.-S., 2011. Bioresource Technology 102, 71–81. http://www.sciencedirect.com/science/article/B6V24-50H224F-32/2/95b6e5d45677083f241f728f1cef1aa7 Bio-oil from photosynthetic microalgae: case study Cooney M., Young G., Pate R., 2011. Bioresource Technology 102, 166–177. http://www.sciencedirect.com/science/article/B6V24-50H224F-26/2/7d8ff147867ba9a591802fbe9a27efb5 The role of biochemical engineering in the production of biofuels from microalgae Costa J.A.V., de Morais M.G., 2011. Bioresource Technology 102, 2–9. http://www.sciencedirect.com/science/article/B6V24-50DXCY5-2/2/ce86ed89e6607fc97409a06ab4c9dc7a Engineered microbial systems for enhanced conversion of lignocellulosic biomass Elkins J.G., Raman B., Keller M., 2010. Current Opinion in Biotechnology 21, 657–662. http://www.sciencedirect.com/science/article/B6VRV-50CVH8X-1/2/29d58b4488aeb6932d4b711b7fb318a6 Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid Ethier S., Woisard K., Vaughan D., Wen Z., 2011. Bioresource Technology 102, 88–93. http://www.sciencedirect.com/science/article/B6V24-506H0ND-5/2/cc942ba8fa79de4403ba0a064d844719 Oil extraction from microalgae for biodiesel production Halim R., Gladman B., Danquah M.K., Webley P.A., 2011. Bioresource Technology 102, 178–185. http://www.sciencedirect.com/science/article/B6V24-50H224F-28/2/3c858aefd98aad96c66e388f1ae335f2 Oil accumulation via heterotrophic/bixotrophic Chlorella protothecoides Heredia-Arroyo T., Wei W., Hu B., 2010. Applied Biochemistry and Biotechnology 162, 1978–1995. http://dx.doi.org/10.1007/s12010-010-8974-4 Micro and macroalgal biomass: A renewable source for bioethanol John R.P., Anisha G.S., Nampoothiri K.M., Pandey A., 2011. Bioresource Technology 102, 186–193. http://www.sciencedirect.com/science/article/B6V24-50H224F-2C/2/88247239815de477aefc090937836269 Production of algae-based biodiesel using the continuous catalytic McgyanÒ process Krohn B.J., McNeff C.V., Yan B., Nowlan D., 2011. Bioresource Technology 102, 94–100. http://www.sciencedirect.com/science/article/B6V24-50BBST8-1/2/a7e67afc3e6ac870ceee99d2142c927a Algal biodiesel economy and competition among bio-fuels Lee D.H., 2011. Bioresource Technology 102, 43–49. http://www.sciencedirect.com/science/article/B6V24-50GKC6F-4/2/d1baa2325e00759919d0a72fcd5614e9 Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions Li Y., Han D., Sommerfeld M., Hu Q., 2011. Bioresource Technology 102, 123–129. http://www.sciencedirect.com/science/article/B6V24-50F369X-B/2/b2e412b4d7330a09ec2cf4544d65ae00 Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production Liu J., Huang J., Sun Z., Zhong Y., Jiang Y., Chen F., 2011. Bioresource Technology 102, 106–110. http://www.sciencedirect.com/science/article/B6V24-50DNKP9-4/2/f55747f508102b5302368b12d9e51300 Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation Mairet F., Bernard O., Masci P., Lacour T., Sciandra A., 2011. Bioresource Technology 102, 142–149. http://www.sciencedirect.com/science/article/B6V24-50H224F-2B/2/6d86a5d7e4d8f17bb43a3c6590bad658 Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production Mutanda T., Ramesh D., Karthikeyan S., Kumari S., Anandraj A., Bux F., 2011. Bioresource Technology 102, 57–70. http://www.sciencedirect.com/science/article/B6V24-50H224F-9/2/99cbe92de359591b90ba907c3a1598bd
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e31
Growth and neutral lipid synthesis in green microalgae: a mathematical model Packer A., Li Y., Andersen T., Hu Q., Kuang Y., Sommerfeld M., 2011. Bioresource Technology 102, 111–117. http://www.sciencedirect.com/science/article/B6V24-50GKC6F-3/2/bf65be67335cf0047f771989f6fcba0a Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application Pruvost J., Van Vooren G., Le Gouic B., Couzinet-Mossion A., Legrand J., 2011. Bioresource Technology 102, 150–158. http://www.sciencedirect.com/science/article/B6V24-50H224F-2V/2/4fc28e18f56ce809c3bff2c3d3d10a71 Mechanism and challenges in commercialisation of algal biofuels Singh A., Nigam P.S., Murphy J.D., 2011. Bioresource Technology 102, 26–34. http://www.sciencedirect.com/science/article/B6V24-50G5H1F-3/2/da8f6b94eec3a9ca64033b1f420e2acd Renewable fuels from algae: an answer to debatable land based fuels Singh A., Nigam P.S., Murphy J.D., 2011. Bioresource Technology 102, 10–16. http://www.sciencedirect.com/science/article/B6V24-50GC5WB-3/2/0a4590052fc542b562a9d041b374ec5d Biofuel production by in vitro synthetic enzymatic pathway biotransformation Zhang Y.H.P., Sun J., Zhong J.-J., 2010. Current Opinion in Biotechnology 21, 663–669. http://www.sciencedirect.com/science/article/B6VRV-50BMFFY-1/2/a1129b15d44e334cde80b22d941e6126
Biogeochemistry Microbial deposits in upper Miocene carbonates, Mallorca, Spain Arenas C., Pomar L., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 465–485. http://www.sciencedirect.com/science/article/B6V6R-50XS6RK-8/2/5afc3feba90aca236d99d81f3964cd44 The utility of Shewanella japonica for microbial fuel cells Biffinger J.C., Fitzgerald L.A., Ray R., Little B.J., Lizewski S.E., Petersen E.R., Ringeisen B.R., Sanders W.C., Sheehan P.E., Pietron J.J., Baldwin J.W., Nadeau L.J., Johnson G.R., Ribbens M., Finkel S.E., Nealson K.H., 2011. Bioresource Technology 102, 290–297. http://www.sciencedirect.com/science/article/B6V24-50H224F-B/2/ca2c4063c3982a861b169fef41f68238 The biogeochemical cycle of iron in the ocean Boyd P.W., Ellwood M.J., 2010. Nature Geoscience 3, 675–682. http://dx.doi.org/10.1038/ngeo964 The evolution and future of Earth’s nitrogen cycle Canfield D.E., Glazer A.N., Falkowski P.G., 2010. Science 330, 192–196. http://www.sciencemag.org/cgi/content/abstract/330/6001/192 Microscopy study of biologically mediated alteration of natural mid-oceanic ridge basalts and magnetic implications Carlut J., Benzerara K., Horen H., Menguy N., Janots D., Findling N., Addad A., Machouk I., 2010. Journal of Geophysical Research – Biogeosciences 115, Citation No. G00G11. http://dx.doi.org/10.1029/2009JG001139 Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW China Deng S., Dong H., Lv G., Jiang H., Yu B., Bishop M.E., 2010. Chemical Geology 278, 151–159. http://www.sciencedirect.com/science/article/B6V5Y-5120K61-1/2/6f248f9055f0c27c4e7dd59ca514dc9e Ferrous iron oxidation in moderately thermophilic acidophile Sulfobacillus sibiricus N1T Dinarieva T.Y., Zhuravleva A.E., Pavlenko, Oksana A., Tsaplina I.A., Netrusov A.I., 2010. Canadian Journl of Microbiology 56, 803–808. http://rparticle.web-p.cisti.nrc.ca/rparticle/AbstractTemplateServlet?calyLang=eng&journal=cjm&volume=56&year=0&issue=10& msno=w10-063 Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1 El-Naggar M.Y., Wanger G., Leung K.M., Yuzvinsky T.D., Southam G., Yang J., Lau W.M., Nealson K.H., Gorby Y.A., 2010. Proceedings of the National Academy of Sciences 107, 18127–18131. http://www.pnas.org/content/107/42/18127.abstract Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell Feng Y., Yang Q., Wang X., Liu Y., Lee H., Ren N., 2011. Bioresource Technology 102, 411–415. http://www.sciencedirect.com/science/article/B6V24-50B49P8-4/2/965cf596207ebd8564994330f5633b19
e32
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell Finch A.S., Mackie T.D., Sund C.J., Sumner J.J., 2011. Bioresource Technology 102, 312–315. http://www.sciencedirect.com/science/article/B6V24-50H224F-2P/2/e6ba1e9748b097ef3b1c42f219531c75
Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells Huang L., Regan J.M., Quan X., 2011. Bioresource Technology 102, 316–323. http://www.sciencedirect.com/science/article/B6V24-50H224F-W/2/126f9e23635125ddc8714ba0ce918732
Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes Liu W., Wang A., Cheng S., Logan B.E., Yu H., Deng Y., Nostrand J.D.V., Wu L., He Z., Zhou J., 2010. Environmental Science & Technology 44, 7729–7735. http://dx.doi.org/10.1021/es100608a Acquisition of iron by alkaliphilic Bacillus species McMillan D.G.G., Velasquez I., Nunn B.L., Goodlett D.R., Hunter K.A., Lamont I., Sander S.G., Cook G.M., 2010. Applied and Environmental Microbiology 76, 6955–6961. http://aem.asm.org/cgi/content/abstract/76/20/6955
Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Rosenbaum M., Aulenta F., Villano M., Angenent L.T., 2011. Bioresource Technology 102, 324–333. http://www.sciencedirect.com/science/article/B6V24-50H224F-3D/2/d14b3aa771f511d2d041d06626d5cc6a Micro-sized microbial fuel cell: a mini-review Wang H.-Y., Bernarda A., Huang C.-Y., Lee D.-J., Chang J.-S., 2011. Bioresource Technology 102, 235–243. http://www.sciencedirect.com/science/article/B6V24-50H224F-3B/2/298ccf97bed968eb505c24297f67bad7
Biogeochemistry: cryptic wetlands Yavitt J.B., 2010. Nature Geoscience 3, 749–750. http://dx.doi.org/10.1038/ngeo999 Carbon Cycle/Sequestration The deep carbon cycle and melting in Earth’s interior Dasgupta R., Hirschmann M.M., 2010. Earth and Planetary Science Letters 298, 1–13. http://www.sciencedirect.com/science/article/B6V61-50M0TR0-3/2/eb2db410c2a68318c32929f7727da392
On the development of a high-performance tool for the simulation of CO2 injection into deep saline aquifers Douglas C., Furtado F., Ginting V., Mendes M., Pereira F., Piri M., 2010. Rocky Mountain Geology 45, 151–161. http://rmg.geoscienceworld.org/cgi/content/abstract/45/2/151
Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane Etiope G., Klusman R.W., 2010. Global and Planetary Change 72, 265–274. http://www.sciencedirect.com/science/article/B6VF0-4Y6J3WS-1/2/187ae1cfd0813b4da89e6007871d50e0
Geologic carbon sequestration in Wyoming: prospects and progress Frost C.D., Jakle A.C., 2010. Rocky Mountain Geology 45, 83–91. http://rmg.geoscienceworld.org/cgi/content/abstract/45/2/83
Cyberinfrastructure for collaborative geologic carbon sequestration research: a conceptual model Hamerlinck J.D., Wyckoff T.B., Oakleaf J.R., Polzer P.L., 2010. Rocky Mountain Geology 45, 163–180. http://rmg.geoscienceworld.org/cgi/content/abstract/45/2/163
Methane emissions from tank bromeliads in neotropical forests Martinson G.O., Werner F.A., Scherber C., Conrad R., Corre M.D., Flessa H., Wolf K., Klose M., Gradstein S.R., Veldkamp E., 2010. Nature Geoscience 3, 766–769. http://dx.doi.org/10.1038/ngeo980
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e33
Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Smemo K.A., Yavitt J.B., 2010. Biogeosciences Discussions 7, 7945–7983. http://www.biogeosciences-discuss.net/7/7945/2010/ Baseline geochemical characterization of potential receiving reservoirs for carbon dioxide in the Greater Green River Basin, Wyoming Smith M.S., Sharma S., Wyckoff T.B., Frost C.D., 2010. Rocky Mountain Geology 45, 93–111. http://rmg.geoscienceworld.org/cgi/content/abstract/45/2/93 Dissolved organic carbon export and internal cycling in small, headwater lakes Stets E.G., Striegl R.G., Aiken G.R., 2010. Global Biogeochemical Cycles 24, Citation No. GB4008. http://dx.doi.org/10.1029/2010GB003815 Characterization of porosity and permeability for CO2 sequestration models in the Mississippian Madison Group, Moxa Arch-LaBarge Platform, southwestern Wyoming Thyne G.D., Tomasso M., Bywater-Reyes S.V., Budd D.A., Reyes B.M., 2010. Rocky Mountain Geology 45, 133–150. http://rmg.geoscienceworld.org/cgi/content/abstract/45/2/133 Coal/peat/Lignite Geochemistry Aromatic hydrocarbons distribution in Nigerian coal and their geochemical significance Adedosu T.A., Sonibare O.O., Tuo J., Ekundayo O., 2011. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33, 145– 155. http://www.informaworld.com/10.1080/15567030902937200 Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal Battistutta E., van Hemert P., Lutynski M., Bruining H., Wolf K.-H., 2010. International Journal of Coal Geology 84, 39–48. http://www.sciencedirect.com/science/article/B6V8C-50THX53-1/2/820923373114c329b534c8ca8729bd9c Direct determination of pyrite content in Argonne Premium Coals by the use of sulfur X-ray near edge absorption spectroscopy (SXANES) Bolin T.B., 2010. Energy & Fuels 24, 5479–5482. http://dx.doi.org/10.1021/ef100444p European inter-laboratory comparison of high pressure CO2 sorption isotherms. II: Natural coals Gensterblum Y., van Hemert P., Billemont P., Battistutta E., Busch A., Krooss B.M., De Weireld G., Wolf K.H.A.A., 2010. International Journal of Coal Geology 84, 115–124. http://www.sciencedirect.com/science/article/B6V8C-511K3M2-1/2/cc66ff0062b9137efaf879a975745fee Quantitative palynofacies analysis as a new tool to study transfers of fossil organic matter in recent terrestrial environments Graz Y., Di-Giovanni C., Copard Y., Laggoun-Défarge F., Boussafir M., Lallier-Vergès E., Baillif P., Perdereau L., Simonneau A., 2010. International Journal of Coal Geology 84, 49–62. http://www.sciencedirect.com/science/article/B6V8C-50VKM7Y-1/2/7579819eeab8bc58532468b27c94fe52 Chemical structure of semifusinite and fusinite of steam and coking coal from the Upper Silesian Coal Basin (Poland) and its changes during heating as inferred from micro-FTIR analysis Morga R., 2010. International Journal of Coal Geology 84, 1–15. http://www.sciencedirect.com/science/article/B6V8C-50J9GRH-1/2/a0797b5cdeb5746f2242f898f89a7682 Variations in coal characteristics and their possible implications for CO2 sequestration: tanquary injection site, southeastern Illinois, USA Morse D.G., Mastalerz M., Drobniak A., Rupp J.A., Harpalani S., 2010. International Journal of Coal Geology 84, 25–38. http://www.sciencedirect.com/science/article/B6V8C-50R6K8S-1/2/1a36259d22cbf46b73aa155e69f38adb Identification of dihydroxy aromatic compounds in a low-temperature pyrolysis coal tar by gas chromatography–mass spectrometry (GC–MS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) Shi Q., Yan Y., Wu X., Li S., Chung K.H., Zhao S., Xu C., 2010. Energy & Fuels 24, 5533–5538. http://pubs.acs.org/doi/abs/10.1021/ef1007352 Variation of moisture content of the bituminous coals with depth: a case study from the Czech part of the Upper Silesian Coal Basin Sivek M., Jirásek J., Sedlácˇková L., Cˇáslavsky´ M., 2010. International Journal of Coal Geology 84, 16–24. http://www.sciencedirect.com/science/article/B6V8C-50M1RNN-1/2/492e6477119078c5110a0324f87597b2
e34
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Cosmochemistry Formation of molecules in bright meteors Berezhnoy A.A., Borovicka J., 2010. Icarus 210, 150–157. http://www.sciencedirect.com/science/article/B6WGF-50FGYBH-3/2/24eec39110e2c99a1757f61bfc4fc6fd Detection and mapping of hydrocarbon deposits on Titan Clark R.N., Curchin J.M., Barnes J.W., Jaumann R., Soderblom L., Cruikshank D.P., Brown R.H., Rodriguez S., Lunine J., Stephan K., Hoefen T.M., Le Mouélic S., Sotin C., Baines K.H., Buratti B.J., Nicholson P.D., 2010. Journal of Geophysical Research – Planets 115, Citation No. E10005. http://dx.doi.org/10.1029/2009JE003369 Seasonality of present-day Martian dune-gully activity Diniega S., Byrne S., Bridges N.T., Dundas C.M., McEwen A.S., 2010. Geology 38, 1047–1050. http://geology.gsapubs.org/content/38/11/1047.abstract Planetary science: hidden martian carbonates Glotch T.D., 2010. Nature Geoscience 3, 745–746. http://dx.doi.org/10.1038/ngeo1001 Laser scanning confocal microscopy of comet material in aerogel Greenberg M., Ebel D.S., 2010. Geosphere 6, 515–523. http://geosphere.gsapubs.org/content/6/5/515.abstract Planetary Trojans – the main source of short period comets? Horner J., Lykawka P.S., 2010. International Journal of Astrobiology 9, 227–234. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7909959&fulltextType=RA&fileId=S1473550410000212 Liquid water found on Mars, but it’s still a hard road for life Kerr R.A., 2010. Science 330, 571. http://www.sciencemag.org/cgi/content/full/330/6004/571-a High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: role of ambient gas during chondrule formation Kita N.T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M.J., Fournelle J.H., Valley J.W., 2010. Geochimica et Cosmochimica Acta 74, 6610–6635. http://www.sciencedirect.com/science/article/B6V66-50SGPJ2-2/2/9895b59a381a1db8ca22943ed796849e Evidence for a cosmogenic origin of fired glaciofluvial beds in the northwestern Andes: correlation with experimentally heated quartz and feldspar Mahaney W.C., Krinsley D., Kalm V., 2010. Sedimentary Geology 231, 31–40. http://www.sciencedirect.com/science/article/B6V6X-50W1TJ1-3/2/17bd865756d5e0279bc7278edac59081 Deep crustal carbonate rocks exposed by meteor impact on Mars Michalski J.R., Niles P.B., 2010. Nature Geoscience 3, 751–755. http://dx.doi.org/10.1038/ngeo971 Abundances of Jupiter’s trace hydrocarbons from Voyager and Cassini Nixon C.A., Achterberg R.K., Romani P.N., Allen M., Zhang X., Teanby N.A., Irwin P.G.J., Flasar F.M., 2010. Planetary and Space Science 58, 1667–1680. http://www.sciencedirect.com/science/article/B6V6T-5051PMB-3/2/0071d190a749b6d7accff907f149605c Combined experimental and theoretical studies on methane photolysis at 121.6 nm and 248 nm – implications on a program of laboratory simulations of Titan’s atmosphere Romanzin C., Arzoumanian E., Es-sebbar E., Jolly A., Perrier S., Gazeau M.C., Bénilan Y., 2010. Planetary and Space Science 58, 1748–1757. http://www.sciencedirect.com/science/article/B6V6T-50GJ2P7-1/2/b1a37bbb0e91884f8ae8d7db4191b145 Thermochemolysis of the Murchison meteorite: identification of oxygen bound and occluded units in the organic macromolecule Watson J.S., Sephton M.A., Gilmour I., 2010. International Journal of Astrobiology 9, 201–208. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7909953&fulltextType=RA&fileId=S1473550410000194 Volatile accretion history of the Earth Wood B.J., Halliday A.N., Rehkamper M., 2010. Nature 467, E6–E7. http://dx.doi.org/10.1038/nature09484
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e35
Environmental geochemistry Relation between the activity of anaerobic microbial populations in oil sands tailings ponds and the sedimentation of tailings Bordenave S., Kostenko V., Dutkoski M., Grigoryan A., Martinuzzi R.J., Voordouw G., 2010. Chemosphere 81, 663–668. http://www.sciencedirect.com/science/article/B6V74-50TYGX0-2/2/c8d368245b590b4e2a7f259e6cd89d87 Nutrient and oxygen concentrations within the sediments of an Alaskan beach polluted with the Exxon Valdez oil spill Boufadel M.C., Sharifi Y., Van Aken B., Wrenn B.A., Lee K., 2010. Environmental Science & Technology 44, 7418–7424. http://dx.doi.org/10.1021/es102046n Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon Camilli R., Reddy C.M., Yoerger D.R., Van Mooy B.A.S., Jakuba M.V., Kinsey J.C., McIntyre C.P., Sylva S.P., Maloney J.V., 2010. Science 330, 201– 204. http://www.sciencemag.org/cgi/content/abstract/330/6001/201 Magnitude of the 2010 Gulf of Mexico oil leak Crone T.J., Tolstoy M., 2010. Science 330, 634. http://www.sciencemag.org/cgi/content/abstract/330/6004/634 Extent and frequency of vessel oil spills in US marine protected areas Dalton T., Jin D., 2010. Marine Pollution Bulletin 60, 1939–1945. http://www.sciencedirect.com/science/article/B6V6N-50VSVKN-1/2/fc83b0f66daaca43636d6cd32505f59a Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site Diercks A.-R., Highsmith R.C., Asper V.L., Joung D., Zhou Z., Guo L., Shiller A.M., Joye S.B., Teske A.P., Guinasso N., Wade T.L., Lohrenz S.E., 2010. Geophysical Research Letters 37, Citation No. L20602. http://dx.doi.org/10.1029/2010GL045046 Naphthenic acids and other acid-extractables in water samples from Alberta: what is being measured? Grewer D.M., Young R.F., Whittal R.M., Fedorak P.M., 2010. Science of the Total Environment 408, 5997–6010. http://www.sciencedirect.com/science/article/B6V78-510246X-5/2/b4969bf36edc594bcaac9f1c087e055a Surface-enhanced Raman spectroscopy (SERS) for environmental analyses Halvorson R.A., Vikesland P.J., 2010. Environmental Science & Technology 44, 7749–7755. http://dx.doi.org/10.1021/es101228z Deep-sea oil plume enriches indigenous oil-degrading bacteria Hazen T.C., Dubinsky E.A., DeSantis T.Z., Andersen G.L., Piceno Y.M., Singh N., Jansson J.K., Probst A., Borglin S.E., Fortney J.L., Stringfellow W.T., Bill M., Conrad M.E., Tom L.M., Chavarria K.L., Alusi T.R., Lamendella R., Joyner D.C., Spier C., Baelum J., Auer M., Zemla M.L., Chakraborty R., Sonnenthal E.L., D’haeseleer P., Holman H.-Y.N., Osman S., Lu Z., Van Nostrand J.D., Deng Y., Zhou J., Mason O.U., 2010. Science 330, 204–208. http://www.sciencemag.org/cgi/content/abstract/330/6001/204 Application of the synthetic aperture radar for monitoring activity and environmental parameters during oil-platform installation Ivanov A.Y., 2010. International Journal of Remote Sensing 31, 4835–4851. http://www.informaworld.com/10.1080/01431161.2010.485221 The oil spill from a shipwreck in Kerch Strait: radar monitoring and numerical modelling Ivanov A.Y., 2010. International Journal of Remote Sensing 31, 4853–4868. http://www.informaworld.com/10.1080/01431161.2010.485215 Biogenic hydrocarbons and their effect on oil pollution estimates of the Sea of Azov Klenkin A.A., Pavlenko L.F., Skrypnik G.V., Larin A.A., 2010. Water Resources 37, 699–705. http://dx.doi.org/10.1134/S009780781005009X The M/V Cosco Busan spill: source identification and short-term fate Lemkau K.L., Peacock E.E., Nelson R.K., Ventura G.T., Kovecses J.L., Reddy C.M., 2010. Marine Pollution Bulletin 60, 2123–2129. http://www.sciencedirect.com/science/article/B6V6N-514YTGM-1/2/ff69281c26471452255f864c81dfd104 Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm Liu P., Zhao C., Li X., He M., Pichel W., 2010. International Journal of Remote Sensing 31, 4819–4833. http://www.informaworld.com/10.1080/01431161.2010.485147
e36
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
An investigation into the occurrence and distribution of polycyclic aromatic hydrocarbons in two soil size fractions at a former industrial site in NE England, UK using in situ PFE–GC–MS Lorenzi D., Cave M., Dean J.R., 2010. Environmental Geochemistry and Health 32, 553–565. http://dx.doi.org/10.1007/s10653-010-9316-8 Ozonation of oil sands process-affected water accelerates microbial bioremediation Martin J.W., Barri T., Han X., Fedorak P.M., El-Din M.G., Perez L., Scott A.C., Jiang J.T., 2010. Environmental Science & Technology 44, 8350– 8356. http://dx.doi.org/10.1021/es101556z A new mixing diagnostic and Gulf oil spill movement Mezic I., Loire S., Fonoberov V.A., Hogan P., 2010. Science 330, 486–489. http://www.sciencemag.org/cgi/content/abstract/330/6003/486 Stable isotopes trace estuarine transformations of carbon and nitrogen from primary- and secondary-treated paper and pulp mill effluent Oakes J.M., Eyre B.D., Ross D.J., Turner S.D., 2010. Environmental Science & Technology 44, 7411–7417. http://dx.doi.org/10.1021/es101789v Validating a multi-biomarker approach with the shanny Lipophrys pholis to monitor oil spills in European marine ecosystems Santos M.M., Solé M., Lima D., Hambach B., Ferreira A.M., Reis-Henriques M.A., 2010. Chemosphere 81, 685–691. http://www.sciencedirect.com/science/article/B6V74-50VSV80-5/2/4521894291898626aa3ebc886f304a69 Propane respiration jump-starts microbial response to a deep oil spill Valentine D.L., Kessler J.D., Redmond M.C., Mendes S.D., Heintz M.B., Farwell C., Hu L., Kinnaman F.S., Yvon-Lewis S., Du M., Chan E.W., Tigreros F.G., Villanueva C.J., 2010. Science 330, 208–211. http://www.sciencemag.org/cgi/content/abstract/330/6001/208 Comparison between petroleum hydrocarbon concentrations and magnetic properties in Chennai coastal sediments, Bay of Bengal, India Venkatachalapathy R., Veerasingam S., Basavaiah N., Ramkumar T., 2010. Marine and Petroleum Geology 27, 1927–1935. http://www.sciencedirect.com/science/article/B6V9Y-50JHC0R-1/2/743bc1e15d18ee1e59a0e17457ca75ae Petroleum hydrocarbon concentrations in marine sediments along Chennai Coast, Bay of Bengal, India Venkatachalapathy R., Veerasingam S., Ramkumar T., 2010. Bulletin of Environmental Contamination and Toxicology 85, 397–401. http://dx.doi.org/10.1007/s00128-010-0097-7 Biodegradability of lingering crude oil 19 years after the Exxon Valdez oil spill Venosa A.D., Campo P., Suidan M.T., 2010. Environmental Science & Technology 44, 7613–7621. http://dx.doi.org/10.1021/es101042h Hydrodynamic factors affecting the persistence of the Exxon Valdez oil in a shallow bedrock beach Xia Y., Li H., Boufadel M.C., Sharifi Y., 2010. Water Resource Research 46, Citation No. W10528. http://dx.doi.org/10.1029/2010WR009179 Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments Yang Y., Mahler B.J., Van Metre P.C., Ligouis B., Werth C.J., 2010. Geochimica et Cosmochimica Acta 74, 6830–6840. http://www.sciencedirect.com/science/article/B6V66-50XV9F5-3/2/a23c5378460c6f32d79b91dfd6e8d80c Evolution/Paleontology/Palynology Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta) Aguirre J., Perfectti F., Braga J.C., 2010. Paleobiology 36, 519–533. http://dx.doi.org/10.1666/09041.1 Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish Dahl T.W., Hammarlund E.U., Anbar A.D., Bond D.P.G., Gill B.C., Gordon G.W., Knoll A.H., Nielsen A.T., Schovsbo N.H., Canfield D.E., 2010. Proceedings of the National Academy of Sciences 107, 17911–17915. http://www.pnas.org/content/107/42/17911.abstract Ediacaran body and trace fossils in Miette Group (Windermere Supergroup) near Salient Mountain, British Columbia, Canada Hofmann H.J., Mountjoy E.W., 2010. Canadian Journal of Earth Sciences 47, 1305–1325. http://rparticle.web-p.cisti.nrc.ca/rparticle/AbstractTemplateServlet?calyLang=eng&journal=cjes&volume=47&year=0&issue=10& msno=e10-070
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e37
The earliest Cambrian record of animals and ocean geochemical change Maloof A.C., Porter S.M., Moore J.L., Dudás F.Ö., Bowring S.A., Higgins J.A., Fike D.A., Eddy M.P., 2010. Geological Society of America Bulletin 122, 1731–1774. http://gsabulletin.gsapubs.org/content/122/11-12/1731.abstract Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana) Rubinstein C.V., Gerrienne P., De La Puente G.S., Astini R.A., Steemans P., 2010. New Phytologist 188, 365–369. http://dx.doi.org/10.1111/j.1469-8137.2010.03433.x Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India Rust J., Singh H., Rana R.S., McCann T., Singh L., Anderson K., Sarkar N., Nascimbene P.C., Stebner F., Thomas J.C., Solórzano Kraemer M., Williams C.J., Engel M.S., Sahni A., Grimaldi D., 2010. Proceedings of the National Academy of Sciences 107, 18360–18365. http://www.pnas.org/content/107/43/18360.abstract Phytochemistry of the fossilized-cuticle frond Macroneuropteris macrophylla (Pennsylvanian seed fern, Canada) Zodrow E.L., D’Angelo J.A., Mastalerz M., Cleal C.J., Keefe D., 2010. International Journal of Coal Geology 84, 71–82. http://www.sciencedirect.com/science/article/B6V8C-50VKM7Y-2/2/25d095f8237ed197b4b1129b93e98b3f Evolution: Origins of Life/Microbial Genomics Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function Cotton J.A., McInerney J.O., 2010. Proceedings of the National Academy of Sciences 107, 17252–17255. http://www.pnas.org/content/107/40/17252.abstract Correlation between the extent of catalytic activity and charge density of montmorillonites Ertem G., Steudel A., Emmerich K., Lagaly G., Schuhmann R., 2010. Astrobiology 10, 743–749. http://www.liebertonline.com/doi/abs/10.1089/ast.2009.0436 Synthesis of glycine-containing complexes in impacts of comets on early Earth Goldman N., Reed E.J., Fried L.E., William Kuo I.F., Maiti A., 2010. Nature Chemistry 2, 949–954. http://dx.doi.org/10.1038/nchem.827 Surprising flexibility in a conserved Hox transcription factor over 550 million years of evolution Heffer A., Shultz J.W., Pick L., 2010. Proceedings of the National Academy of Sciences 107, 18040–18045. http://www.pnas.org/content/107/42/18040.abstract On the origin and evolution of life in the Galaxy McCabe M., Lucas H., 2010. International Journal of Astrobiology 9, 217–226. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7909986&fulltextType=RA&fileId=S1473550410000340 Serpentine and serpentinization: a link between planet formation and life Müntener O., 2010. Geology 38, 959–960. http://geology.gsapubs.org/content/38/10/959.short The first eukaryote cell: an unfinished history of contestation O’Malley M.A., 2010. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41, 212–224. http://www.sciencedirect.com/science/article/B6VHP-50PB9TG-1/2/6b86ebbc5f01f6fe6531ba4d0731c3f1 Effects of pH and temperature on dimerization rate of glycine: evaluation of favorable environmental conditions for chemical evolution of life Sakata K., Kitadai N., Yokoyama T., 2010. Geochimica et Cosmochimica Acta 74, 6841–6851. http://www.sciencedirect.com/science/article/B6V66-50W80Y2-8/2/569aa25488708ffb4432a45a406d8368 The voyage of the microbial eukaryote Worden A.Z., Allen A.E., 2010. Current Opinion in Microbiology 13, 652–660. http://www.sciencedirect.com/science/article/B6VS2-510103T-1/2/71e7db8c687a59c6cb67b316b3e7a7c8 Fluid Inclusions Fluid inclusion geobarometry: pressure corrections for immiscible H2O–CH4 and H2O–CO2 fluids Hurai V., 2010. Chemical Geology 278, 201–211. http://www.sciencedirect.com/science/article/B6V5Y-514P601-1/2/ef7f4eb5231b1c2ad290b7cdf5358117 Fluid inclusion evidence for petroleum accumulation in northern Qaidam Basin Yang Y., Li X., Feng S., Wang K., Kong L., Dong P., Xu F., Peng D., Chen Y., 2010. Chinese Journal of Geochemistry 29, 422–430. http://dx.doi.org/10.1007/s11631-010-0475-1
e38
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Geology Mud volcanoes as potential indicators of regional stress and pressurized layer depth Bonini M., Mazzarini F., 2010. Tectonophysics 494, 32–47. http://www.sciencedirect.com/science/article/B6V72-50YF6DK-1/2/1ec96f6af8bf269550fa947ff0be7cde Fluid sources and hydrothermal architecture of the Sudbury Structure: constraints from femtosecond LA-MC-ICP-MS Sr isotopic analysis of hydrothermal epidote and calcite Campos-Alvarez N.O., Samson I.M., Fryer B.J., Ames D.E., 2010. Chemical Geology 278, 131–150. http://www.sciencedirect.com/science/article/B6V5Y-511G1VN-2/2/2217b86862681ab38cc1e699c24b74fc A record of ancient cataclysm in modern sand: shock microstructures in detrital minerals from the Vaal River, Vredefort Dome, South Africa Cavosie A.J., Quintero R.R., Radovan H.A., Moser D.E., 2010. Geological Society of America Bulletin 122, 1968–1980. http://gsabulletin.gsapubs.org/content/122/11-12/1968.abstract The mechanisms of pyrite oxidation and leaching: a fundamental perspective Chandra A.P., Gerson A.R., 2010. Surface Science Reports 65, 293–315. http://www.sciencedirect.com/science/article/B6TVY-514Y7YM-1/2/78e82ebc925b8c6cee3451c60891279b Late Miocene seep-carbonates and fluid migration on top of the Montepetra intrabasinal high (northern Apennines, Italy): relations with synsedimentary folding Conti S., Fontana D., Mecozzi S., Panieri G., Pini G.A., 2010. Sedimentary Geology 231, 41–54. http://www.sciencedirect.com/science/article/B6V6X-50S2RCD-1/2/35f706af19cb112239b1ec9b0389ae62 Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?) Evans B.W., 2010. Geology 38, 879–882. http://geology.gsapubs.org/content/38/10/879.abstract The paleoredox setting of Burgess Shale-type deposits Gaines R.R., Droser M.L., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 649–661. http://www.sciencedirect.com/science/article/B6V6R-5120KB3-4/2/bee547cd71d3181c2e6ed6a26420623b SHRIMP in situ isotopic analyses of REE, Pb and U in micro-minerals bearing fission products in the Oklo and Bangombé natural reactors: a review of a natural analogue study for the migration of fission products Hidaka H., Kikuchi M., 2010. Precambrian Research 183, 158–165. http://www.sciencedirect.com/science/article/B6VBP-50P4N8K-1/2/446ae816e2059206be9e39ba77066182 Low silica activity for hydrogen generation during serpentinization: an example of natural serpentinites in the Mineoka ophiolite complex, central Japan Katayama I., Kurosaki I., Hirauchi K.-I., 2010. Earth and Planetary Science Letters 298, 199–204. http://www.sciencedirect.com/science/article/B6V61-50W11T5-2/2/ab3c50998ec34d6d7b981bc1eee77dcf Role of organic matter in the accumulation of platinum in oceanic ferromanganese deposits Kubrakova I.V., Koshcheeva I.Y., Tyutyunnik O.A., Asavin A.M., 2010. Geochemistry International 48, 655–663. http://dx.doi.org/10.1134/S0016702910070037 Carbon isotopic compositions of pore and matrix carbonates in carbonate nodules, and origin of carbonate formation Liu L., Yin Q.Z., Wu H., Guo Z.T., 2010. Chinese Science Bulletin 55, 2926–2929. http://dx.doi.org/10.1007/s11434-010-4073-8 Follow the water: connecting a CO2 reservoir and bleached sandstone to iron-rich concretions in the Navajo Sandstone of south-central Utah, USA Loope D.B., Kettler R.M., Weber K.A., 2010. Geology 38, 999–1002. http://geology.gsapubs.org/content/38/11/999.abstract Grain coatings: diagenesis of Jurassic sandstones in south-central Utah and implications for targeting fossil microbes on Mars Mahaney W.C., Netoff D.I., Dohm J., Hancock R.G.V., Krinsley D., 2010. Sedimentary Geology 230, 1–9. http://www.sciencedirect.com/science/article/B6V6X-50DYH5X-1/2/f18d90f449419fd8741990f65e2b5644 The evolution of the marine phosphate reservoir Planavsky N.J., Rouxel O.J., Bekker A., Lalonde S.V., Konhauser K.O., Reinhard C.T., Lyons T.W., 2010. Nature 467, 1088–1090. http://dx.doi.org/10.1038/nature09485
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e39
Hydrates Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics – Results from the combination of CT imaging with mineralogical and stable isotope analyses Bahr A., Pape T., Abegg F., Bohrmann G., van Weering T., Ivanov M.K., 2010. Marine and Petroleum Geology 27, 1819–1829. http://www.sciencedirect.com/science/article/B6V9Y-50W80YR-1/2/3ffe20e405e8568dcc587320f9ac7b76 Massive methane release triggered by seafloor erosion offshore southwestern Japan Bangs N.L., Hornbach M.J., Moore G.F., Park J.O., 2010. Geology 38, 1019–1022. http://geology.gsapubs.org/content/38/11/1019.abstract Effects of multiphase methane supply on hydrate accumulation and fracture generation Daigle H., Dugan B., 2010. Geophysical Research Letters 37, Citation No. L20301. http://dx.doi.org/10.1029/2010GL044970 Methane recycling between hydrate and critically pressured stratigraphic traps, offshore Mauritania Davies R.J., Clarke A.L., 2010. Geology 38, 963–966. http://geology.gsapubs.org/content/38/11/963.abstract Effect of cooling rate on methane hydrate formation in media Jiang G., Wu Q., Zhan J., 2010. Fluid Phase Equilibria 298, 225–230. http://www.sciencedirect.com/science/article/B6TG2-50R22YJ-1/2/db4aa78e21ec3cf25eaf6ff7b7699e4f Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico Klapp S.A., Murshed M.M., Pape T., Klein H., Bohrmann G., Brewer P.G., Kuhs W.F., 2010. Earth and Planetary Science Letters 299, 207–217. http://www.sciencedirect.com/science/article/B6V61-514FW2D-1/2/7c898bd370397139686419d1157edb89 Destabilization of marine gas hydrate-bearing sediments induced by a hot wellbore: a numerical approach Kwon T.-H., Song K.-I., Cho G.-C., 2010. Energy & Fuels 24, 5493–5507. http://dx.doi.org/10.1021/ef100596x Frontal ridge slope failure at the northern Cascadia margin: margin-normal fault and gas hydrate control López C., Spence G., Hyndman R., Kelley D., 2010. Geology 38, 967–970. http://geology.gsapubs.org/content/38/11/967.abstract Electric field responses of different gas hydrate models excited by a horizontal electric dipole source with changing arrangements Ming D., Wenbo W., Wenbo Z., Yan S., Yanjun L., Meng W., 2010. Petroleum Exploration and Development 37, 438–442. http://www.sciencedirect.com/science/article/B983W-516M49T-6/2/c07024749d59aa6e7ba9c919b342957e Isotope Geochemistry Calcium isotope analysis by mass spectrometry Boulyga S.F., 2010. Mass Spectrometry Reviews 29, 685–716. http://dx.doi.org/10.1002/mas.20244 Hydrogen isotopic characteristics and their genetic relationships for individual n-alkanes in plants and sediments from Zoigê marsh sedimentary environment Duan Y., Zheng C.Y., Wu B.X., 2010. Science China Earth Sciences 53, 1329–1334. http://dx.doi.org/10.1007/s11430-010-4009-9 Assessment of grain-scale homogeneity and equilibration of carbon and oxygen isotope compositions of minerals in carbonatebearing metamorphic rocks by ion microprobe Ferry J.M., Ushikubo T., Kita N.T., Valley J.W., 2010. Geochimica et Cosmochimica Acta 74, 6517–6540. http://www.sciencedirect.com/science/article/B6V66-50XV9F5-2/2/6998a9ab220549e92fe4a57889fcfa19 HPLC purification of higher plant-dervied lignin phenols for compound specific radiocarbon analysis Ingalls A.E., Ellis E.E., Santos G.M., McDuffee K.E., Truxal L., Keil R.G., Druffel E.R.M., 2010. Analytical Chemistry 82, 8931–8938. http://pubs.acs.org/doi/abs/10.1021/ac1016584 Leaf wax n-alkane dD values of field-grown barley reflect leaf water dD values at the time of leaf formation Sachse D., Gleixner G., Wilkes H., Kahmen A., 2010. Geochimica et Cosmochimica Acta 74, 6741–6750. http://www.sciencedirect.com/science/article/B6V66-50W80Y2-B/2/cb4aebe5667911659d5d053fc0c9aba4
e40
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: implications for C4 grasslands and hydrologic cycle dynamics Tipple B.J., Pagani M., 2010. Earth and Planetary Science Letters 299, 250–262. http://www.sciencedirect.com/science/article/B6V61-514FW2D-3/2/9853fdf492babc6d37e29e7983d8c843 Within-shell variations in carbon and oxygen isotope compositions of two modern brachiopods from a subtropical shelf environment off Amami-o-shima, southwestern Japan Yamamoto K., Asami R., Iryu Y., 2010. Geochemistry Geophysics Geosystems 11, Citation No. Q10009. http://dx.doi.org/10.1029/2010GC003190 Microbiology/Extremophiles – Microbial Ecology Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach Cardenas E., Wu W.-M., Leigh M.B., Carley J., Carroll S., Gentry T., Luo J., Watson D., Gu B., Ginder-Vogel M., Kitanidis P.K., Jardine P.M., Zhou J., Criddle C.S., Marsh T.L., Tiedje J.M., 2010. Applied and Environmental Microbiology 76, 6778–6786. http://aem.asm.org/cgi/content/abstract/76/20/6778 A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts Csotonyi J.T., Swiderski J., Stackebrandt E., Yurkov V., 2010. Environmental Microbiology Reports 2, 651–656. http://dx.doi.org/10.1111/j.1758-2229.2010.00151.x Halosarcina limi sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halosarcina Cui H.-L., Gao X., Li X.-Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Zhou P.-J., 2010. International Journal of Systematic and Evolutionary Microbiology 60, 2462–3466. http://ijs.sgmjournals.org/cgi/content/abstract/60/10/2462 Complete fluorescent fingerprints of extremophilic and photosynthetic microbes Dartnell L.R., Storrie-Lombardi M.C., Ward J.M., 2010. International Journal of Astrobiology 9, 245–257. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7909962&fulltextType=RA&fileId=S1473550410000224 Changes through time: integrating microorganisms into the study of succession Fierer N., Nemergut D., Knight R., Craine J.M., 2010. Research in Microbiology 161, 635–642. http://www.sciencedirect.com/science/article/B6VN3-50C71VS-1/2/4536a4732867a022ac1bdcad5092215e Picophytoplankton: a major contributor to planktonic biomass and primary production in a eutrophic, river-dominated estuary Gaulke A.K., Wetz M.S., Paerl H.W., 2010. Estuarine, Coastal and Shelf Science 90, 45–54. http://www.sciencedirect.com/science/article/B6WDV-50S8PS5-1/2/c6ea29eef7883f92b4afef5ac4c3ec8a Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris He Q., He Z., Joyner D.C., Joachimiak M., Price M.N., Yang Z.K., Yen H.-C.B., Hemme C.L., Chen W., Fields M.M., Stahl D.A., Keasling, J.D., Keller M., Arkin A.P., Hazen T.C., Wall J.D., Zhou J., 2010. ISME Journal 4, 1386–1397. http://dx.doi.org/10.1038/ismej.2010.59 Similar bacterial community composition in acidic mining lakes with different pH and lake chemistry Kampe H., Dziallas C., Grossart H.-P., Kamjunke N., 2010. Microbial Ecology 60, 618–627. http://dx.doi.org/10.1007/s00248-010-9679-5 Comparative analysis of acidobacterial genomic fragments from terrestrial and aquatic metagenomic libraries, with emphasis on Acidobacteria subdivision 6 Kielak A.M., van Veen J.A., Kowalchuk G.A., 2010. Applied and Environmental Microbiology 76, 6769–6777. http://aem.asm.org/cgi/content/abstract/76/20/6769 Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables Lehours A.-C., Cottrell M.T., Dahan O., Kirchman D.L., Jeanthon C., 2010. FEMS Microbiology Ecology 74, 397–409. http://dx.doi.org/10.1111/j.1574-6941.2010.00954.x Screening of PAH-degrading bacteria in a mangrove swamp using PCR-RFLP Liu H., Yang C., Tian Y., Lin G., Zheng T., 2010. Marine Pollution Bulletin 60, 2056–2061. http://www.sciencedirect.com/science/article/B6V6N-50T0SHF-1/2/cde2c489420fda56b597d6c6641ab655
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e41
Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo) Lliros M., Gich F., Plasencia A., Auguet J.-C., Darchambeau F., Casamayor E.O., Descy J.-P., Borrego C., 2010. Applied and Environmental Microbiology 76, 6853–6863. http://aem.asm.org/cgi/content/abstract/76/20/6853 Halophiles 2010: life in saline environments Ma Y., Galinski E.A., Grant W.D., Oren A., Ventosa A., 2010. Applied and Environmental Microbiology 76, 6971–6981. http://aem.asm.org/cgi/content/full/76/21/6971 Development of an environmental functional gene microarray for soil microbial communities McGrath K.C., Mondav R., Sintrajaya R., Slattery B., Schmidt S., Schenk P.M., 2010. Applied and Environmental Microbiology 76, 7161–7170. http://aem.asm.org/cgi/content/abstract/76/21/7161 Molecular analyses of the diversity in marine bacterioplankton assemblages along the coastline of the northeastern Gulf of Mexico Olapade O.A., 2010. Canadian Journal of Microbiology 56, 853–863. http://rparticle.web-p.cisti.nrc.ca/rparticle/AbstractTemplateServlet?calyLang=eng&journal=cjm&volume=56&year=0&issue=10&msno=w10-069
Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former Homestake Gold Mine, South Dakota Rastogi G., Osman S., Kukkadapu R., Engelhard M.A., Vaishampayan P.L., Andersen G., Sani R.K., 2010. Microbial Ecology 60, 539–550. http://dx.doi.org/10.1007/s00248-010-9657-y
Interactions of Botryococcus braunii cultures with bacterial biofilms Rivas M.O., Vargas P., Riquelme C.A., 2010. Microbial Ecology 60, 628–635. http://dx.doi.org/10.1007/s00248-010-9686-6 Advancing the understanding of biogeography – diversity relationships of benthic microorganisms in the North Sea Sapp M., Parker E.R., Teal L.R., Schratzberger M., 2010. FEMS Microbiology Ecology 74, 410–429. http://dx.doi.org/10.1111/j.1574-6941.2010.00957.x
Agarolytic bacteria with hydrocarbon-utilization potential in fouling material from the Arabian Gulf coast Sorkhoh N.A., Al-Awadhi H., Al-Mailem D.M., Kansour M.K., Khanafer M., Radwan S.S., 2010. International Biodeterioration & Biodegradation 64, 554–559. http://www.sciencedirect.com/science/article/B6VG6-50M0THF-1/2/0bbf7439aed9759b866c1308cbb0be93 Sulfate reducing activity and sulfur isotope fractionation by natural microbial communities in sediments of a hypersaline soda lake (Mono Lake, California) Stam M.C., Mason P.R.D., Pallud C., Van Cappellen P., 2010. Chemical Geology 278, 23–30. http://www.sciencedirect.com/science/article/B6V5Y-50S8PR0-1/2/8252a51584d413bf586650ed88207d77 Haloterrigena daqingensis sp. nov., an extremely haloalkaliphilic archaeon isolated from a saline-alkaline soil Wang S., Yang Q., Liu Z.-H., Sun L., Wei D., Zhang J.-Z., Song J.-Z., Yuan H.-F., 2010. International Journal of Systematic and Evolutionary Microbiology 60, 2267–2271. http://ijs.sgmjournals.org/cgi/content/abstract/60/10/2267 Change of microbial communities in glaciers along a transition of air masses in western China Xiang S.-R., Chen Y., Shang T.-C., Jing Z.-F., Wu G., 2010. Journal of Geophysical Research – Biogeosciences 115, Citation No. G04014. http://dx.doi.org/10.1029/2010JG001298 The isolation, characterization, and diesel oil denitrification of a quinoline-degrading bacteria Xin H., Ke T., 2010. Petroleum Science and Technology 28, 1878–1883. http://www.informaworld.com/10.1080/10916460903329991 Paleoclimatology/Palaeoceanography Oxygen and carbon isotope compositions of middle Cretaceous vertebrates from North Africa and Brazil: ecological and environmental significance Amiot R., Wang X., Lécuyer C., Buffetaut E., Boudad L., Cavin L., Ding Z., Fluteau F., Kellner A.W.A., Tong H., Zhang F., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 439–451. http://www.sciencedirect.com/science/article/B6V6R-50XS6RK-6/2/781d0290b5d687cbf15ce5b1220a5d2b
e42
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Southern Ocean source of 14C-depleted carbon in the North Pacific Ocean during the last deglaciation Basak C., Martin E.E., Horikawa K., Marchitto T.M., 2010. Nature Geoscience 3, 770–773. http://dx.doi.org/10.1038/ngeo987 Branched glycerol dialkyl glycerol tetraethers in lake sediments: can they be used as temperature and pH proxies? Blaga C.I., Reichart G.-J., Schouten S., Lotter A.F., Werne J.P., Kosten S., Mazzeo N., Lacerot G., Sinninghe Damsté J.S., 2010. Organic Geochemistry 41, 1225–1234. http://www.sciencedirect.com/science/article/B6V7P-50M1RVN-1/2/cde852e837b64065583ecee98cd895b5 Toarcian carbon isotope shifts and nutrient changes from the northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications Bodin S., Mattioli E., Fröhlich S., Marshall J.D., Boutib L., Lahsini S., Redfern J., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 377–390. http://www.sciencedirect.com/science/article/B6V6R-50XCY9N-4/2/74c8117d771dcc4c542e96d308d484c8 Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbonisotope curve Boggiani P.C., Gaucher C., Sial A.N., Babinski M., Simon C.M., Riccomini C., Ferreira V.P., Fairchild T.R., 2010. Precambrian Research 182, 382–401. http://www.sciencedirect.com/science/article/B6VBP-508X3KT-3/2/5a68abced454ee0577ba2097b40cf81a Lake Malawi sediment and pore water chemistry: proposition of a conceptual model for stratification intensification since the end of the Little Ice Age Branchu P., Bergonzini L., Pons-branchu E., Violier E., Dittrich M., Massault M., Ghaleb B., 2010. Global and Planetary Change 72, 321–330. http://www.sciencedirect.com/science/article/B6VF0-4Y7P4NS-3/2/5a8d773776f26673d7fcee4f86c0ed25 Paleoredox changes across the Paleocene–Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266): evidence from Mn and U enrichment factors Chun C.O.J., Delaney M.L., Zachos J.C., 2010. Paleoceanography 25, Citation No. PA4202. http://dx.doi.org/10.1029/2009PA001861 The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean Cronin T.M., Hayo K., Thunell R.C., Dwyer G.S., Saenger C., Willard D.A., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 299–310. http://www.sciencedirect.com/science/article/B6V6R-50V5NRM-2/2/c773e81c2f7bd9290d56247f0ab6f1cb New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes Edgar K.M., Wilson P.A., Sexton P.F., Gibbs S.J., Roberts A.P., Norris R.D., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 670–682. http://www.sciencedirect.com/science/article/B6V6R-513F94F-1/2/51714d508eaf3fec872641b75883d401 Paleoceanographic changes at the northern Tethyan margin during the Cenomanian–Turonian Oceanic Anoxic Event (OAE-2) Gebhardt H., Friedrich O., Schenk B., Fox L., Hart M., Wagreich M., 2010. Marine Micropaleontology 77, 25–45. http://www.sciencedirect.com/science/article/B6VCV-50KC6P0-1/2/41fa9465e47dde17dc198e34cbf4aabc Geological and geochemical aspects of a Devonian siliceous succession in northern Thailand: implications for the opening of the Paleo-Tethys Hara H., Kurihara T., Kuroda J., Adachi Y., Kurita H., Wakita K., Hisada K.-I., Charusiri P., Charoentitirat T., Chaodumrong P., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 452–464. http://www.sciencedirect.com/science/article/B6V6R-50XS6RK-7/2/88e39f042e2193dbe35289d28a372e6b Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives Helama S., Fauria M.M., Mielikäinen K., Timonen M., Eronen M., 2010. Geological Society of America Bulletin 122, 1981–1988. http://gsabulletin.gsapubs.org/content/122/11-12/1981.abstract Palaeoceanographic differences of early Late Aptian black shale events in the Vocontian Basin (SE France) Herrle J.O., Kössler P., Bollmann J., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 367–376. http://www.sciencedirect.com/science/article/B6V6R-50XCY9N-1/2/5c3e07b9df9f1a2f85e1c5622ba17556 Palaeoclimate: Southern westerlies and CO2 Hodgson D.A., Sime L.C., 2010. Nature Geoscience 3, 666–667. http://dx.doi.org/10.1038/ngeo970
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e43
Early Permian seasonality from bivalve d18O and implications for the oxygen isotopic composition of seawater Ivany L.C., Runnegar B., 2010. Geology 38, 1027–1030. http://geology.gsapubs.org/content/38/11/1027.abstract A 26,000-year integrated record of marine and terrestrial environmental change off Gabon, west equatorial Africa Kim S.-Y., Scourse J., Marret F., Lim D.-I., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 428–438. http://www.sciencedirect.com/science/article/B6V6R-50XS6RK-5/2/11467eeb77d7fceb4316e7b1e8e8d796 Simulating the sea level imprint on marine oxygen isotope records during the middle Miocene using an ice sheet–climate model Langebroek P.M., Paul A., Schulz M., 2010. Paleoceanography 25, Citation No. PA4203. http://dx.doi.org/10.1029/2008PA001704 A possible link between the geomagnetic field and catastrophic climate at the Paleocene–Eocene thermal maximum: comment Lerbekmo J.F., Evans M.E., 2010. Geology 38, e225–e225. http://geology.gsapubs.org/content/38/11/e225.short CO2-driven ocean circulation changes as an amplifier of Paleocene–Eocene thermal maximum hydrate destabilization Lunt D.J., Valdes P.J., Jones T.D., Ridgwell A., Haywood A.M., Schmidt D.N., Marsh R., Maslin M., 2010. Geology 38, 875–878. http://geology.gsapubs.org/content/38/10/875.abstract Solar Minima, Earth’s rotation and Little Ice Ages in the past and in the future: the North Atlantic-European case Mörner N.-A., 2010. Global and Planetary Change 72, 282–293. http://www.sciencedirect.com/science/article/B6VF0-4Y7P4NS-2/2/8a2b9d490a10589dcbdb21d88ef381f7 Large d13C gradients in the preindustrial North Atlantic revealed Olsen A., Ninnemann U., 2010. Science 330, 658–659. http://www.sciencemag.org/cgi/content/abstract/330/6004/658 Geological evolution of seawater boron isotopic composition recorded in evaporites Paris G., Gaillardet J., Louvat P., 2010. Geology 38, 1035–1038. http://geology.gsapubs.org/content/38/11/1035.abstract Palaeoclimate: Warmth and glaciation Ravelo A.C., 2010. Nature Geoscience 3, 672–674. http://dx.doi.org/10.1038/ngeo965 Tropical shoreline ice in the late Cambrian: implications for Earth’s climate between the Cambrian Explosion and the Great Ordovician Biodiversification Event Runkel A.C., Mackey T.J., Cowan C.A., Fox D.L., 2010. GSA Today 20, 4–10. http://www.geosociety.org/gsatoday/archive/20/11/abstract/i1052-5173-20-11-4.htm Continental warming preceding the Palaeocene–Eocene thermal maximum Secord R., Gingerich P.D., Lohmann K.C., MacLeod K.G., 2010. Nature 467, 955–958. http://dx.doi.org/10.1038/nature09441 Global perturbation of the marine Ca isotopic composition in the aftermath of the Marinoan global glaciation Silva-Tamayo J.C., Ndgler T.F., Sial A.N., Nogueira A., Kyser K., Riccomini C., James N.P., Narbonne G.M., Villa I.M., 2010. Precambrian Research 182, 373–381. http://www.sciencedirect.com/science/article/B6VBP-50FGYD1-1/2/47a35c606933bbb074cbc01d5472262b Microorganisms and climate change: terrestrial feedbacks and mitigation options Singh B.K., Bardgett R.D., Smith P., Reay D.S., 2010. Nature Reviews Microbiology 8, 779–790. http://dx.doi.org/10.1038/nrmicro2439 Benthic foraminiferal abundance and stable isotope changes in the Indian Ocean sector of the Southern Ocean during the last 20 kyr: paleoceanographic implications Smart C.W., Waelbroeck C., Michel E., Mazaud A., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 537–548. http://www.sciencedirect.com/science/article/B6V6R-50W1TRH-2/2/ef458bbe4783f45d7ecdcd6ef58fbaa6 The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs Trabucho Alexandre J., Tuenter E., Henstra G.A., van der Zwan K.J., van de Wal R.S.W., Dijkstra H.A., de Boer P.L., 2010. Paleoceanography 25, Citation No. PA4201. http://dx.doi.org/10.1029/2010PA001925
e44
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Environmental change within the Balkan region during the past ca. 50 ka recorded in the sediments from lakes Prespa and Ohrid Wagner B., Vogel H., Zanchetta G., Sulpizio R., 2010. Biogeosciences 7, 3187–3198. http://www.biogeosciences.net/7/3187/2010/ Plio-Pleistocene vegetation changes in the North China Plain: magnetostratigraphy, oxygen and carbon isotopic composition of pedogenic carbonates Yao Z., Xiao G., Wu H., Liu W., Chen Y., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 502–510. http://www.sciencedirect.com/science/article/B6V6R-511C075-2/2/45028c2cded7a3b1731f74b0fdfc80f8 Paleoecology of Extinction Events Stable isotope and trace element stratigraphy across the Permian–Triassic transition: a redefinition of the boundary in the Velebit Mountain, Croatia Fio K., Spangenberg J.E., Vlahovic I., Sremac J., Velic I., Mrinjek E., 2010. Chemical Geology 278, 38–57. http://www.sciencedirect.com/science/article/B6V5Y-50YK85D-1/2/7ed2be018210c0b88d968327c3711d6a Relationship between mass extinction and iridium across the Cretaceous-Paleogene boundary in New Jersey Miller K.G., Sherrell R.M., Browning J.V., Field M.P., Gallagher W., Olsson R.K., Sugarman P.J., Tuorto S., Wahyudi H., 2010. Geology 38, 867– 870. http://geology.gsapubs.org/content/38/10/867.abstract Ozone perturbation from medium-size asteroid impacts in the ocean Pierazzo E., Garcia R.R., Kinnison D.E., Marsh D.R., Lee-Taylor J., Crutzen P.J., 2010. Earth and Planetary Science Letters 299, 263–272. http://www.sciencedirect.com/science/article/B6V61-51509J8-1/2/8cc20609d1ad940cc7a95af38ef663f9 Roveacrinids (Crinoidea, Echinodermata) survived the Cretaceous-Paleogene (K-Pg) extinction event Salamon M.A., Gorzelak P.A., Ferré B., Lach R., 2010. Geology 38, 883–885. http://geology.gsapubs.org/content/38/10/883.abstract Petroleum/source Rock Geochemistry Artificial maturation of a Type I kerogen in closed system: Mass balance and kinetic modelling Behar F., Roy S., Jarvie D., 2010. Organic Geochemistry 41, 1235–1247. http://www.sciencedirect.com/science/article/B6V7P-50YK846-1/2/188a45e91867e40b09eb46f0ddea5bd2 Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry Borton D., Pinkston D.S., Hurt M.R., Tan X., Azyat K., Tykwinski R., Gray M., Qian K., Kenttämaa H.I., 2010. Energy & Fuels 24, 5548–5559. http://dx.doi.org/10.1021/ef1007819 Distribution of carboniferous source rocks and petroleum systems in the Junggar Basin Dengfa H., Xinfa C., Jun K., Hang Y., Chun F., Yong T., Xiaozhi W., 2010. Petroleum Exploration and Development 37, 397–408. http://www.sciencedirect.com/science/article/B983W-516M49T-2/2/2984ddc7e18a5492b546ec05392ee003 Origin and evolution of oilfield brines from Tertiary strata in western Qaidam Basin: constraints from water chemistry Fan Q., Ma H., Lai Z., Tan H., Li T., 2010. Chinese Journal of Geochemistry 29, 446–454. http://dx.doi.org/10.1007/s11631-010-0478-y
87
Sr/86Sr, dD, d18O, d34S and
Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: insights from Re–Os isotopes Finlay A.J., Selby D., Osborne M.J., Finucane D., 2010. Geology 38, 979–982. http://geology.gsapubs.org/content/38/11/979.abstract Charging of oil fields surrounding the Shaleitian uplift from multiple source rock intervals and generative kitchens, Bohai Bay basin, China Hao F., Zhou X., Zhu Y., Zou H., Yang Y., 2010. Marine and Petroleum Geology 27, 1910–1926. http://www.sciencedirect.com/science/article/B6V9Y-50JHC0R-2/2/d3c46db6c0ff449924e81ad26e7f9877 Development of oil formation theories and their importance for peak oil Höök M., Bardi U., Feng L., Pang X., 2010. Marine and Petroleum Geology 27, 1995–2004. http://www.sciencedirect.com/science/article/B6V9Y-50CDSS1-1/2/05f144cfef994add3c4c19d8d933c270 Correlation of FT-ICR mass spectra with the chemical and physical properties of associated crude oils Hur M., Yeo I., Kim E., No M.-H., Koh J., Cho Y.J., Lee J.W., Kim S., 2010. Energy & Fuels 24, 5524–5532. http://dx.doi.org/10.1021/ef1007165
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e45
Distribution of monoalkylbenzenes C12H18–C27H48 in Vendian–Cambrian oils of the Siberian Platform Ivanova I.K., Kashirtsev V.A., 2010. Russian Geology and Geophysics 51, 1199–1203. http://www.sciencedirect.com/science/article/B8CXK-517S3M1-6/2/dc81bd11c923e9036a2fed8a9babe247 Alkyl naphthalenes and phenanthrenes: molecular markers for tracing filling pathways of light oil and condensate reservoirs Li M., Wang T., Liu J., Zhang M., Lu H., Ma Q., Gao L., 2010. Acta Geologica Sinica – English Edition 84, 1294–1305. http://dx.doi.org/10.1111/j.1755-6724.2010.00298.x Origin of crude oil in the Lunnan region, Tarim Basin Li S., Pang X., Yang H., Xiao Z., Gu Q., Zhang B., Wang H., 2010. Acta Geologica Sinica – English Edition 84, 1157–1169. http://dx.doi.org/10.1111/j.1755-6724.2010.00287.x Characteristics of oil sources from the Chepaizi Swell, Junggar Basin, China Liu L., Kuang J., Wang P., Chen Z., Wang W., Zhao Y., Wu L., Jin J., Wang W., Meng J., Zhou J., Liu G., 2010. Acta Geologica Sinica – English Edition 84, 1209–1219. http://dx.doi.org/10.1111/j.1755-6724.2010.00291.x Characteristics of oil sources from the Chepaizi Swell, Junggar Basin, China Liu L., Kuang J., Wang P., Chen Z., Wang W., Zhao Y., Wu L., Jin J., Wang W., Meng J., Zhou J., Liu G., 2010. Acta Geologica Sinica – English Edition 84, 1209–1219. http://dx.doi.org/10.1111/j.1755-6724.2010.00291.x Petroleum exploration and development practices of sedimentary basins in China and research progress of sedimentology Longde S., Chaoliang F., Feng L., Rukai Z., Dongbo H., 2010. Petroleum Exploration and Development 37, 385–396. http://www.sciencedirect.com/science/article/B983W-516M49T-1/2/eedcfc759afae56dcd818151f085d852 Yields of H2S and gaseous hydrocarbons in gold tube experiments simulating thermochemical sulfate reduction reactions between MgSO4 and petroleum fractions Lu H., Chen T., Liu J., Peng P.A., Lu Z., Ma Q., 2010. Organic Geochemistry 41, 1189–1197. http://www.sciencedirect.com/science/article/B6V7P-50S8PMN-1/2/5b2292423454117be578a466cf506576 Stratigraphic evaluation of reservoir and seal in a natural CO2 field: lower Paleozoic, Moxa Arch, southwest Wyoming Lynds R., Campbell-Stone E., Becker T.P., Frost C.D., 2010. Rocky Mountain Geology 45, 113–132. http://rmg.geoscienceworld.org/cgi/content/abstract/45/2/113 Methanogenic biodegradation of petroleum in the West Siberian Basin (Russia): significance for formation of giant Cenomanian gas pools Milkov A.V., 2010. American Association of Petroleum Geologists Bulletin 94, 1485–1541. http://aapgbull.geoscienceworld.org/cgi/content/abstract/94/10/1485 Anoxic Annulata events in the Late Famennian of the Holy Cross Mountains (southern Poland): geochemical and palaeontological record Racka M., Marynowski L., Filipiak P., Sobstel M., Pisarzowska A., Bond D.P.G., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 549–575. http://www.sciencedirect.com/science/article/B6V6R-50YK88F-1/2/8397aba63f970f0d2470cf18a025da1f Overpressure-generating mechanisms in the Peciko Field, Lower Kutai Basin, Indonesia Ramdhan A.M., Goulty N.R., 2010. Petroleum Geoscience 16, 367–376. http://www.ingentaconnect.com/content/geol/pg/2010/00000016/00000004/art00004 http://dx.doi.org/10.1144/1354-079309-027 Characteristics of energy fields and the hydrocarbon migration-accumulation in deep strata of Tahe Oilfield, Tarim Basin, NW China Ruikang B., Jinchuan Z., Xuan T., Lu Y., Shengling J., Peixian Z., Huaqiang G., Zongyu W., 2010. Petroleum Exploration and Development 37, 416–423. http://www.sciencedirect.com/science/article/B983W-516M49T-3/2/40cab9720cb0cd279fb8fd27734b36cc Palaeozoic source rocks in the Dniepr-Donets Basin, Ukraine Sachsenhofer R.F., Shymanovskyy V.A., Bechtel A., Gratzer R., Horsfield B., Reischenbacher D., 2010. Petroleum Geoscience 16, 377–399. http://www.ingentaconnect.com/content/geol/pg/2010/00000016/00000004/art00005 http://dx.doi.org/10.1144/1354-079309-032 Origin, organic geochemistry, and estimation of the generation potential of Neogene lacustrine sediments from the Valjevo-Mionica Basin, Serbia Sajnovic´ A., Stojanovic´ K., Pevneva G.S., Golovko A.K., Jovancˇicˇevic´ B., 2010. Geochemistry International 48, 678–694. http://dx.doi.org/10.1134/S0016702910070050
e46
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Geological structure of the oil-and-gas plays and oil-and-gas potential of the southern Siberian Platform Samsonov V.V., Larichev A.I., Chekanov V.I., Solov’ev V.V., 2010. Russian Geology and Geophysics 51, 1204–1218. http://www.sciencedirect.com/science/article/B8CXK-517S3M1-7/2/e632541a49c4350fa0140e7d6460f092 Geochemical characteristics of light hydrocarbons in natural gases from the Turpan-Hami Basin and identification of low-mature gas Shen P., Wang X.F., Wang Z.Y., Meng Q.X., Xu Y.C., 2010. Chinese Science Bulletin 55, 3324–3328. http://dx.doi.org/10.1007/s11434-010-4011-9 Comparison of the surface and underground natural gas occurrences in the Tazhong Uplift of the Tarim Basin Tian J., Chen J., Jiao J., Pang X., 2010. Acta Geologica Sinica – English Edition 84, 1097–1115. http://dx.doi.org/10.1111/j.1755-6724.2010.00283.x Occurrences and distributions of branched alkylbenzenes in the Dongsheng sedimentary uranium ore deposits, China Tuo J., Chen R., Zhang M., Wang X., 2010. Journal of Asian Earth Sciences 39, 770–785. http://www.sciencedirect.com/science/article/B6VHG-504STJ2-6/2/25d46ec7ce1522d59499e18ddda5b406 Group classification of mixed oils in central Junggar Basin, northwest China and their migration Wang X., Shi X., Cao J., Lan W., Tao G., Hu W., Yao S., 2010. Chinese Journal of Geochemistry 29, 375–382. http://dx.doi.org/10.1007/s11631-010-0469-z Different hydrocarbon accumulation histories in the Kelasu-Yiqikelike structural belt of the Kuqa Foreland Basin Wang Z., Long H., 2010. Acta Geologica Sinica – English Edition 84, 1195–1208. http://dx.doi.org/10.1111/j.1755-6724.2010.00290.x Lake-bottom hydrothermal activities and their influence on high-quality source rock development: a case from Chang 7 source rocks in Ordos Basin Wenzheng Z., Hua Y., Liqin X., Yihua Y., 2010. Petroleum Exploration and Development 37, 424–429. http://www.sciencedirect.com/science/article/B983W-516M49T-4/2/41a59fcdc8974efb62c1c9f61abf6156 Environmental indicators from comparison of sporopollen in early Pleistocene lacustrine sediments from different climatic zones Wu F., Fang X.M., Miao Y.F., Dong M., 2010. Chinese Science Bulletin 55, 2981–2988. http://dx.doi.org/10.1007/s11434-010-4002-x Fine description and geologic modeling for volcanic gas reservoirs Xinmin S., Qiquan R., Yuanhui S., Yongjun W., Lin Y., Fuli C., 2010. Petroleum Exploration and Development 37, 458–465. http://www.sciencedirect.com/science/article/B983W-516M49T-8/2/987eb1b9a96ded547c67374b6a337095 Origin of the Silurian crude oils and reservoir formation characteristics in the Tazhong Uplift Yang H., Li S., Pang X., Xiao Z., Gu Q., Zhang B., 2010. Acta Geologica Sinica – English Edition 84, 1128–1140. http://dx.doi.org/10.1111/j.1755-6724.2010.00285.x Geochemical evidence for differential accumulation of natural gas in Shiwu fault depression, Songliao Basin, China Yu S., Lv X., Xu H., Xie Q., Liu X., 2010. Energy, Exploration & Exploitation 28, 239–257. http://multi-science.metapress.com/content/xp2727t768804583/?p=5e33896603134ea8b6f15bd2ef26aa0b&pi=2 Origin of paleofluids in Dabashan Foreland Thrust Belt: geochemical evidence of 13C, 18O and Zeng J., Xu T., Sun Z., Zhang Y., 2010. Acta Geologica Sinica – English Edition 84, 1239-–1255. http://dx.doi.org/10.1111/j.1755-6724.2010.00294.x
87
Sr/86Sr in veins and host rocks
Tracing hydrocarbons migration pathway in carbonate rock in Lunnan-Tahe oilfield Zhou X., Jiao W., Han J., Zhang J., Yu H., Wu L., 2010. Energy, Exploration & Exploitation 28, 259–277. http://multi-science.metapress.com/content/f3v50459nq236420/?p=5e33896603134ea8b6f15bd2ef26aa0b&pi=3 Precambrian Geochemistry Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria Boal D., Ng R., 2010. Paleobiology 36, 555–572. http://dx.doi.org/10.1666/08096.1 Chemostratigraphy of Mesoproterozoic and Neoproterozoic carbonates of the Nico Pérez Terrane, Río de la Plata Craton, Uruguay Chiglino L., Gaucher C., Sial A.N., Bossi J., Ferreira V.P., Pimentel M.M., 2010. Precambrian Research 182, 313–336. http://www.sciencedirect.com/science/article/B6VBP-508X3KT-2/2/9bc8f9f23efbcfca7b4643509572d527
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e47
Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event Duan Y., Anbar A.D., Arnold G.L., Lyons T.W., Gordon G.W., Kendall B., 2010. Geochimica et Cosmochimica Acta 74, 6655–6668. http://www.sciencedirect.com/science/article/B6V66-50XCY5C-1/2/cb9bcd6d882067c251e21803ec470f59 In situ dating of the Earth’s oldest trace fossil at 3.34 Ga Fliegel D., Kosler J., McLoughlin N., Simonetti A., de Wit M.J., Wirth R., Furnes H., 2010. Earth and Planetary Science Letters 299, 290–298. http://www.sciencedirect.com/science/article/B6V61-515YH2R-1/2/23803c363ccd77f9f2fc6ac155f5afba On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation Frimmel H.E., 2010. Precambrian Research 182, 239–253. http://www.sciencedirect.com/science/article/B6VBP-4Y65SHJ-1/2/8aa29b093bb6e32332f407ed08ef689c Neoproterozoic chemostratigraphy Halverson G.P., Wade B.P., Hurtgen M.T., Barovich K.M., 2010. Precambrian Research 182, 337–350. http://www.sciencedirect.com/science/article/B6VBP-5033Y0B-5/2/4b16ca98989107d1c10f6fdd4634a1d6 Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers) glaciation and metazoan evolution Hebert C.L., Kaufman A.J., Penniston-Dorland S.C., Martin A.J., 2010. Precambrian Research 182, 402–412. http://www.sciencedirect.com/science/article/B6VBP-50T9X23-1/2/ce161c624716baecd53d920db3a5487d The complex age of orthogneiss protoliths exemplified by the Eoarchaean Itsaq Gneiss Complex (Greenland): SHRIMP and old rocks Horie K., Nutman A.P., Friend C.R.L., Hidaka H., 2010. Precambrian Research 183, 25–43. http://www.sciencedirect.com/science/article/B6VBP-50FGYD1-2/2/3227924f20b9c6dd468c7aa8f6ada6af Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian–Ediacaran transition Jiang G., Wang X., Shi X., Zhang S., Xiao S., Dong J., 2010. Earth and Planetary Science Letters 299, 159–168. http://www.sciencedirect.com/science/article/B6V61-512KGNV-2/2/5001e806d37e71fc861de586c8b0baa5 Sr isotopic composition of Paleoproterozoic 13C-rich carbonate rocks: the Tulomozero Formation, SE Fennoscandian Shield Kuznetsov A.B., Melezhik V.A., Gorokhov I.M., Melnikov N.N., Konstantinova G.V., Kutyavin E.P., Turchenko T.L., 2010. Precambrian Research 182, 300–312. http://www.sciencedirect.com/science/article/B6VBP-5033Y0B-3/2/d5911acb97fb97129cb491cd6aa95500 Aeronomical evidence for higher CO2 levels during Earth’s Hadean epoch Lichtenegger H.I.M., Lammer H., Grießmeier J.M., Kulikov Y.N., von Paris P., Hausleitner W., Krauss S., Rauer H., 2010. Icarus 210, 1–7. http://www.sciencedirect.com/science/article/B6WGF-50G69B5-5/2/eb1cfe8b981785305533a5ba7627d86d Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay Maheshwari A., Sial A.N., Gaucher C., Bossi J., Bekker A., Ferreira V.P., Romano A.W., 2010. Precambrian Research 182, 274–299. http://www.sciencedirect.com/science/article/B6VBP-50FGYD1-3/2/03a65b0796cca8b58007e80674a7c726 A review of the stratigraphy and geological setting of the Palaeoproterozoic Magondi Supergroup, Zimbabwe – Type locality for the Lomagundi carbon isotope excursion Master S., Bekker A., Hofmann A., 2010. Precambrian Research 182, 254–273. http://www.sciencedirect.com/science/article/B6VBP-50V20JC-5/2/88de64ad16d15689cc8dc5a5c30cc143 Stratigraphic setting and age of the complex Tappania-bearing Proterozoic fossil biota of Siberia Nagovitsin K.E., Stanevich A.M., Kornilova T.A., 2010. Russian Geology and Geophysics 51, 1192–1198. http://www.sciencedirect.com/science/article/B8CXK-517S3M1-5/2/b3ef227b60fbf865fe8146230561b73b Reworking of Earth’s first crust: constraints from Hf isotopes in Archean zircons from Mt. Narryer, Australia Nebel-Jacobsen Y., Münker C., Nebel O., Gerdes A., Mezger K., Nelson D.R., 2010. Precambrian Research 182, 175–186. http://www.sciencedirect.com/science/article/B6VBP-50J4MKY-2/2/6cfbf3532ec2eed5c4ed96cd887c93e9 Hydrothermal systems of the Hadean ocean and their influence on the matter balance in the crust–hydrosphere–atmosphere system of the early Earth Novoselov A.A., Silantyev S.A., 2010. Geochemistry International 48, 643–654. http://dx.doi.org/10.1134/S0016702910070025 Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean Shibuya T., Komiya T., Nakamura K., Takai K., Maruyama S., 2010. Precambrian Research 182, 230–238. http://www.sciencedirect.com/science/article/B6VBP-50V20JC-3/2/9af05e55240fa2e30568cb724ff9a734
e48
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
C-, Sr-isotope and Hg chemostratigraphy of Neoproterozoic cap carbonates of the Sergipano Belt, northeastern Brazil Sial A.N., Gaucher C., Filho M.A.d.S., Ferreira V.P., Pimentel M.M., Lacerda L.D., Filho E.V.S., Cezario W., 2010. Precambrian Research 182, 351–372. http://www.sciencedirect.com/science/article/B6VBP-5033Y0B-4/2/2a3b190a1edd27399e1550a034f22379 Reduction spots in the Mesoproterozoic age: implications for life in the early terrestrial record Spinks S.C., Parnell J., Bowden S.A., 2010. International Journal of Astrobiology 9, 209–216. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7909968&fulltextType=RA&fileId=S1473550410000273
Iron isotopes constrain biogeochemical redox cycling of iron and manganese in a Palaeoproterozoic stratified basin Tsikos H., Matthews A., Erel Y., Moore J.M., 2010. Earth and Planetary Science Letters 298, 125–134. http://www.sciencedirect.com/science/article/B6V61-50SGB2P-1/2/79c6ebac37ea3caf4764f932d9b64992 Proterozoic volcanism in the Jack Hills Belt, Western Australia: some implications and consequences for the World’s oldest zircon population Wilde S.A., 2010. Precambrian Research 183, 9–24. http://www.sciencedirect.com/science/article/B6VBP-505NS9J-1/2/7059cd9d617049a9a33a0adc19fcb4e0 Production/Engineering Geochemistry Geochemical surveillance of the Linnan Oil Field with oil fingerprinting Chang X., Li Z., 2010. Energy, Exploration & Exploitation 28, 279–293. http://multi-science.metapress.com/content/p86l4686186055h4/?p=5e33896603134ea8b6f15bd2ef26aa0b&pi=4
Swelling characteristics of shales and their dispersion in drilling muds II Emofurieta W.O., Odeh A.O., 2011. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33, 12–26. http://www.informaworld.com/10.1080/15567030903076982 The applicability of expanding solvent steam-assisted gravity drainage (ES-SAGD) in fractured systems Fatemi S.M., 2010. Petroleum Science and Technology 28, 1906–1918. http://www.informaworld.com/10.1080/10916460903330015 Transformation of petroleum asphaltenes in supercritical water Kozhevnikov I.V., Nuzhdin A.L., Martyanov O.N., 2010. The Journal of Supercritical Fluids 55, 217–222. http://www.sciencedirect.com/science/article/B6VMF-50X2NGV-3/2/c58cee287fc4a3c97061546d7a5c3e67 Empirical approach for predicting viscosities of liquid hydrocarbon systems: defined compounds and coal liquids and fractions Krishnamoorthy V., Miller S.F., Miller B.G., 2010. Energy & Fuels 24, 5624–5633. http://dx.doi.org/10.1021/ef100375k Analysis and comparison of nitrogen compounds in different liquid hydrocarbon streams derived from petroleum and coal Li N., Ma X., Zha Q., Song C., 2010. Energy & Fuels 24, 5539–5547. http://dx.doi.org/10.1021/ef1007598 Total acid number determination in residues of crude oil distillation using ATR-FTIR and variable selection by chemometric methods Parisotto G., Ferrão M.F., Müller A.L.H., Müller E.I., Santos M.F.P., Guimarães R.C.L., Dias J.C.M., Flores É.M.M., 2010. Energy & Fuels 24, 5474– 5478. http://dx.doi.org/10.1021/ef1002974 Identification of a novel ester obtained during isolation of C80 ("ARN") tetraprotic acids from an oilfield pipeline deposit Sutton P.A., Smith B.E., Waters D., Rowland S.J., 2010. Energy & Fuels 24, 5579–5585. http://dx.doi.org/10.1021/ef1008743 A correlation for the viscosity of heavy oil and its chemical composition Wang S., Shen B., Lin R., 2010. Acta Petrolei Sinica 26, 795–799. http://www.syxbsyjg.com/qikan/epaper/zhaiyao.asp?bsid=15019 Recent Sediments/Hydrosphere Using two-dimensional correlations of 13C NMR and FTIR to investigate changes in the chemical composition of dissolved organic matter along an estuarine transect Abdulla H.A.N., Minor E.C., Hatcher P.G., 2010. Environmental Science & Technology 44, 8044–8049. http://dx.doi.org/10.1021/es100898x
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e49
Lipid biomarkers in Hamelin Pool microbial mats and stromatolites Allen M.A., Neilan B.A., Burns B.P., Jahnke L.L., Summons R.E., 2010. Organic Geochemistry 41, 1207–1218. http://www.sciencedirect.com/science/article/B6V7P-50NYWV6-1/2/b07852b82adfd5eb5d96666d2f411c6c Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact Antony C.P., Kumaresan D., Ferrando L., Boden R., Moussard H., Scavino A.F., Shouche Y.S., Murrell J.C., 2010. ISME Journal 4, 1470–1480. http://dx.doi.org/10.1038/ismej.2010.70 Methanogenesis in subglacial sediments Boyd E.S., Skidmore M., Mitchell A.C., Bakermans C., Peters J.W., 2010. Environmental Microbiology Reports 2, 685–692. http://dx.doi.org/10.1111/j.1758-2229.2010.00162.x Effects of cryogenic preservation and storage on the molecular characteristics of microorganisms in sediments Brow C.N., Johnson R.O.B., Xu M., Johnson R.L., Simon H.M., 2010. Environmental Science & Technology 44, 8243–8247. http://dx.doi.org/10.1021/es101641y The release of 14C-depleted carbon from the deep ocean during the last deglaciation: evidence from the Arabian Sea Bryan S.P., Marchitto T.M., Lehman S.J., 2010. Earth and Planetary Science Letters 298, 244–254. http://www.sciencedirect.com/science/article/B6V61-50YFH21-1/2/83a52efd5d9423f34a471fd969cb2a60 Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: an example from the southern Cape coastline of South Africa Carr A.S., Boom A., Chase B.M., Roberts D.L., Roberts Z.E., 2010. Journal of Paleolimnology 44, 947–961. http://dx.doi.org/10.1007/s10933-010-9466-9 The origins and behaviour of carbon in a major semi-arid river, the Murray River, Australia, as constrained by carbon isotopes and hydrochemistry Cartwright I., 2010. Applied Geochemistry 25, 1734–1745. http://www.sciencedirect.com/science/article/B6VDG-5103WX8-1/2/86c900b590e814e213378fca95bf1e43 Humic acids contribution to sedimentary organic matter on a shallow continental shelf (northern Adriatic Sea) Giani M., Rampazzo F., Berto D., 2010. Estuarine, Coastal and Shelf Science 90, 103–110. http://www.sciencedirect.com/science/article/B6WDV-50K5T2P-1/2/202451e360b386d9a6a7347f306a3635 Sediment and particulate organic carbon fluxes in various lacustrine basins of tropical Africa and in the Gulf of Guinea Giresse P., Makaya M., 2010. Global and Planetary Change 72, 341–355. http://www.sciencedirect.com/science/article/B6VF0-4Y6S7MY-2/2/3cc5e03f017ac0e535093266d282698b The radiocarbon age of organic carbon in marine surface sediments Griffith D.R., Martin W.R., Eglinton T.I., 2010. Geochimica et Cosmochimica Acta 74, 6788–6800. http://www.sciencedirect.com/science/article/B6V66-50YK85X-2/2/490bb7ed296fc2c545130f50a22a380e Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions He B., Dai M., Huang W., Liu Q., Chen H., Xu L., 2010. Biogeosciences 7, 3343–3362. http://www.biogeosciences.net/7/3343/2010/ The effect of typhoon on particulate organic carbon flux in the southern East China Sea Hung C.C., Gong G.C., Chou W.C., Chung C.C., Lee M.A., Chang Y., Chen H.Y., Huang S.J., Yang Y., Yang W.R., Chung W.C., Li S.L., Laws E., 2010. Biogeosciences 7, 3007–3018. http://www.biogeosciences.net/7/3007/2010/ Effect of phytoplankton and microorganisms on the isotopic composition of organic carbon in the Russian Arctic seas Ivanov M.V., Lein A.Y., Savvichev A.S., 2010. Microbiology 79, 567–582. http://dx.doi.org/10.1134/S0026261710050012 Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen Kane E.S., Turetsky M.R., Harden J.W., McGuire A.D., Waddington J.M., 2010. Journal of Geophysical Research – Biogeosciences 115, Citation No. G04012. http://dx.doi.org/10.1029/2010JG001366 Identifying sources of organic matter in sediments of shallow lakes using multiple geochemical variables Kenney W.F., Brenner M., Curtis J.H., Schelske C.L., 2010. Journal of Paleolimnology 44, 1039–1052. http://dx.doi.org/10.1007/s10933-010-9472-y
e50
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Alkyl amides in two organic-rich anoxic sediments: a possible new abiotic route for N sequestration McKee G.A., Hatcher P.G., 2010. Geochimica et Cosmochimica Acta 74, 6436–6450. http://www.sciencedirect.com/science/article/B6V66-50PVG4J-4/2/cc3313b8f4dd99c7d44d578bac9c3aa9 Influence of bedrock geology on dissolved organic matter quality in stream water Mosher J.J., Klein G.C., Marshall A.G., Findlay R.H., 2010. Organic Geochemistry 41, 1177–1188. http://www.sciencedirect.com/science/article/B6V7P-50TRX72-1/2/c64d8dceaa400694440f448f6064a18f Multi-method characterization of DOM from the Turia river (Spain) Navalon S., Alvaro M., Alcaina I., Garcia H., 2010. Applied Geochemistry 25, 1632–1643. http://www.sciencedirect.com/science/article/B6VDG-50V20BT-2/2/fe6fa7025d13a80fad0589c3dee2712f Structural arrangement of sedimentary organic matter: nanometer-scale spheroids as evidence of a microbial signature in early diagenetic processes Pacton M., Gorin G., Vasconcelos C., Gautschi H.-P., Barbarand J., 2010. Journal of Sedimentary Research 80, 919–932. http://jsedres.sepmonline.org/cgi/content/abstract/80/10/919 Organic carbon burial in a mangrove forest, margin and intertidal mud flat Sanders C.J., Smoak J.M., Naidu A.S., Sanders L.M., Patchineelam S.R., 2010. Estuarine, Coastal and Shelf Science 90, 168–172. http://www.sciencedirect.com/science/article/B6WDV-50XCY60-3/2/5007f2a525829ad8a243ca1518232aa9 Multivariate statistical approaches for the characterization of dissolved organic matter analyzed by ultrahigh resolution mass spectrometry Sleighter R.L., Liu Z., Xue J., Hatcher P.G., 2010. Environmental Science & Technology 44, 7576–7582. http://dx.doi.org/10.1021/es1002204 Seasonal changes in organic matter mineralization in a sublittoral sediment and temperature-driven decoupling of key processes Tabuchi K., Kojima H., Fukui M., 2010. Microbial Ecology 60, 551–560. http://dx.doi.org/10.1007/s00248-010-9659-9 Integrated transfers of terrigenous organic matter to lakes at their watershed level: a combined biomarker and GIS analysis Teisserenc R., Lucotte M., Houel S., Carreau J., 2010. Geochimica et Cosmochimica Acta 74, 6375–6386. http://www.sciencedirect.com/science/article/B6V66-50W80Y2-6/2/b3188b75f3cb1473a4e2c3a30d859b66 Reexposure and advection of 14C-depleted organic carbon from old deposits at the upper continental slope Tesi T., Goñi M.A., Langone L., Puig P., Canals M., Nittrouer C.A., Durrieu de Madron X., Calafat A., Palanques A., Heussner S., Davies M.H., Drexler T.M., Fabres J., Miserocchi S., 2010. Global Biogeochemical Cycles 24, Citation No. GB4002. http://dx.doi.org/10.1029/2009GB003745 Influence of distributary channels on sediment and organic carbon supply in event-dominated coastal margins: the Po prodelta as a study case Tesi T., Miserocchi S., Goñi M.A., Turchetto M., Langone L., De Lazzari A., Albertazzi S., Correggiari A., 2010. Biogeosciences Discussions 7, 7849–7902. http://www.biogeosciences-discuss.net/7/7849/2010/ Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: water-column distribution, planktonic sources, and fatty acid composition Van Mooy B.A.S., Fredricks H.F., 2010. Geochimica et Cosmochimica Acta 74, 6499–6516. http://www.sciencedirect.com/science/article/B6V66-50W80Y2-3/2/7987206b702bee5d9d52ffbc0fc7e882 Effect of explosive shallow hydrothermal vents on d13C and growth performance in the seagrass Posidonia oceanica Vizzini S., Tomasello A., Di Maida G., Pirrotta M., Mazzola A., Calvo S., 2010. Journal of Ecology 98, 1284–1291. http://dx.doi.org/10.1111/j.1365-2745.2010.01730.x Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea Vonk J.E., Sánchez-García L., Semiletov I., Dudarev O., Eglinton T., Andersson A., Gustafsson Ã., 2010. Biogeosciences 7, 3153–3166. http://www.biogeosciences.net/7/3153/2010/ Occurrence, distribution and origin of C30 cyclobotryococcenes in a subtropical wetland/estuarine ecosystem Xu Y., Jaffé R., 2010. Chemosphere 81, 918–924. http://www.sciencedirect.com/science/article/B6V74-50WXY19-1/2/32cc30ab97910d3d0355055cd6a285cc
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
e51
Seepage-Remote Detection Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: 2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps Bernhard J.M., Martin J.B., Rathburn A.E., 2010. Paleoceanography 25, Citation No. PA4206. http://dx.doi.org/10.1029/2010PA001930 Detection of natural oil seeps signature from SST and ATI in South Yellow Sea combining ASTER and MODIS data Cai G., Huang X., Du M., Liu Y., 2010. International Journal of Remote Sensing 31, 4869–4885. http://www.informaworld.com/10.1080/01431161.2010.488255 Recognizing and compensating for interference from the sediment’s background organic matter and biodegradation during interpretation of biomarker data from seafloor hydrocarbon seeps: an example from the Marco Polo area seeps, Gulf of Mexico, USA Dembicki Jr H., 2010. Marine and Petroleum Geology 27, 1936–1951. http://www.sciencedirect.com/science/article/B6V9Y-50DW3Y5-1/2/2b085e68ca8c1f7f6148aa034a550269 Interaction between accretionary thrust faulting and slope sedimentation at the frontal Makran accretionary prism and its implications for hydrocarbon fluid seepage Ding F., Spiess V., Fekete N., Murton B., Brüning M., Bohrmann G., 2010. Journal of Geophysical Research – Solid Earth 115, Citation No. B08106. http://dx.doi.org/10.1029/2008JB006246 Stable carbon isotopes of benthic foraminifers from IODP Expedition 311 as possible indicators of episodic methane seep events in a gas hydrate geosystem Li Q., Wang J., Chen J., Wei Q., 2010. Palaios 25, 671–681. http://palaios.sepmonline.org/cgi/content/abstract/25/10/671 Methane oxidation in permeable sediments at hydrocarbon seeps in the Santa Barbara Channel, California Treude T., Ziebis W., 2010. Biogeosciences 7, 3095–3108. http://www.biogeosciences.net/7/3095/2010/ The enigmatic ichnofossil Tisoa siphonalis and widespread authigenic seep carbonate formation during the Late Pliensbachian in southern France van de Schootbrugge B., Harazim D., Sorichter K., Oschmann W., Fiebig J., Püttmann W., Peinl M., Zanella F., Teichert B.M.A., Hoffmann J., Stadnitskaia A., Rosenthal Y., 2010. Biogeosciences 7, 3123–3138. http://www.biogeosciences.net/7/3123/2010/ Chemical speciation of redox sensitive elements during hydrocarbon leaching in the Junggar Basin, northwest China Zheng G., Fu B., Takahashi Y., Kuno A., Matsuo M., Zhang J., 2010. Journal of Asian Earth Sciences 39, 713–723. http://www.sciencedirect.com/science/article/B6VHG-5051PSS-3/2/094dbda264d9e525731a83dc552824a6 Soil Geochemistry Chemical characterization of microbial-dominated soil organic matter in the Garwood Valley, Antarctica Feng X., Simpson A.J., Gregorich E.G., Elberling B., Hopkins D.W., Sparrow A.D., Novis P.M., Greenfield L.G., Simpson M.J., 2010. Geochimica et Cosmochimica Acta 74, 6485–6498. http://www.sciencedirect.com/science/article/B6V66-50V20HB-2/2/fb690021121f331c058be98d841784a4 Rhizoliths in loess – evidence for post-sedimentary incorporation of root-derived organic matter in terrestrial sediments as assessed from molecular proxies Gocke M., Kuzyakov Y., Wiesenberg G.L.B., 2010. Organic Geochemistry 41, 1198–1206. http://www.sciencedirect.com/science/article/B6V7P-50RDWRY-1/2/0a6b28026d650b0d98505bb1d3ce4e13 Forest-derived lignin biomarkers in an Australian oxisol decrease substantially after 90 years of pasture Heim A., Hofmann A., Schmidt M.W.I., 2010. Organic Geochemistry 41, 1219–1224. http://www.sciencedirect.com/science/article/B6V7P-50M1RVN-3/2/d41ab1dc7e1c343c1aa4126cf6d9fdb8 Deep plant-derived carbon storage in Amazonian podzols Montes C.R., Lucas Y., Pereira O.J.R., Achard R., Grimaldi M., Melfi A.J., 2010. Biogeosciences Discussions 7, 7607–7627. http://www.biogeosciences-discuss.net/7/7607/2010/ Late Pleistocene and Holocene vegetation changes in northeastern Brazil determined from carbon isotopes and charcoal records in soils Pessenda L.C.R., Gouveia S.E.M., Ribeiro A.d.S., De Oliveira P.E., Aravena R., 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 597–608. http://www.sciencedirect.com/science/article/B6V6R-511R9X2-2/2/160967f61418d4db36a2dbbe56c0d022
e52
Geochemistry Articles / Organic Geochemistry 42 (2011) e25–e52
Coordination nature of aluminum (oxy)hydroxides formed under the influence of low molecular weight organic acids and a soil humic acid studied by X-ray absorption spectroscopy Xu R.K., Hu Y.F., Dynes J.J., Zhao A.Z., Blyth R.I.R., Kozak L.M., Huang P.M., 2010. Geochimica et Cosmochimica Acta 74, 6422–6435. http://www.sciencedirect.com/science/article/B6V66-50VTWP4-1/2/b165ddded117cd10d6f602c84d257fe5 Expanded compilations of references with abstracts in Microsoft Word and ISI EndNote formats are available at: http://www.eaog.org/ other/ref_update.html. Compiled by Clifford C. Walters