Journal of Molecular Structure 695–696 (2004) 295–311 www.elsevier.com/locate/molstruc
Global analysis of high resolution infrared and rotational spectra of HCCC15N up to 1335 cm21 Andre´ Fayta,*, Corinne Vigourouxa, Fabrice Willaertb, Laurent Margulesb, Lucian Florin Constantinb, Jean Demaisonb, Gottfried Pawelkec, El Bachir Mkadmic, Hans Bu¨rgerc a
b
Molecular spectroscopy laboratory, Universite´ Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-La-Neuve, Belgium Laboratoire de Physique des Lasers, Atomes et Mole´cules, UMR CNRS 8253, Universite´ de Lille 1, F-59655 Villeneuve d’Ascq, France c Anorganische Chemie, Fachbereich C, Bergische Universita¨t, D-42097 Wuppertal, Germany Received 4 November 2003; revised 2 December 2003; accepted 2 December 2003
Abstract The rotational spectrum of an enriched sample of HCCC15N was measured from 200 to 1200 GHz. The high-resolution infrared spectrum was also measured from 160 to 11000 cm21. Several thousands of rovibrational and rotational data have been subjected to a global rovibrational analysis for all vibrational levels below 1335 cm21. This work provides accurate parameters for all these levels and a basic set of molecular parameters about the modes 4 – 7 of HCCC15N. q 2003 Elsevier B.V. All rights reserved. Keywords: Rotational spectra; Infrared spectra; Cyanoacetylene; HCCCN; Global analysis
1. Introduction H – CxC – CxN is the prototype of long chain molecules. After its first radioastronomical detection in Sgr B2 in 1971 [1], it was found ubiquitous in dense interstellar clouds and, quite interestingly, it has been detected in many vibrationally excited states up to 1600 cm21 [2 –5]. It has also been found in cometes [6] as well as in the atmosphere of Titan, the largest satellite of Saturn [7]. The rovibrational spectra of the parent species (14N) have already been extensively studied up to 474 GHz and its rotational spectrum in vibrational excited states up to 1750 cm21 has been analyzed using a global model [8]. These measurements were extended up to 814 GHz for the lowest-lying excited states [9]. It has to be noted that the potential energy surface and a semi-experimental structure of H – CxC – CxN were accurately determined by Botschwina et al. [10]. The rotational spectra of the D [11,12], 13C, and 15N [13,14] isotopomers were also measured but, for the last * Corresponding author. Tel.: þ 3210473261; fax: þ3210472431. E-mail address:
[email protected] (A. Fayt). 0022-2860/$ - see front matter q 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.molstruc.2003.12.004
one (15N), the measurements were made in natural abundance and limited to the lowest excited states (up to n5 ¼ 1) and, furthermore, at relatively low frequencies (below 150 GHz). The goal of the present study is to present an homogeneous study of the rovibrational spectra of an isotopic species made independently of that of the parent species. The 15N isotopomer was chosen because it is less well known than the other monosubstituted species (13C and D) and the enriched sample is easy to prepare and not expensive. Furthermore it is not complicated by the presence of hyperfine structure. Besides the millimeterwave measurements of H – CxC – Cx15N published in Ref. [14], there are microwave measurements up to 40 GHz for the ground state and the excited states n6 ¼ 1 and n7 ¼ 1 [15]. Furthermore, ‘-type transitions of the n7 ¼ 1 state were measured by microwave Fourier transform spectroscopy in the range 8– 26.5 GHz [16]. The electric dipole moment in the ground state and in several excited states was also accurately determined [17]. In this paper, we report the analysis of rotational and rovibrational spectra concerning the vibrational states of HCCC15N below 1335 cm21.
296
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
2. Experimental H – CxC – Cx 15N was made from propiolic acid methylester HCCCOOCH3 and 15NH3 via the intermediate HCxCCO15NH2. For this purpose 1.6 g (89 mMol) 15 NH3 (from 15NH4Cl, deutero GmbH . 98% 15N, and KOH) were condensed onto 3.8 g (45 mMol) of HCCCOOCH3 (Aldrich) using a greaseless standard vacuum line. The mixture was then stirred for 5 h at 2 50 to 2 40 8C. All volatile material was then evaporated at 20 8C in vacuo and 2.72 g (39 mMol yield 86%) of HCxCCO15NH2 obtained as a residue. This was mixed with ca. 30 g of P4O10 and the mixture heated in vacuo up to 130 8C. Volatile HCCC15N which was formed in this reaction was collected in a 2 196 8C trap and, for purification, passed in vacuo through a 2 20 8C trap. The yield was 1.43 g (27.5 mMol; 71%). Additional 0.31 g of HCCC15N were obtained using 0.54 g of recovered 15NH3. In total, 22 high resolution infrared spectra covering the 160 – 11000 cm21 region with different p £ L products between 5.6 and 18,000 Pa.m have been measured. For consistency and to avoid repeating of details in planned forthcoming studies, we give in Table 1 the experimental details of all twenty two spectra. In order to see weak bands as well as strong bands, the spectra were recorded at different p £ L values as shown in Fig. 1. The total number of measured lines reaches 360,000. The Bruker 120 HR interferometer at Wuppertal was used throughout and the sample was contained either in a glass cell of 0.28 m length placed inside the interferometer, or a multipass cell of 0.8 m basis length and operated up to an effective path length of 22.4 m, were used. Owing to the large dipole moment of HCCCN, pressure broadening is quite substantial at higher vapor pressure and must be avoided by keeping the pressure low. Calibration was done by comparison with reference lines [18 –23] as quoted in Table 1. The given precision is estimated for medium intensity lines and takes into account both the resolution and the signal to noise ratio of the spectra. The absolute wavenumber accuracy corresponds either to that given for the reference lines or assumed to be better than 0.5 £ 10 23 cm 21 below 2000 cm 21 , better than 1 £ 1023 cm21 between 2000 and 5000 cm21, and better than 2 £ 1023 cm21 above 5000 cm21. The pure rotational spectrum has been observed from 222 to 1000 GHz. The lower part of this range, between 222 and 320 GHz, was recorded using the third and fourth harmonics of a 74 – 80 GHz Gunn Diode. A Russian ISTOK and a French Thomson-CSF backward-wave oscillators (BWO) were employed between 260 and 475 GHz and a helium-cooled InSb bolometer was used as detector. The BWO’s are phase-locked to a harmonic of a microwave synthesizer, referenced to a GPS frequency standard. That allowed us to reach an accuracy of the frequency measurements of the order of 50 kHz, limited by
the SNR of recorded lines. For higher frequency part of the spectrum, the Terahertz molecular laser spectrometer of Lille was used. A CO2 laser pumps coaxially a molecular laser that emitted typically some tens of milliwatts of far infrared radiation (FIR). The laser is frequency stabilized versus a harmonic of a microwave source that is referenced to a GPS frequency standard. Sidebands are generated by mixing the FIR radiation with tunable microwave on a commercial whisker-contact Schottky diode, providing us with typically some tens of microwatts of tunable laser power. Sidebands and the laser carrier pass into absorption cell and two-step heterodyne down-conversion is used as detection technique. The accuracy of the frequency measurements is about 150 kHz for isolated lines, limited by their SNR. 3. Model of the global analysis As we are not concerned with the stretching vibrational modes 1– 3, we use for the vibrational states the notation v4 v5 v6 v7 ; ‘5 ‘6 ‘7 X; with X ¼ e or f for symmetric and antisymmetric states in the symmetrized basis, respectively, according to Ref. [24]. As the e- and f -states are combinations of (‘5 ; ‘6 ; ‘7 ) and (2‘5 ; 2‘6 ; 2‘7 ), we use in our notation the values of ‘5 ; ‘6 ; and ‘7 so that ‘ ¼ ‘5 þ ‘6 þ ‘7 is positive. For S states ð‘ ¼ 0Þ; the first non-zero ‘i will be chosen positive. When the e- or f component is not specified, both components are to be considered. The principle of the global analysis of linear pentatomic molecules is given with details in Refs. [8,25]. In particular, the anharmonic interaction scheme for HCCCN, first described by Yamada and Creswell [26], is explained in Ref. [25] where the Hamiltonian is also described. Note that there is a misprint in Eq. [16] of Ref. [25] where ðn7 2 1Þ is to be replaced by ðn7 þ 3Þ: In addition, we have to define new or higher-order terms. In the next formulas, s (1 –7) is for an arbitrary mode, n (1 – 4) for a non degenerate stretching mode, and t (5 – 7) for a degenerate bending mode. The linear vibrational dependence of the diagonal parameter H0 has been introduced in Eq. [5] of Ref. [25] P which becomes Hv0 ¼ H0 þ s Hs vs : In Eq. [8] of Ref. [25] the quadratic dependence in JðJ þ 1Þ of qt has been added: þqtJJ ½JðJ þ 1Þ2 : We also consider some higher-order rotational ‘-type resonance terms: ‘0
‘ 0 72
kv‘t t ; vt0 t lHlvt‘t ^4 ; vt0 t
l
1 q 0 ½ðv 7 ‘t Þðvt ^ ‘t þ 2Þðvt 7 ‘t 2 2Þ 8 ttt t ðvt ^ ‘t þ 4Þðvt0 ^ ‘t0 Þðvt0 7 ‘t0 þ 2Þ1=2 F^ ðJ; ‘ÞF^ ðJ; ‘ ^ 1Þ ¼
Up to now, only the q775 term has been determined.
Table 1 Experimental details about the recorded infrared spectra of HCCC15N File
Region (cm21)
Source
Beam splitter
Filtera
Detector
Path length (m)
Pressure (Pa)
Resolution 1/MOPD (1023 cm21)
No. of scans
Calibration referenceb
Region of calibration (cm21)
Accuracy (1023 cm21)
No. of lines
I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI XXII
TFS0210B TMS0440 TMS0498 TMS0498B TMS0663 TMS1010 TMS1313 TMS1313B TMS1535 TMS2068 TMS2257 TMS3547 TMS3327 TMS3327B TMS3967 TMS4308 TNS5581 TNS6551 TNS6551B TNS6769 TNS7175 TNS9680
160–370 360–800 360–800 360–800 600–1160 600–1160 730–1400 1250–1800 960–1630 2000–2900 1770–2420 2900–4060 2900–4050 2900–4050 2900–4070 3900–5150 5000–6800 5000–6600 5700–7200 5700–7200 7000–9000 8700–11000
Globar Globar Globar Globar Globar Globar Globar Globar Globar Globar Globar Halogen Halogen Halogen Halogen Halogen Halogen Halogen Halogen Halogen Halogen Halogen
6 mm Mylar 3.5 mm Mylar 3.5 mm Mylar 3.5 mm Mylar KBr KBr KBr KBr KBr KBr KBr NIR quartz KBr KBr NIR quartz NIR quartz NIR quartz NIR quartz NIR quartz NIR quartz NIR quartz NIR quartz
– – – – LP 8.3 mm LP 8.3 mm LP 7 mm LP 8.3 mm – BP 3.3–5 mm LP 4.2 mm BP 2.5–3.5 mm BP 2.5–3.5 mm BP 2.5–3.5 mm BP 2.5–3.5 mm BP 1.9–2.7 mm BP BP BP BP – –
Si bolometer Cu:Ge Cu:Ge Cu:Ge MCT 600 MCT 600 MCT 800 MCT 800 MCT 800 InSb InSb InSb InSb InSb InSb InSb InSb InSb InSb InSb InSb Si diode
9.6 12.8 6.4 0.28 0.28 22.4 0.28 0.28 22.4 22.4 0.28 22.4 0.28 0.28 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4
400 300 80 250 20 30 300 400 100 30 400 400 400 20 20 400 800 20 60 800 800 400
4.4 3.3 3.3 3.3 2.7 2.7 2.4 3.0 2.5 3.3 3.3 4.9 4.3 4.3 7.2 7.7 8.8 8.8 8.8 8.8 12.1 16.5
527 252 40 232 810 526 409 410 360 245 79 305 100 140 120 225 1140 1300 440 1245 2150 2270
H2O (1) H2O (1) TMS0440 TMS0498 H2O (1) TMS0663 H2O (1, 2) TMS1313 H2O (1, 2) CO2 (1, 2) TMS2068 H2O (3) H2O (3) TMS3327 TMS3547 TMS3547 H2O (1, 2) TNS5581 TNS5581 H2O (4) H2O (4) H2O (5, 6)
160– 200 530– 610 470– 480 640– 650 600– 700 640– 650 1340–1400 1300–1330 1340–1500 2300–2330 2230–2280 3580–3680 3550–3680 3320–3350 3950–3990 3950–3990 5140–5270 6520–6580 6520–6580 6800–7180 7040–7350 8710–10670
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
5 722 29 238 28 760 13 084 45 392 7 769 40 217 4 446 1 667 19 596 1 286 27 056 16 457 5 520 3 661 8 278 23 053 5 297 12 347 32 830 23 078 4 966
a b
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
No.
LP, low pass; BP, band pass. (1) ¼ Ref. [18], (2) ¼ Ref. [19], (3) ¼ Ref. [20], (4) ¼ Ref. [21], (5) ¼ Ref. [22], (6) ¼ Ref. [23].
297
298
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
Fig. 1. Spectrum of HCCC15N between 2000 and 3450 cm21, recorded at different pressure path length products.
A new type of second-order anharmonic resonance is to be considered: ‘t 0
‘t00
;ðvt00 21Þ l Wttt0 t00 ¼ kvt ;vt0 ;vt00 lHlðvt þ2Þ ;ðvt0 21Þ 1 ¼ kttt0 t00 ½ðvt þ ‘t þ2Þðvt 2 ‘t þ2Þðvt0 7 ‘t0 Þðvt00 ^ ‘t00 Þ1=2 8 ‘t
‘t
‘t0 ^1
‘t00 71
‘ 0 ‘ 00 W 0ttt0 t00 ¼kv‘t t ;vt0 t ;vt00t lHlðvt þ2Þ‘t ^2 ;ðvt0 21Þ‘t0 71 ;ðvt00 21Þ‘t00 71 l
1 ¼ k0ttt0 t00 ½ðvt ^ ‘t þ2Þðvt ^ ‘t þ4Þðvt0 ^ ‘t0 Þðvt00 ^ ‘t00 Þ1=2 8
off-diagonal both in v and in ‘ : 1 kvn ; v‘t t lHlvn þ 1; ðvt 2 2Þ‘t ^2 l ¼ pffiffi Ontt ½ðvn þ 1Þðvt 7 ‘t Þ 2 2 ðvt 7 ‘t 2 2Þ1=2 F^ ðJ; ‘ÞF^ ðJ; ‘ ^ 1Þ 1 kvn ;v‘t t lHlvn þ 1;ðvt 2 4Þ‘t ^2 l ¼ 2 pffiffi Ontttt ½ðvn þ 1Þðvt ^ ‘t Þ 4 2 ðvt 7 ‘t Þðvt 7 ‘t 2 2Þðvt 7 ‘t 2 4Þ1=2 F^ ðJ; ‘ÞF^ ðJ; ‘ ^ 1Þ ‘0
With t¼6; t0 ¼5; and t00 ¼7; such terms yield an interaction between 2n6 and n5 þ n7 : A new type of third-order anharmonic resonance is also to be considered:
kv‘t t ;vt0 t lHlðvt þ 1Þ‘t ^1 ;ðvt0 2 3Þ‘t0 ^1 l 1 ¼ Ott0 t0 t0 ½ðvt ^ ‘t þ 2Þðvt0 þ ‘t0 Þðvt0 2 ‘t0 Þðvt0 7 ‘t0 2 2Þ1=2 4 F^ ðJ; ‘ÞF^ ðJ; ‘ ^ 1Þ ‘0
‘0
Wnttt0 t0 ¼ kvn ; v‘t t ; vt0 t lHlvn þ 1; ðvt 2 2Þ‘t ; ðvt0 þ 2Þ‘t0 l 1 ¼ pffiffi knttt0 t0 ½ðvn þ 1Þðvt þ ‘t Þðvt 2 ‘t Þðvt0 þ ‘t0 þ 2Þ 4 2 ðvt0 2 ‘t0 þ 2Þ1=2
kv‘t t ;vt0 t lHlðvt þ 1Þ‘t ^1 ;ðvt0 2 3Þ‘t0 73 l 1 ¼ O0tt0 t0 t0 ½ðvt ^ ‘t þ 2Þðvt0 ^ ‘t0 Þðvt0 ^ ‘t0 2 2Þ 4 ðvt0 7 ‘t0 2 4Þ1=2 F7 ðJ; ‘ÞF7 ðJ; ‘ 7 1Þ
‘0
W 0nttt0 t ¼ kvn ; v‘t t ; vt0 t lHlvn þ 1; ðvt 2 2Þ‘t ^2 ; ðvt0 þ 2Þ‘t0 72 l 1 ¼ pffiffi k0nttt0 t0 ½ðvn þ 1Þðvt 7 ‘t Þðvt 7 ‘t 2 2Þ 8 2 ðvt0 7 ‘t0 þ 2Þðvt0 7 ‘t0 þ 4Þ1=2 With n ¼ 4; t ¼ 5; and t0 ¼ 7; such terms yield an interaction between n4 þ 2n7 and 2n5 : Associated with the classical anharmonic resonances, we have also to consider higher-order terms which are
In the present work, we are concerned with the terms O466 , O47777 ; O5777 ; and O05777 : The Coriolis interaction between n6 and 2n7 is given, with t ¼ 6 and t0 ¼ 7; by ‘0
kv‘t t ; vt0 t lHlðvt þ 1Þ‘t ^1 ; ðvt0 2 2Þ‘t0 l ¼
1 pffiffi Ctta 0 t0 ½ðvt ^ ‘t þ 2Þðvt0 þ ‘t0 Þðvt0 2 ‘t0 Þ1=2 F^ ðJ; ‘Þ 2 2
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
299
Table 2 New experimental frequencies of the rotational transitions in the vibrational states of HCCC15N, roughly classified according to their energy. The deviations (observed– calculated) refer to the global analysis. All values are in MHz J 00
Exp. freq.
unc.
obs–cal
J 00
Exp. freq.
unc.
obs–cal
J 00
Exp. freq.
unc.
obs–cal
33
300756.626
0.030
0.013
29
266423.860
0.100
0.048
30 33 34 49 State 0 0 1 1, 0 1 1f 25 29 30 33
275305.920 301952.076 310834.022 444033.650
0.100 0.100 0.100 0.200
0.035 0.015 20.002 20.025
230869.100 266381.260 275258.580 301888.417
0.100 0.100 0.100 0.100
20.018 0.013 0.008 20.015
310764.297 443838.350
0.100 0.200
0.034 0.081
229297.533 238113.549
0.100 0.100
20.023 20.018
29 30 33 34 34 49 State 0 1 0 1, 1 0 2 1e 25
264559.420 273373.940 299815.033 308627.880 308627.880 440758.350
0.100 0.100 0.100 0.100 0.100 0.200
20.011 20.011 0.001 0.025 0.025 0.162
230569.270
0.500
0.034
29 30 33 34 34 49 State 0 1 0 1, 1 0 2 1f 25
266054.620 274924.840 301532.290 310400.281 310400.281 443340.700
0.100 0.100 0.100 0.030 0.100 0.200
0.005 20.028 20.030 20.003 20.003 20.110
230432.322
0.030
0.009
State 0 0 0 0, 0 0 0e 25 33 34 39 86
229635.163 300258.741 309084.983 353209.330 767168.878
0.030 0.030 0.100 0.200 0.200
20.006 20.022 0.019 0.049 20.053
34 49 86 87 88
309597.440 442149.390 768423.489 777224.250 786023.690
0.100 0.100 0.200 0.200 0.200
0.067 20.005 20.207 0.070 0.121
87 89 98 99
775955.658 793525.512 872534.168 881307.182
0.200 0.200 0.200 0.200
0.142 0.068 20.038 0.115
794822.072 873954.680 882740.988
0.200 0.200 0.200
0.221 0.131 20.096
101 112 117
898849.123 995238.304 1038997.563
0.200 0.200 0.200
0.015 20.283 20.190
89 98 99 State 0 0 1 0, 0 1 0f 25 29 30
230192.273 265592.500 274441.600
0.030 0.100 0.100
20.024 0.031 20.004
118 State 0 0 0 1, 0 0 1e 25 29 30 33 34 86 87
1047745.476
0.200
0.163
33 34
300986.637 309834.141
0.030 0.100
0.008 0.004
230201.180 265602.600 274452.000 300997.909 309845.725 769027.397 777834.459
0.050 0.100 0.100 0.030 0.100 0.200 0.200
0.031 0.039 0.001 20.003 0.017 0.047 0.057
49 84 86 87 88 98 99
442487.200 751390.724 769008.194 777815.135 786621.327 874618.031 883411.882
0.100 0.200 0.200 0.200 0.200 0.200 0.500
0.047 0.078 0.136 20.006 0.202 0.222 0.992
88
786640.129
0.200
20.217
89 98 99 100 101 116 117
795445.235 874636.146 883429.473 892220.867 901011.258 1032707.367 1041475.073
0.200 0.200 0.200 0.200 0.200 0.200 0.200
0.064 20.028 0.352 0.054 0.021 0.416 20.322
State 0 1 0 0, 1 0 0e 25 26 29 30 33 34 49
118
1050242.112
0.200
20.249
229650.418 238480.213 264967.540 273795.920 300278.732 309105.516 441449.500
0.030 0.030 0.100 0.100 0.030 0.100 0.200
20.026 20.011 0.011 0.009 0.003 20.001 0.002
34 49 State 1 0 0 0, 0 0 0e 25 26
State 0 1 0 0, 1 0 0f 25
229774.928
0.030
0.000
29
265865.660
0.100
0.002
30 33 34 49 State 0 1 0 1, 1 0 1e 25 29
274722.840 301291.428 310146.599 442901.000
0.100 0.030 0.100 0.100
20.012 20.028 20.016 20.060
230284.340 265671.060
0.100 0.100
20.018 20.013
274517.000 309898.176 442530.880
0.100 0.100 0.100
20.003 20.018 20.054
230447.283 265889.780 274749.720
0.030 0.100 0.100
20.020 0.016 0.059
State 0 0 0 1, 0 0 1f 25 29 30 33 34
230522.857 265973.420 274835.120 301417.675 310277.727
0.050 0.100 0.100 0.030 0.100
20.043 0.009 0.023 20.015 0.039
26 29 30 33 34
238609.490 265111.160 273944.360 300441.474 309273.100
0.100 0.100 0.100 0.100 0.100
20.004 0.005 0.036 20.033 0.011
86 87
770069.486 778887.628
0.200 0.200
0.092 0.060
441696.150
0.200
0.103
88 89 98 99
787704.337 796520.418 875809.806 884614.071
0.200 0.200 0.200 0.500
20.271 20.083 20.024 0.515
49 State 0 0 0 3, 0 0 1e 25 29 30 33
231474.313 267065.480 275962.020 302648.196
0.030 0.100 0.100 0.100
0.001 0.001 0.030 20.007
100 101 State 0 0 0 2, 0 0 0e
893415.960 902217.136
0.200 0.200
20.037 20.003
311542.423 444875.530
0.100 0.200
20.026 0.010
34 49 State 0 0 0 3, 0 0 1f
30 34 49 State 0 1 0 1, 1 0 1f 25 29 30
(continued on next page)
300
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
Table 2 (continued) J 00
Exp. freq.
unc.
obs –cal
J 00
Exp. freq.
unc.
obs– cal
J 00
Exp. freq.
unc.
obs– cal
25 29 30 33
231049.810 266566.580 275443.900 302071.162
0.030 0.100 0.100 0.030
0.005 0.018 20.004 20.009
24 25 29 30
223197.655 232121.179 267809.800 276730.460
0.030 0.030 0.100 0.100
20.004 0.000 0.002 20.018
301327.465 310186.095 443016.430
0.030 0.100 0.100
0.003 0.033 0.011
34 49 86 87
310945.298 443947.500 771087.240 779910.005
0.100 0.200 0.200 0.200
0.020 0.010 20.086 20.162
303488.592 312406.610 446068.730
0.100 0.100 0.200
20.021 20.002 20.006
223488.124 232415.791 268113.240 277034.240
0.030 0.100 0.100 0.100
0.018 0.012 20.005 0.034
88 89 98
788732.066 797552.479 876888.584
0.200 0.200 0.200
0.122 20.168 20.141
33 34 49 State 0 0 0 3, 0 0 3e 24 25 29
33 34 49 State 0 0 0 4, 0 0 0e 24 25 29 30
222908.082 231822.395 267476.840
0.030 0.030 0.100
20.020 0.024 0.012
312704.130 446280.760
0.100 0.200
20.009 20.089
99 100 101 State 0 0 0 2, 0 0 2e 25 29
885698.009 894506.622 903313.078
0.200 0.200 0.200
20.025 0.488 0.066
30 33 34 38
276389.740 303126.534 312038.160 347680.756
0.100 0.100 0.100 0.050
0.010 0.000 0.032 20.029
34 49 State 0 0 0 4, 0 0 2e 24 25 29 30
223688.470 232640.590 268452.520 277406.500
0.030 0.100 0.100 0.100
20.004 0.143 0.017 0.011
231125.113 266682.280
0.030 0.100
20.011 0.012
445661.460
0.200
0.030
447546.760
0.200
0.039
30 33 34 49 88 89 State 0 0 0 2, 0 0 2f 25
275571.460 302238.723 311127.726 444444.500 790463.544 799315.486
0.100 0.030 0.100 0.200 0.200 0.200
20.004 20.015 0.029 0.063 0.140 0.405
49 State 0 0 0 3, 0 0 3f 24 25 29 30 33 34 49
222909.231 231823.739 267479.620 276393.020 303131.710 312044.140 445696.030
0.030 0.030 0.100 0.100 0.100 0.100 0.200
0.012 0.008 0.015 0.021 0.000 0.036 0.070
223581.893 232520.915 268272.020 277208.420 312947.920 446866.830
0.030 0.030 0.100 0.100 0.100 0.200
0.001 20.034 20.022 20.017 20.023 20.120
231086.434
0.030
20.012
223598.736
0.050
0.007
29 33 34 49 87
266623.240 302153.613 311035.116 444194.100 780757.296
0.100 0.030 0.100 0.200 0.200
20.002 20.016 20.008 0.060 0.211
232540.503 268304.840 277245.220 447043.320
0.030 0.100 0.100 0.200
0.013 20.018 20.012 0.115
88 89
789594.099 798430.503
0.200 0.200
20.323 20.078
223598.716 232540.477
0.050 0.030
0.006 0.013
99 100 101 State 0 0 1 0, 0 1 0e 25 29 30
886724.324 895546.663 904367.762
0.200 0.200 0.200
20.171 20.172 20.078
230016.321 265389.460 274231.840
0.030 0.100 0.100
0.011 0.004 0.002
34 49
311342.520 444560.460
0.100 0.200
0.057
State 0 0 1 2, 0 1 0f 25
0.065 231737.481
0.100
29 30 34 49
267361.300 276265.420 311873.380 445257.030
0.100 0.100 0.100 0.200
20.013 20.046 20.014 20.030
State 0 0 1 1, 0 1 2 1e 25 29 30 33 34
230775.242 266244.540 275109.880 301700.889 310562.962
0.100 0.100 0.100 0.100 0.100
20.092 20.085 20.067 20.118 20.089
443399.360
0.200
20.148
230803.251 266288.480 275158.600 301766.089
0.100 0.100 0.100 0.100
0.032 0.082 0.089 0.078
34 49 State 0 0 1 1, 0 1 1e 25 State 0 1 0 2, 2 1 0 2f 25
310634.344 443597.100
0.100 0.200
0.115 0.127
230896.010
0.100
231229.090
29 30 34 49 State 0 1 0 2, 1 0 2e
49 State 0 0 1 1, 0 1-1f 25 29 30 33
49 State 0 0 0 4, 0 0 2f 24 25 29 30 34 49 State 0 0 0 4, 0 0 4e 24 25 29 30 49 State 0 0 0 4, 0 0 4f 24 25 29 30 49 State 0 0 1 2, 0 1 0e 25 29 30
268304.840 277245.220 447040.880
0.100 0.100 0.200
0.052 0.076 0.131
231334.940 266900.190 275789.960
0.100 0.100 0.100
20.029 0.062 0.062
0.051
33 34
302455.344 312752.560
0.100 0.100
0.017 0.068
0.100
0.056
49
446632.330
0.200
0.204
266763.860
0.100
0.128
275644.900 311159.762 444242.550
0.100 0.100 0.200
0.015 20.003 0.009
State 0 0 1 3, 0 1 1e 24 29 30 34
223486.129 268216.580 277163.560 312952.040
0.030 0.100 0.100 0.100
0.036 0.033 0.050 0.001
(continued on next page)
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
301
Table 2 (continued) J 00
Exp. freq.
unc.
State 0 0 1 2, 0 2 1 2e 25
231686.720
0.030
29 30 33 34 49
267319.300 276226.720 302946.648 311852.620 445383.760
0.100 0.100 0.100 0.100 0.200
obs–cal
J 00
Exp. freq.
unc.
obs–cal
J 00
Exp. freq.
unc.
obs–cal
20.076
25
231200.710
0.100
0.018
49
447093.300
0.200
20.065
29
266763.860
0.100
20.084
30 33 34 49 State 0 1 0 2, 1 0 2f 25
275654.060 302322.110 311210.739 444480.930
0.100 0.100 0.100 0.200
0.045 20.003 0.032 0.158
State 0 0 1 3, 0 1 1f 24 25 29 30 34
223285.841 232208.195 267888.820 276806.860 312470.680
0.030 0.030 0.100 0.100 0.100
0.005 0.005 20.029 20.009 20.071
231232.184
0.030
20.006
49
446101.460
0.200
20.257
29
266822.640
0.100
20.004
30 33 34 State 0 0 0 5, 0 0 1e 24 25
275721.240 302418.830 311318.479
0.100 0.100 0.100
20.005 20.041 20.017
State 0 0 1 3, 0 2 1 3e 24 29 30 34
223361.535 268050.120 276942.680 312664.260
0.100 0.100 0.100 0.100
0.028 0.027 0.067 0.062
223778.868 232724.074
0.030 0.030
0.065 20.033
446535.830
0.200
0.057
268498.600 277440.460 447180.500
0.100 0.100 0.200
20.014 20.017 20.183
49 State 0 0 1 3, 0 2 1 3f 24 25 29 30
223378.427 232312.213 268081.220 276973.880
0.100 0.100 0.100 0.150
0.037 0.096 20.026 20.310
224714.740 233696.350 260636.060
0.100 0.100 0.100
0.092 0.051 0.081
312710.160 446666.500
0.100 0.200
20.059 0.038
269614.040 305515.480
0.100 0.100
0.060 0.077
34 49 State 0 0 1 3, 0 1 3e 24 25 29
223382.553 232315.914 268046.845
0.050 0.050 0.100
0.006 0.035 0.040
224308.420 233279.105 269159.640 305035.640
0.030 0.030 0.100 0.100
0.039 20.017 20.053 20.007
30 34 49 State 0 0 1 3, 0 1 3f 24
276978.922 312704.322 446627.060
0.100 0.100 0.200
0.030 20.082 0.077
223382.517
0.050
0.006
25 29 30 34 49 State 0 0 2 1, 0 0 1e 25
232315.866 268046.715 276978.758 312703.938 446622.560
0.050 0.100 0.100 0.100 0.200
0.035 0.041 0.031 20.082 0.092
230962.020
0.100
0.080
0.030 20.005 0.047 20.020 0.039
State 0 0 1 2, 0 2 1 2f 25
0.026 231459.564
0.030
29 30 33 34
267058.420 275957.480 302652.932 311550.801
0.100 0.100 0.100 0.100
20.017 20.038 20.041 20.054
49 State 0 0 1 2, 0 1 2e 25 29 30 33
444973.530
0.200
20.066 0.027
231587.654 267207.320 276111.580 302822.526
0.030 0.100 0.100 0.100
34 49 State 0 0 1 2, 0 1 2f 25 29 30
311725.615 445224.400
0.100 0.200
231589.952 267211.880 276116.960
0.030 0.100 0.100
33 34 49 State 0 0 2 0, 0 0 0e 25
302831.010 311735.426 445278.830
0.100 0.100 0.200
230388.955
0.030
29 30 33 34 49 49
265820.340 274677.340 301246.133 310101.662 442878.580 442878.650
0.100 0.100 0.030 0.100 0.100 0.200
20.054 0.031 0.043 20.013 0.029 0.076
20.001 0.021 0.048 20.010 0.060 0.027
0.025 0.007 0.001 20.013 0.023 20.087 20.017
29 30 49 State 0 0 0 5, 0 0 1f 24 25 28 29 33 State 0 0 0 5, 0 0 3e 24 25 29 33 State 0 0 0 5, 0 0 3f 24 25 28 29 33 State 0 0 0 5, 0 0 5e 24
224313.222 233285.023 260200.100 269171.740 305057.980
0.030 0.030 0.100 0.100 0.100
20.013 0.000 0.001 0.027 0.015
224286.517
0.030
20.019
233255.633 260161.240 269129.120
0.030 0.100 0.100
0.004 0.054 0.024
29 30 33 34
266481.240 275360.180 301995.001 310872.096
0.100 0.100 0.300 0.100
0.054 0.047 0.292 20.010
224286.517 233255.633
0.030 0.030
20.020 0.004
443976.350
0.200
20.024
231270.210
0.100
0.001
State 0 0 2 0, 0 2 0e 25 29 30 33
230569.270 266025.820 274889.160 301476.615
0.500 0.100 0.100 0.030
0.613 20.027 20.019
34 49
310338.234 443198.730
0.100 0.200
20.028 20.009
25 28 29 State 0 0 0 5, 0 0 5f 24 25
20.044
28
260161.240
0.100
0.053
49 State 0 0 2 1, 0 0 1f 25
29
269129.120
0.100
0.023
29
State 0 0 2 0, 0 2 0f 25
230570.330
0.100
266836.400 0.100 0.014 (continued on next page)
302
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
Table 2 (continued) J 00
Exp. freq.
unc.
obs –cal
J 00
29
266028.400
0.100
20.004
30 33 34
274892.020 301480.380 310342.351
0.100 0.030 0.100
20.033 20.014 20.040
State 0 1 1 0, 1 2 1 0e 29 30 33
265613.920 274466.000 301021.252
0.100 0.100 0.100
0.029 20.003 0.068
49 State 1 0 0 1, 0 0 1e 25
443210.960
0.200
20.016 20.033
34 49
309872.592 442606.350
0.100 0.100
0.101 0.063
229878.500
0.100
26 29 30
238716.680 265228.940 274065.540
0.100 0.100 0.100
0.025 0.029 0.052
State 0 1 1 0, 1 2 1 0f 25 29 30
33 34 49 State 1 0 0 1, 0 0 1f 29 30 State 0 1 0 2, 1 0 0e 25 29 30
300572.520 309407.580 441864.850
0.100 0.100 0.100
0.047 20.177 0.064 0.018
265606.960 274455.960
0.100 0.100
231231.058 266778.720 275663.860
0.030 0.100 0.100
302314.490 311196.330 444297.200
0.100 0.100 0.200
231049.810 266573.540 275453.300
0.400 0.100 0.100
33 34 49 State 0 1 0 2, 1 0 0f 25 29 30
20.009 20.029
0.041 20.013 20.014 20.027 20.037 20.040
0.630 20.025 20.022 20.043 20.003 20.018
Exp. freq.
unc.
obs– cal
230182.550 265582.340 274431.620
0.100 0.100 0.200
20.132 20.018 0.095
300976.570 309823.900 442481.220
0.100 0.100 0.400
0.107 20.013 20.245
230160.972 274398.180 300925.902
0.100 0.100 0.100
20.001 0.044 0.005
34 49 State 0 1 1 0, 1 1 0f 25 29 30 33
309768.722 442330.020
0.100 0.100
0.022 20.206
230180.630 265542.980 274431.620 300968.909
0.100 0.100 0.200 0.030
20.018 20.015 0.175 0.007
34 49 State 0 0 1 3, 0 1 2 1e 24 25 29 30
309815.433 442452.820
0.100 0.100
0.020 20.133
223222.086 232137.187 267784.200 276692.720
0.030 0.030 0.100 0.100
0.009 20.001 0.002 0.037
312314.530 445763.830
0.100 0.200
0.012 20.016
223407.157 232343.213 268084.940
0.030 0.030 0.100
20.025 20.033 20.002
33 34 49 State 0 1 1 0, 1 1 0e 25 30 33
33 34 49 State 0 1 0 2, 2 1 0 2e 25 29 30
302089.109 310966.566 444047.100
0.100 0.100 0.200
230957.590 266477.340 275356.960
0.100 0.100 0.100
0.065 0.008
33 34 49
301995.001 310874.367 444059.750
0.200 0.100 0.200
0.026 20.091 0.065
34 49 State 0 0 1 3, 0 1 2 1f 24 25 29
29 30
266351.000 275228.200
0.100 0.100
0.015 20.028
30 33
277019.480 306327.020
0.100 0.100
0.000 20.007
33 34
301859.090 310735.760
0.100 0.100
20.057 20.072
441629.560
0.200
0.145
49 State 1 0 0 2, 0 0 2f 29 30
443858.950
0.200
20.081 20.148
48 State 0 0 0 6, 0 0 2f 24 28
224926.410 260887.560
0.100 0.100
266292.080 275163.360
0.100 0.100
0.005
30 33
276343.380 305821.780
33
301774.220
0.100
20.002
48
440479.760
J 00
Exp. freq.
unc.
obs– cal
30
275727.040
0.100
0.007
34 49 State 0 0 2 1, 0 2 2 1e 25 29
311285.679 444562.630
0.100 0.200
0.008 0.073
231268.890 266825.240
0.100 0.100
20.017 20.034
30
275712.860
0.100
20.026
34 34 State 0 0 2 1, 0 2 2 1f 25 29 30 34
311256.928 311256.928
0.030 0.100
0.006 0.006
231286.706 266845.940 275734.300 311281.397
0.030 0.100 0.100 0.030
0.036 20.010 20.007 20.005
311281.397 444480.930
0.100 0.200
20.005 0.038
231333.490 266916.260 275811.440
0.100 0.100 0.100
20.021 20.083 20.122
302495.870 311390.192 444764.460
0.030 0.030 0.200
20.009 0.026 0.027
231333.490 266916.260 275811.440
0.100 0.100 0.100
0.076 0.119 0.116
302495.484 311389.727 444761.630
0.030 0.030 0.200
20.014 0.002 20.086
266250.880 275116.668 301708.580
0.100 0.100 0.100
0.001 0.056 0.044
34 49 State 0 0 2 1, 0 2 1e 25 29 30 33 34 49 State 0 0 2 1, 0 2 1f 25 29 30 33 34 49 State 1 0 0 2,0 0 0e 29 30 33 34 49 State 1 0 0 2, 0 0 2e 25 State 0 1 0 3, 1 0 2 1f 29 30
310570.714 443383.330
0.100 0.200
0.023 0.066
230841.000
0.100
0.001
267440.300 276343.380
0.100 0.100
20.036 0.014
20.001 20.022
33 34
303046.210 311945.200
0.100 0.030
20.081 0.008
0.100 0.100
0.014 20.057
445308.400
0.200
0.048
0.200
20.122
49 State 0 1 0 3, 1 0 1e 24
222903.130 0.100 20.016 (continued on next page)
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
303
Table 2 (continued) J 00
Exp. freq.
unc.
obs–cal
J 00
34
310643.500
0.100
20.022
State 0 2 0 0, 0 0 0e 29
28
260984.860
0.005
State 0 0 0 6, 0 0 4e 24
265146.700
0.100
0.100
20.194
33 34 49
300476.870 309306.600 441729.650
0.100 0.100 0.100
0.045 0.045 0.043
29 33 State 0 0 0 6, 0 0 4f 24
20.007
State 0 2 0 0, 2 0 0e 29
265115.180
0.100
30 33 33
273948.580 300446.350 305926.800
0.100 0.100 0.100
20.076 20.032 20.028
34 49 State 0 2 0 0, 2 0 0f 29
309278.133 441698.000
0.030 0.500
0.001 20.027 0.732
265114.160
0.100
30 33 33
273947.400 300444.810 305926.800
0.100 0.100 0.100
20.068 20.078 20.073
34 49 State 0 0 0 6, 0 0 0e 24 25 28 29
309276.580 441692.600
0.030 0.200
0.001 0.052 0.089
224730.100 233699.210 260592.720 269549.020
0.100 0.100 0.100 0.100
305379.480
0.100
261218.660 270239.180 306327.020
0.100 0.100 0.030
33 State 0 0 0 6, 0 0 2e 28 29 33
Exp. freq.
29
267430.600
0.100
- 2 0.016
0.030
20.014
State 0 1 0 3, 1 0 1f 269982.040 305968.520
0.100 0.100
20.187 20.019
29 30 34
267628.280 276550.200 312237.500
0.100 0.100 0.030
0.002 20.030 0.013
224994.044
0.100
20.031
49
446020.730
0.200
20.185
28
260984.860
0.100
0.120
29 33 State 0 0 0 6, 0 0 6e 24 28 29
269982.040 305967.620
0.100 0.100
0.212 0.036
State 0 1 0 3, 2 1 0 3e 24 25 29
222924.730 231839.800 267498.120
0.100 0.150 0.100
20.018 20.069 0.019
224971.450 260954.980 269950.040
0.100 0.100 0.100
20.039 20.009 20.022
30 34 49
276412.040 312065.100 445712.000
0.100 0.030 0.200
20.010 20.007 20.138
33
305926.800
0.100
0.001
34 48 State 0 0 0 6, 0 0 6f 24 28 29
309278.133 440778.000
0.100 0.200
20.027 0.148
State 0 1 0 3, 2 1 0 3f 29 30 33
267455.820 276365.740 303092.620
0.100 0.100 0.100
0.013 0.029 20.005
224971.450 260954.980 269950.040
0.100 0.100 0.100
20.039 20.009 20.022
312000.660 445563.500
0.030 0.200
0.011 0.045
231913.655 267589.020 276507.540 312180.420
0.150 0.100 0.100 0.030
20.049 0.029 0.007 0.004
445930.700
0.200
20.012
231913.085 267587.500 276505.700 312176.360 445894.930
0.150 0.100 0.100 0.030 0.200
20.052 20.013 0.004 20.003 20.012
305926.800 309276.580 440778.000
0.100 0.100 0.200
0.001 0.052 0.154
20.006 0.034
222929.780 231846.130
0.100 0.100
0.026 20.006
20.034 20.011 20.007
29 30 34 49
267510.660 276426.440 312088.120 445772.960
0.100 0.100 0.030 0.200
0.032 20.008 20.013 20.066
‘t0 ^1
obs–cal
311930.120
kvt ;vt0 ; vt00 lHlðvt þ 1Þ ; ðvt0 2 1Þ ; ðvt00 2 1Þ l 1 ¼ pffiffi Ctta 0 t00 ½ðvt ^ ‘t þ 2Þðvt0 7 ‘t0 Þðvt00 ^ ‘t00 Þ1=2 2 2 F^ ðJ; ‘Þ ‘t ^1
unc.
34
The Coriolis interaction between n5 and n6 þ n7 is given, with t ¼ 5; t0 ¼ 6 and t00 ¼ 7; by ‘t00
Exp. freq.
20.031
33 34 48 State 0 1 0 3, 1 0 2 1e 24 25
20.030 20.014 0.028
J 00
0.100
‘0
‘t0
obs–cal
224994.156
kv‘t t ;vt0 t lHlðvt þ 1Þ‘t 71 ; ðvt0 2 2Þ‘t0 ^2 l 1 ¼ pffiffi Cttb 0 t0 ½ðvt 7 ‘t þ 2Þðvt0 7 ‘t0 Þðvt0 7 ‘t0 2 2Þ1=2 2 2 F^ ðJ; ‘Þ
‘t
unc.
‘t00 71
‘0
‘ 00
‘0
‘ 00
34 49 State 0 1 0 3, 1 0 3e 25 29 30 34 49 State 0 1 0 3, 1 0 3f 25 29 30 34 49
kv‘t t ;vt0 t ; vt00t lHlðvt þ 1Þ‘t ^1 ; ðvt0 2 1Þ‘t0 71 ; ðvt00 2 1Þ‘t00 ^1 l 1 ¼ pffiffi Cttb0 t00 ½ðvt ^ ‘t þ 2Þðvt0 ^ ‘t0 Þðvt00 7 ‘t00 Þ1=2 2 2 F^ ðJ; ‘Þ
kv‘t t ;vt0 t ; vt00t lHlðvt þ 1Þ‘t 71 ; ðvt0 2 1Þ‘t0 ^1 ; ðvt00 2 1Þ‘t00 ^1 l 1 ¼ pffiffi Cttc 0 t00 ½ðvt 7 ‘t þ 2Þðvt0 7 ‘t0 Þðvt00 7 ‘t00 Þ1=2 2 2 F^ ðJ; ‘Þ
304
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
Table 3 Summary of the observed and analyzed infrared bands for HCCC15N Upper state v4v5v6v7, l5l6l7
Lower state v4v5v6v7, l5l6l7
Numa
J 0min
J 0max
Unc.b (cm21)
Upper state v4v5v6v7, l5l6l7
Lower state v4v5v6v7, l5l6l7
Numa
J 0min
J 0max
Unc.b (cm21)
00 00 00 00 00 00 00 00 00 00 00 00 00 01 01 00 00 00 00 00 00 00 00 00 00 00 10 10 10 01 01 01 01 01 01 01 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10 10 10 10
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
13 13 10 10 9 8 12 10 6 27 11 16 11 34 14 5 12 13 2 2 23 26 5 18 9 24 9 8 9 16 5 5 20 6 16 26 23 5 1 1 3 2 11 20 9 10 18 12 22 17 15 25 15 11 17 19 10 8 7 5 8
1 1 1 10 1 2 26 2 45 1 2 1 2 1 17 59 2 2 7 7 1 2 2 41 2 5 1 2 2 1 4 31 4 9 24 4 4 4 81 66 60 67 2 1 2 2 10 2 10 3 3 1 5 15 6 6 10 8 6 6 6
97 96 78 85 76 69 102 79 82 109 85 107 89 129 85 62 82 90 17 17 109 116 39 104 73 111 74 65 77 74 40 65 95 51 79 111 117 39 81 66 61 68 86 101 76 82 91 93 106 98 89 95 104 92 111 104 88 70 59 41 68
0.00030 0.00031 0.00051 0.00051 0.00053 0.00052 0.00053 0.00052 0.00077 0.00010 0.00041 0.00011 0.00041 0.00010 0.00010 0.00010 0.00052 0.00052 0.00100 0.00100 0.00020 0.00020 0.00020 0.00015 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00010 0.00010 0.00020 0.00010 0.00010 0.00020 0.00030 0.00040 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00021 0.00021 0.00020 0.00020 0.00021 0.00040 0.00020 0.00021 0.00020 0.00021 0.00022 0.00021
10 10 01 01 01 01 01 01 01 01 01 01 00 00 00 00 00 01 01 01 01 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10 10 10 10 10 10 10 10 10 02 02 02 01 01 01 01 01
0 0 0 2, 0 0 0 2, 0 0 0 2, 0 0 0 2, 0 0 0 1, 0 0 0 2, 0 0 0 2, 0 0 0 1, 0 0 0 2, 0 0 0 2, 0 0 0 1, 0 0 0 2, 0 0 0 2, 0 0 0 2, 0 0 0 2, 0 0 0 2, 0 0 0 2, 0 0 0 0, 0 0 1 0, 0 0 1 0, 0 0 1 0, 0 0 0 2, 0 0 1 0, 0 0 1 0, 0 0 0 2, 0 0 1 0, 0 0 0 2, 0 0 0 2, 0 0 0 2, 0 0 1 0, 0 0 0 2, 0 0 0 2, 0 0 0 2, 0 0 1 0, 0 0 0 3, 0 0 0 3, 0 0 0 1, 0 0 1 0, 0 0 0 1, 0 0 1 0, 0 0 1 0, 0 0 1 0, 0 0 1 1, 0 0 1 1, 0 0 0 2, 0 0 0 3, 0 0 0 3, 0 0 0 2, 0 0 0 3, 0 0 0 3, 0 0 0 2, 0 0 0 3, 0 0 0 3, 0 0 0 0, 0 1 0 0, 0 1 0 0, 0 0 0 2, 0 0 0 3, 0 0 0 3, 0 0 0 3, 0 0 0 2,
6 9 25 11 12 12 18 13 32 20 5 3 1 1 2 5 4 21 30 54 55 1 40 1 17 2 12 4 17 1 14 18 16 1 6 6 10 9 11 9 10 9 4 5 6 7 6 8 5 7 8 6 8 35 10 10 7 3 4 4 7
6 6 14 20 8 14 6 9 5 9 36 6 95 89 58 70 69 1 5 5 5 72 5 72 3 58 41 47 3 63 4 3 3 29 13 13 5 8 5 4 2 5 8 8 4 7 7 4 7 7 4 7 7 2 6 6 3 11 14 10 7
54 74 109 68 72 74 104 70 114 102 71 40 95 89 58 76 71 77 83 98 109 72 80 72 86 59 84 60 79 63 72 91 89 29 70 68 78 77 84 76 81 73 67 66 54 60 53 65 42 57 66 51 64 96 60 76 65 41 56 42 71
0.00021 0.00021 0.00010 0.00040 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00040 0.00010 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00060 0.00010 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00010 0.00010 0.00020 0.00040 0.00040 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00040 0.00040 0.00021 0.00021 0.00021 0.00021 0.00022 0.00022 0.00021 0.00021 0.00021 0.00010 0.00021 0.00020 0.00020 0.00050 0.00050 0.00050 0.00020
0 1, 0 0 1e 0 1, 0 0 1f 0 2, 0 0 0e 0 2, 0 0 0e 0 2, 0 0 0e 0 2, 0 0 2e 0 2, 0 0 2e 0 2, 0 0 2f 0 2, 0 0 2f 1 0, 0 1 0e 1 0, 0 1 0e 1 0, 0 1 0f 1 0, 0 1 0f 0 0, 1 0 0e 0 0, 1 0 0f 0 3, 0 0 1e 0 3, 0 0 1e 0 3, 0 0 1f 0 3, 0 0 3e 0 3, 0 0 3f 1 1, 0 1–1e 1 1, 0 1–1e 1 1, 0 1–1f 1 1, 0 1 1e 1 1, 0 1 1e 1 1, 0 1 1f 0 0, 0 0 0e 0 0, 0 0 0e 0 0, 0 0 0e 0 1, 1 0–1e 0 1, 1 0–1e 0 1, 1 0–1e 0 1, 1 0–1f 0 1, 1 0–1f 0 1, 1 0 1e 0 1, 1 0 1e 0 1, 1 0 1f 0 1, 1 0 1f 0 4, 0 0 0e 0 4, 0 0 2e 0 4, 0 0 2e 0 4, 0 0 2f 1 2, 0 1 0e 1 2, 0 1 0e 1 2, 0 1 0f 1 2, 0– 1 2e 1 2, 0– 1 2e 1 2, 0– 1 2f 1 2, 0– 1 2f 1 2, 0 1 2e 1 2, 0 1 2f 2 0, 0 0 0e 2 0, 0 0 0e 2 0, 0 0 0e 2 0, 0 2 0e 2 0, 0 2 0f 2 0, 0 2 0f 0 1, 0 0 1e 0 1, 0 0 1e 0 1, 0 0 1e 0 1, 0 0 1e
0 0, 0 0 0, 0 0 0, 0 0 1, 0 0 1, 0 0 1, 0 0 1, 0 0 1, 0 0 1, 0 0 0, 0 0 1, 0 0 0, 0 0 1, 0 0 0, 0 0 0, 0 0 0, 0 0 1, 0 0 1, 0 0 2, 0 0 2, 0 0 0, 0 0 1, 0 0 1, 0 0 0, 0 0 1, 0 0 1, 0 0 0, 0 0 1, 0 0 1, 0 0 0, 0 0 1, 0 0 1, 0 0 1, 0 0 1, 0 0 0, 0 0 1, 0 0 1, 0 0 1, 0 0 1, 0 0 0, 0 0 1, 0 0 1, 0 0 1, 0 0 2, 0 0 1, 0 0 1, 0 0 2, 0 0 1, 0 0 2, 0 0 2, 0 0 2, 0 0 0, 0 1 0, 0 1 0, 0 1 0, 0 1 0, 0 1 0, 0 0 1, 0 0 2, 0 0 2, 0 0 2, 0
0 0e 0 0e 0 0e 0 1e 0 1f 0 1e 0 1f 0 1f 0 1e 0 0e 0 1e 0 0e 0 1f 0 0e 0 0e 0 0e 0 1e 0 1f 0 2e 0 2f 0 0e 0 1e 0 1f 0 0e 0 1e 0 1f 0 0e 0 1e 0 1f 0 0e 0 1e 0 1f 0 1f 0 1e 0 0e 0 1e 0 1f 0 1e 0 1e 0 0e 0 1e 0 1f 0 1e 0 0e 0 1f 0 1e 0 2e 0 1f 0 2f 0 2e 0 2f 0 0e 1 0e 1 0f 1 0e 1 0f 1 0e 0 1e 0 0e 0 2e 0 2f
0 1, 0 0 1f 0 1, 0 0 1f 0 2, 1 0 0e 0 2, 1 0 0f 0 2, 2 1 0 2e 0 2, 2 1 0 2e 0 2, 2 1 0 2e 0 2, 2 1 0 2f 0 2, 2 1 0 2f 0 2, 1 0 2e 0 2, 1 0 2f 0 2, 1 0 2f 0 5, 0 0 1e 0 5, 0 0 1f 0 5, 0 0 3e 0 5, 0 0 3e 0 5, 0 0 3f 1 0, 1–1 0e 1 0, 1–1 0e 1 0, 1–1 0f 1 0, 1 1 0e 1 0, 1 1 0e 1 0, 1 1 0f 1 3, 0 1 –1e 1 3, 0 1 –1e 1 3, 0 1 –1f 1 3, 0 1 –1f 1 3, 0 1 1e 1 3, 0 1 1e 1 3, 0 1 1e 1 3, 0 1 1f 1 3, 0–1 3e 1 3, 0–1 3f 1 3, 0–1 3f 1 3, 0 1 3e 1 3, 0 1 3f 2 1, 0 0 1e 2 1, 0 0 1e 2 1, 0 0 1f 2 1, 0 0 1f 2 1, 0 2 –1e 2 1, 0 2 –1f 2 1, 0 2 1e 2 1, 0 2 1f 0 2, 0 0 0e 0 2, 0 0 0e 0 2, 0 0 0e 0 2, 0 0 2e 0 2, 0 0 2e 0 2, 0 0 2e 0 2, 0 0 2f 0 2, 0 0 2f 0 2, 0 0 2f 0 0, 0 0 0e 0 0, 2 0 0e 0 0, 2 0 0f 0 3, 1 0 –1e 0 3, 1 0 –1e 0 3, 1 0 1e 0 3, 1 0 1f 0 3, 2 1 0 3e
0 0 2f 0 0 2e 0 0 0e 0 0 2f 0 0 1e 0 0 0e 0 0 2e 0 0 1f 0 0 2f 0 0 2e 0 0 1f 0 0 2f 0 0 0e 0 0 2f 0 0 0e 0 0 2e 0 0 2f 0 0 0e 0 1 0e 0 1 0f 0 1 0e 0 0 0e 0 1 0f 0 1 0e 0 0 2e 0 1 0f 0 0 2f 0 0 0e 0 0 2e 0 1 0e 0 0 2f 0 0 2e 0 0 2f 0 1 0f 0 0 3e 0 0 3f 0 0 1e 0 1 0e 0 0 1f 0 1 0f 0 1 0e 0 1 0f 0 1 1e 0 1 1f 0 0 0e 0 0 1e 0 0 1f 0 0 2e 0 0 3e 0 0 3f 0 0 2f 0 0 3f 0 0 3e 0 0 0e 1 0 0e 1 0 0f 0 0 0e 0 0 1e 0 0 1e 0 0 1f 0 0 2e
(continued on next page)
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
305
Table 3 (continued) Upper state v4v5v6v7, l5l6l7
Lower state v4v5v6v7, l5l6l7
1 0 0 1, 0 0 1f 1 0 0 1, 0 0 1f
0 0 0 1, 0 0 1f 0 0 0 2, 0 0 0e
a b
Numa
J 0min
J 0max
5 6
70 57
8 7
Unc.b (cm21)
Upper state v4v5v6v7, l5l6l7
0.00020 0.00021
010 010 010 010 010
3, 2 1 0 3e 3, 2 1 0 3f 3, 2 1 0 3f 3, 1 0 3e 3, 1 0 3f
Lower state v4v5v6v7, l5l6l7 0 0 0 0 0
0 0 3, 0 0 2, 0 0 3, 0 0 3, 0 0 3,
0 0 3e 0 0 2f 0 0 3f 0 0 3e 0 0 3f
Numa
6 7 6 4 6
J 0min
J 0max
7 7 7 13 13
64 63 61 42 59
Unc.b (cm21)
0.00040 0.00020 0.00040 0.00050 0.00050
Number of selected data for the global analysis. Typical accuracy (one s) of this piece of data.
Table 4 HCCC15N molecular parameters and their standard deviation s as determined by the global least-squares fit Vibrational diagonal parameters om4 om5 om6 om7 x46 x47 x55 x56 x57 x66 x67 x77 xl5l5 xl5l6 xl5l7 xl6l6 xl6l7 xl7l7 y477 y577 y667 y677 y777 y4l7l7 y5l7l7 y6l6l7 y6l7l7 y7l5l7 y7l6l6 y7l6l7 y7l7l7 z7777 z77l77 zl7777 Rotational diagonal parameters B0 alpha4 alpha5 alpha6 alpha7 gam47 gam55 gam56 gam57 gam66 gam67
Rotational ‘-type resonances 871.174442 659.918255 497.210508 220.644670 1.190971 3.540360 21.712875 0.236010 0.183060 20.623496 20.290868 20.421295 5.163555 0.018036 0.620570 1.064599 0.559746 0.742894 261.554652 21.239677 18.857880 1.409787 7.822666 19.668342 2.057595 0.636296 0.115236 1.540513 217.447985 0.666954 27.304882 20.119308 0.148336 20.020237
0.048577 cm21 0.000058 cm21 0.000036 cm21 0.000130 cm21 0.095896 cm21 0.004282 cm21 0.000030 cm21 0.000035 cm21 0.002192 cm21 0.012015 m21 0.000070 cm21 0.000106 cm21 0.000022 cm21 0.000024 cm21 0.002188 cm21 0.012015 cm21 0.000073 cm21 0.000131 cm21 0.306930 £ 1023 cm21 0.081304 £ 1023 cm21 0.666994 £ 1023 cm21 0.015348 £ 1023 cm21 0.031758 £ 1023 cm21 0.066385 £ 1023 cm21 0.055657 £ 1023 cm21 0.044202 £ 1023 cm21 0.010327 £ 1023 cm21 0.084535 £ 1023 cm21 0.664056 £ 1023 cm21 0.017371 £ 1023 cm21 0.100734 £ 1023 cm21 0.004088 £ 1023 cm21 0.013660 £ 1023 cm21 0.006467 £ 1023 cm21
4416.752386 10.509928 21.621859 29.021256 214.009014 20.253324 20.014188 0.003844 0.001637 20.015933 0.040274
0.000114 MHz 0.012885 MHz 0.001016 MHz 0.000513 MHz 0.000312 MHz 0.001642 MHz 0.000319 MHz 0.000395 MHz 0.000738 MHz 0.003160 MHz 0.000446 MHz
q5 q5v6 q5v7 q5J q6 Q6v5 q6v7 q6J q7 q7v4 q7v5 q7v6 q7v7 q7v57 q7v77 q7J q7J5 q7J6 Q7J7 q7JJ
22.394528 20.014983 20.018963 1.195764 23.387198 20.004699 20.028224 1.790005 26.207808 0.020916 0.013413 20.060355 20.020370 21.318984 0.316270 15.057277 20.413469 0.272725 0.272214 20.051702
0.000374 MHz 0.000631 MHz 0.000646 MHz 0.057695 Hz 0.000266 MHz 0.000982 MHz 0.000207 MHz 0.032413 Hz 0.000002 MHz 0.002298 MHz 0.001889 MHz 0.001477 MHz 0.000534 MHz 0.292022 kHz 0.059656 kHz 0.001250 Hz 0.075598 Hz 0.049202 Hz 0.019940 Hz 0.000206 MHz
q775 u77 u57 Vibrational ‘ 2 type resonances r56 r56J r57 r57v7 r57J r67 r67v6 r67v7 r67v77 r67J Anharmonic resonances k45577 k0 45577
21.249989 20.072629 0.198588
0.144597 kHz 0.006886 Hz 0.043501 Hz
9.780954 19.818330 8.017977 0.075649 225.596639 211.792228 20.672556 0.194901 26.801910 217.248053
0.001023 GHz 1.181629 kHz 0.129140 GHz 0.005045 GHz 1.082270 kHz 0.001213 GHz 0.022379 GHz 0.002602 GHz 1.145343 MHz 1.162232 kHz
0.153437 0.078738
0.001198 cm21 0.026004 cm21
k457 k457v7 k457J k466 k466v6 k466v7 k466J
28.159003 0.065301 1.185123 70.955660 20.699139 20.662303 22.127951
0.069156 cm21 0.007302 cm21 0.181272 £ 1025 cm21 0.081880 cm21 0.095666 cm21 0.005809 cm21 0.102274 £ 1025 cm21 (continued on next page)
306
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
Table 4 (continued) 20.001665 20.103669 0.022873 20.015171 20.014503 0.000663 0.471836 20.121458 1.615260 21.779729 1.937861 0.733425 20.513274 0.511465 0.000970 0.001383 0.010067 0.022527 21.280052 0.224064 0.240534 0.089008 20.129024 20.037353 0.040816 0.048307
gam77 gl5l5 gl5l6 gl5l7 gl6l6 gl7l7 eps577 eps777 eps4l77 eps5l77 eps6l77 eps7l57 eps7l77 D0 beta4 beta5 beta6 beta7 beta47 beta55 beta67 beta77 betal67 betal77 H0 Hv7
0.000154 MHz 0.000214 MHz 0.000799 MHz 0.000824 MHz 0.003201 MHz 0.000136 MHz 0.098104 kHz 0.017190 kHz 0.435155 kHz 0.090984 kHz 0.073194 kHz 0.129153 kHz 0.018305 kHz 0.000023 kHz 0.000245 kHz 0.000069 kHz 0.000019 kHz 0.000034 kHz 0.222218 Hz 0.048611 Hz 0.019790 Hz 0.007997 Hz 0.026396 Hz 0.009895 Hz 0.001420 MHz 0.001697 MHz
4. Experimental spectra The rotational spectra of HCCC15N have been investigated in the following frequency domains: 222 –239, 260– 278, 300– 313, 440 –448, and 765– 1050 GHz (this last domain for the ground state and for the n7 ; 2n7 ; and n6 states with an uncertainty slightly greater). The newly measured rotational transitions which were used in the global fit, together with the previous measurements [11 – 17], are listed in Table 2. Unsplit lines in high ‘-value states are artificially split according to the splitting calculated in the analysis, and so they are introduced in both e- and f -substates. A total of 682 rotational transitions corresponding to 90 vibrational levels have been included in the global fit. In the infrared domain, all observed vibrational transitions reaching states up to 1335 cm21 have been measured and introduced in the global analysis. These 130 bands are listed in Table 3 together with the range of the assigned J quantum numbers, the number of transitions selected for the final global fit, and the typical uncertainty of
O466 k47777 k47777v7 k47777J O47777 k5777 k5777v6 k5777v7 k5777J O5777 O5777v6 O0 5777 k6657 Coriolis resonances Cb567 Cc567 Ca677 Cb677 Cb677v7
0.253390 0.429211 20.013987 0.234450 0.040107 0.028372 0.003479 0.000167 0.255025 0.026625 20.011436 20.050239 2.215014
0.026355 £ 1025 cm21 0.002773 cm21 0.000825 cm21 0.023858 £ 1025 cm21 0.007135 £ 1025 cm21 0.000183 cm21 0.000139 cm21 0.000090 cm21 0.006493 £ 1025 cm21 0.000835 £ 1025 cm21 0.001495 £ 1025 cm21 0.001625 £ 1025 cm21 0.089050 cm21
1.299801 4.992067 20.549471 26.292287 0.035153
0.326749 £ 1023 cm21 0.156957 £ 1023 cm21 0.080177 £ 1023 cm21 0.034721 £ 1023 cm21 0.002555 £ 1023 cm21
the corresponding lines. Infrared bands contain between 50 and 250 lines. To reduce the number of experimental data in the global fit and so reduce the computer time, we only introduce some selected values covering the observed range with a regular spacing in JðJ þ 1Þ; according to a polynomial fit of the single band. For a global analysis, this procedure yields similar results as with all the individual lines. In cases of local perturbations, we select as many J’s as needed to make use of the complete information available from the spectrum.
5. Results of the global fit The reduced standard deviation of the fit, s ¼ 0:69; is quite small indicating that the fit is likely to be good and that the choice of the experimental uncertainties was rather conservative. The largest deviations remain in the range of the experimental uncertainty ð2:5sÞ: The final set of molecular parameters is listed in Table 4 together with
Table 5 Comparison of the experimental 15N isotopic shifts with their ab initio values for some molecular parameters. The number of digits is chosen according to the accuracy of the value
HCCCN [8] HCCC15N Isotopic shift ab initio [10]
a4 MHz
a5 MHz
a6 MHz
a7 MHz
q5 MHz
q6 MHz
q7 MHz
q5J Hz
q6J Hz
q7J Hz
10.8 10.51 20.3 20.50
21.71 21.62 0.09 0.06
29.236 29.021 0.215 0.22
214.455 214.009 0.446 0.45
22.528 22.394 0.134 0.14
23.582 23.387 0.195 0.19
26.539 26.208 0.331 0.33
1.30 1.20 20.10 20.1
1.86 1.79 20.07 20.1
16.26 15.06 21.20 21.2
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
307
Table 6 Effective rovibrational state parameters of HCCC15N up to 1335 cm21, according to power series in JðJ þ 1Þ: All values are in cm21 Jmax v4v5v6v7, l5 110 110 110 80 80 110 110 110 70 90 90 80 100 110 60 50 60 50 110 70 70 90 90 40 70 40 110 110 90 80 80 100 90 90 110 110 110 110 110 90 100 80 90 80 70 40 60 60 40 110 110 50 50 60 60 70 60 90 100 60 110
l6
l7
Ev
B £ 105
D £ 108
H
L
M
N
0 0 0 0, 0 0 0e 0.00000 14732.70040 1.70614 1.41400D 2 15 0.00000D þ 00 0.00000D þ 00 0.00000D þ 00 0 0 0 1, 0 0 1e 220.81900 14769.07391 1.75630 2.14438D 2 15 0.00000D þ 00 0.00000D þ 00 0.00000D þ 00 0 0 0 1, 0 0 1f 220.81900 14789.78093 1.80653 3.86872D 2 15 0.00000D þ 00 0.00000D þ 00 0.00000D þ 00 0 0 0 2, 0 0 0e 439.66482 14826.13397 3.70988 2 2.06632D 2 14 2.13968D 2 16 22.22850D 2 20 7.98700D 2 25 0 0 0 2, 0 0 2e 441.98701 14825.99829 0.00702 2.97123D 2 14 22.13963D 2 16 2.22842D 2 20 2 7.98633D 2 25 0 0 0 2, 0 0 2f 441.98701 14825.99950 1.85800 4.49467D 2 15 0.00000D þ 00 0.00000D þ 00 0.00000D þ 00 0 0 1 0, 0 1 0e 497.50398 14757.18822 1.73485 1.43088D 2 15 0.00000D þ 00 0.00000D þ 00 0.00000D þ 00 0 0 1 0, 0 1 0f 497.50398 14768.48594 1.74129 1.67290D 2 15 0.00000D þ 00 0.00000D þ 00 0.00000D þ 00 0 0 0 3, 0 0 1f 658.91733 14893.55373 2.69345 2 3.72503D 2 13 2.04161D 2 17 0.00000D þ 00 0.00000D þ 00 0 0 0 3, 0 0 1e 658.91733 14851.82929 2.58522 2.35905D 2 13 3.97877D 2 17 27.07787D 2 21 3.47743D 2 25 0 1 0 0, 1 0 0e 663.22163 14733.68708 1.72249 1.47223D 2 13 25.27422D 2 17 7.37323D 2 21 2 3.53011D 2 25 0 1 0 0, 1 0 0f 663.22164 14741.66211 1.68506 2 1.75242D 2 13 3.49874D 2 17 22.22695D 2 21 0.00000D þ 00 0 0 0 3, 0 0 3f 663.50477 14872.39581 1.21945 2.49886D 2 13 1.73385D 2 17 23.34478D 2 21 1.05196D 2 25 0 0 0 3, 0 0 3e 663.50477 14872.39644 1.22151 2 3.71866D 2 13 1.23187D 2 17 21.88162D 2 22 0.00000D þ 00 0 0 1 1, 0 1 2 1e 717.37604 14809.66733 4.62453 2 2.64580D 2 14 1.19034D 2 15 22.39695D 2 19 1.64680D 2 23 0 0 1 1, 0 1 2 1f 718.16268 14809.73876 3.49656 1.24664D 2 12 1.66159D 2 15 26.54809D 2 19 7.88653D 2 23 0 0 1 1, 0 1 1e 718.29913 14810.03768 20.99800 3.60163D 2 14 21.19179D 2 15 2.40018D 2 19 2 1.64968D 2 23 0 0 1 1, 0 1 1f 718.29913 14810.03249 0.12887 2 1.24165D 2 12 21.66048D 2 15 6.54492D 2 19 2 7.88249D 2 23 1 0 0 0, 0 0 0e 852.43272 14711.21079 1.82564 1.76245D 2 14 25.01609D 2 19 9.36445D 2 24 0.00000D þ 00 0 0 0 4, 0 0 0e 876.32203 14919.15908 7.83254 2 8.53241D 2 14 1.88643D 2 15 23.31146D 2 19 1.97337D 2 23 0 0 0 4, 0 0 2e 878.57468 14919.09936 23.11746 7.83845D 2 13 22.35018D 2 15 4.76679D 2 19 2 3.78605D 2 23 0 0 0 4, 0 0 2f 878.57468 14919.10817 2.68628 3.27623D 2 13 21.40430D 2 16 2.94793D 2 20 2 1.96304D 2 24 0 1 0 1, 1 0 2 1f 883.63007 14784.52240 2.21925 2.71441D 2 14 2.01795D 2 17 21.02818D 2 21 0.00000D þ 00 0 1 0 1, 1 0 1e 884.55057 14784.38584 11.59210 5.87458D 2 12 3.61642D 2 14 22.22678D 2 17 4.30697D 2 21 0 1 0 1, 1 0 1f 884.55057 14784.31641 1.34077 2 1.60247D 2 13 7.53690D 2 17 22.82879D 2 20 3.49790D 2 24 0 1 0 1, 1 0 2 1e 884.76689 14782.73567 28.08115 2 6.37523D 2 12 23.56353D 2 14 2.20033D 2 17 2 4.25581D 2 21 0 0 0 4, 0 0 4f 885.37394 14918.62139 1.37524 2 1.53397D 2 14 27.49227D 2 18 2.63357D 2 22 2 2.67749D 2 27 0 0 0 4, 0 0 4e 885.37394 14918.61957 1.37287 2 2.69324D 2 14 8.68378D 2 18 21.11983D 2 22 2 8.41508D 2 27 0 0 1 2, 0 1 0e 936.44060 14843.77440 3.31723 1.04975D 2 12 23.25134D 2 17 29.54230D 2 22 7.97373D 2 26 0 0 1 2, 0 1 0f 936.44061 14869.83851 3.31168 2 7.98337D 2 13 2.32223D 2 17 1.61775D 2 20 2 1.11543D 2 24 0 0 1 2, 0 21 2f 938.54076 14849.18980 1.34115 4.17159D 2 13 28.76815D 2 17 21.33895D 2 21 4.50963D 2 25 0 0 1 2, 0 21 2e 938.54077 14863.84265 1.32122 2 4.35220D 2 13 26.66096D 2 18 1.34829D 2 21 2 2.65389D 2 26 0 0 1 2, 0 1 2f 939.44506 14857.10603 1.02493 4.34777D 2 13 5.35026D 2 17 21.34338D 2 20 5.98025D 2 25 0 0 1 2, 0 1 2e 939.44507 14857.10417 1.02341 2 6.13405D 2 13 4.26686D 2 17 28.02805D 2 22 2 3.53946D 2 26 0 0 2 0, 0 2 0f 995.59375 14792.77284 1.76986 1.68029D 2 15 0.00000D þ 00 0.00000D þ 00 0.00000D þ 00 0 0 2 0, 0 2 0e 995.59375 14792.77262 1.84824 2 6.35967D 2 15 7.23654D 2 20 0.00000D þ 00 0.00000D þ 00 0 0 2 0, 0 0 0e 1010.05361 14780.93777 1.62276 8.19121D 2 15 26.22167D 2 20 0.00000D þ 00 0.00000D þ 00 1 0 0 1, 0 0 1e 1076.15667 14748.60891 1.93727 6.23427D 2 14 23.55558D 2 18 1.51516D 2 22 2 2.97548D 2 27 1 0 0 1, 0 0 1f 1076.15667 14769.77613 2.02823 1.02756D 2 13 26.55985D 2 18 2.96738D 2 22 2 6.02818D 2 27 0 0 0 5, 0 0 1e 1094.20467 14933.69978 3.96901 1.58022D 2 12 28.51963D 2 17 2.65771D 2 21 2 3.66347D 2 26 0 0 0 5, 0 0 1f 1094.20467 14996.62511 4.10193 2 1.24688D 2 12 29.33332D 2 17 3.16594D 2 20 2 1.49192D 2 24 0 0 0 5, 0 0 3e 1098.63593 14965.32727 0.73355 2 1.42260D 2 12 2.83112D 2 17 4.13111D 2 21 0.00000D þ 00 0 0 0 5, 0 0 3f 1098.63593 14965.32684 0.73559 1.40621D 2 12 25.81468D 2 18 29.75908D 2 21 0.00000D þ 00 0 1 0 2, 1 0 0e 1103.27192 14837.02343 3.08310 2 5.25809D 2 13 21.84067D 2 16 4.05875D 2 20 2 2.03792D 2 24 0 1 0 2, 1 0 0f 1103.27192 14824.85446 2.85671 7.98038D 2 13 24.78910D 2 17 2.27213D 2 21 0.00000D þ 00 0 1 0 2, 21 0 2f 1105.88924 14838.38914 3.53822 2 7.36289D 2 12 21.62213D 2 15 2.82570D 2 18 2 6.07364D 2 22 0 1 0 2, 21 0 2e 1105.88924 14818.46002 3.30507 1.10675D 2 11 22.68567D 2 15 4.08104D 2 19 2 2.79423D 2 23 0 1 0 2, 1 0 2e 1106.23133 14830.79273 20.83639 2 1.02409D 2 11 2.74447D 2 15 24.25905D 2 19 2.86189D 2 23 0 1 0 2, 1 0 2f 1106.23133 14830.78221 20.86971 6.81005D 2 12 1.47148D 2 15 22.73936D 2 18 5.91266D 2 22 0 0 0 5, 0 0 5f 1107.59717 14964.64769 1.48667 2 1.91477D 2 14 3.07791D 2 19 1.31661D 2 22 2 3.39417D 2 27 0 0 0 5, 0 0 5e 1107.59717 14964.64746 1.48635 2 2.09134D 2 14 7.78900D 2 19 21.43028D 2 22 3.54060D 2 27 0 0 1 3, 0 1 2 1e 1154.53729 14903.53531 9.76975 2 5.37431D 2 13 6.62149D 2 15 21.88067D 2 18 1.83457D 2 22 0 0 1 3, 0 1 1f 1155.70887 14903.85865 6.57212 3.14165D 2 13 4.67679D 2 15 21.57746D 2 18 1.76550D 2 22 0 0 1 3, 0 1 1e 1155.70887 14903.83126 24.81009 4.33834D 2 13 26.50153D 2 15 1.83147D 2 18 2 1.77465D 2 22 0 0 1 3, 0 1 2 1f 1156.06239 14903.61015 20.73666 2 9.30631D 2 13 24.09359D 2 15 1.37797D 2 18 2 1.50670D 2 22 0 0 1 3, 0 21 3f 1159.47635 14903.17218 0.74824 2 9.60642D 2 14 27.06500D 2 18 28.45269D 2 22 0.00000D þ 00 0 0 1 3, 0 21 3e 1159.47635 14903.16829 1.63986 2 2.07568D 2 13 5.68234D 2 17 25.46071D 2 21 0.00000D þ 00 0 1 1 0, 1 1 0e 1160.68396 14767.88952 2.85915 4.14167D 2 13 3.34313D 2 17 22.58563D 2 21 0.00000D þ 00 0 1 1 0, 1 1 0f 1160.68397 14767.86912 1.84871 2 1.03293D 2 13 3.00269D 2 17 22.59362D 2 21 8.05380D 2 26 0 1 1 0, 1 21 0f 1160.91251 14767.69594 1.60414 2 3.36398D 2 13 2.65873D 2 16 29.55179D 2 20 1.27995D 2 23 0 0 1 3, 0 1 3f 1160.94251 14904.02780 1.23634 2 1.77460D 2 14 21.57675D 2 17 8.88809D 2 22 2 1.59551D 2 26 (continued on next page)
308
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
Table 6 (continued) Jmax v4v5v6v7, l5 110 100 80 80 80 80 110 110 100 80 100 40 100 60 110 90 70 70 80 80 100 90 100 90 100 110 110 110 110
l6
l7
Ev
B £ 105
D £ 108
H
L
M
0 0 1 3, 0 1 3e 1160.94252 14904.01955 1.22482 2 7.73310D 2 14 2.39341D 2 17 2 1.00562D 2 21 0 1 1 0, 1 21 0e 1161.56479 14767.81059 0.68311 4.13766D 2 14 21.66166D 2 16 1.83307D 2 20 0 0 2 1, 0 2 21e 1215.28774 14839.18328 2.97073 7.13891D 2 14 1.33980D 2 16 2 1.61413D 2 20 0 0 2 1, 0 2 2 1f 1215.28774 14840.30230 2.95896 1.08528D 2 13 1.38419D 2 16 2 1.68029D 2 20 0 0 2 1, 0 2 1f 1216.36688 14840.44700 0.80189 2 1.11314D 2 13 21.37996D 2 16 1.67521D 2 20 0 0 2 1, 0 2 1e 1216.36688 14840.44683 0.80140 2 7.32782D 2 14 21.33517D 2 16 1.60904D 2 20 0 0 2 1, 0 0 1f 1230.55767 14837.61299 1.72536 1.11345D 2 14 23.88922D 2 20 0.00000D þ 00 0 0 2 1, 0 0 1e 1230.55767 14817.75659 1.66364 8.53712D 2 15 27.46853D 2 20 0.00000D þ 00 1 0 0 2, 0 0 0e 1297.54784 14809.63472 4.38432 8.45874D 2 13 9.03542D 2 17 2 1.12880D 2 20 1 0 0 2, 0 0 2e 1300.03238 14808.41264 0.51936 4.48459D 2 13 22.43641D 2 16 2.34702D 2 20 1 0 0 2, 0 0 2f 1300.03239 14808.40648 2.36578 4.68407D 2 13 24.29436D 2 17 2.46851D 2 21 0 0 0 6, 0 0 0e 1310.42868 15009.18627 13.42241 2 1.64272D 2 11 2.83942D 2 14 2 1.33724D 2 17 0 0 0 6, 0 0 2f 1312.58488 15009.93049 3.54993 2 3.14566D 2 13 6.19664D 2 17 2 3.90843D 2 23 0 0 0 6, 0 0 2e 1312.58489 15009.89256 28.67438 2 3.40214D 2 13 28.09734D 2 15 2.05047D 2 18 0 2 0 0, 0 0 0e 1312.98571 14743.25743 1.74921 1.68452D 2 15 21.89557D 2 19 1.81671D 2 23 0 0 0 6, 0 0 4e 1319.10107 15011.38484 1.16158 1.12983D 2 12 28.66006D 2 16 3.05255D 2 19 0 0 0 6, 0 0 4f 1319.10108 15011.35808 1.04939 2 5.50317D 2 13 1.76535D 2 16 2 3.64117D 2 20 0 1 0 3, 1 0 2 1f 1321.80505 14877.85756 5.59194 1.62079D 2 13 1.05591D 2 15 2 1.79770D 2 19 0 1 0 3, 1 0 1f 1323.10517 14877.19598 20.89982 2 7.94260D 2 14 21.09330D 2 15 1.78690D 2 19 0 1 0 3, 1 0 1e 1323.10517 14877.20319 5.27191 2 1.70632D 2 12 9.38086D 2 16 2 1.05624D 2 19 0 1 0 3, 1 0 21e 1324.37723 14872.97904 0.67239 1.84107D 2 12 28.64591D 2 16 9.92906D 2 20 0 1 0 3, 21 0 3f 1327.64821 14873.45671 2.66956 1.15812D 2 12 5.10011D 2 17 2 1.16528D 2 20 0 1 0 3, 21 0 3e 1327.64822 14873.44154 1.22830 2.24366D 2 13 1.52289D 2 16 2 1.36280D 2 19 0 1 0 3, 1 0 3e 1328.26404 14877.08667 0.32809 2 7.38308D 2 13 1.15257D 2 16 2 7.25596D 2 21 0 1 0 3, 1 0 3f 1328.26404 14877.07063 0.27709 2 1.29048D 2 12 1.97494D 2 17 4.66230D 2 21 0 0 0 6, 0 0 6f 1330.17803 15010.46770 1.58702 2 1.83092D 2 14 4.88258D 2 19 2 2.53915D 2 23 0 0 0 6, 0 0 6e 1330.17804 15010.46530 1.58547 2 2.23016D 2 14 9.17443D 2 19 2 3.68871D 2 23 0 2 0 0, 2 0 0f 1333.04967 14741.85312 1.71640 6.21031D 2 16 1.33535D 2 18 2 2.58442D 2 22 0 2 0 0, 2 0 0e 1333.04968 14741.85091 1.68011 2 3.91594D 2 14 1.46067D 2 17 2 1.00768D 2 21
their standard deviations. In this table the names of the parameters are written as they are printed from the global analysis program, but their meaning is straightforward if the reader refers to formulas of Ref. [25] and to complementary formulas in the present paper. Our vibrational parameters v0s ’s contain anharmonic contributions from all vibrational modes, so that we have to wait the analysis of the high frequency stretching modes before to deduce the corresponding equilibrium parameters vs ’s. In the same way, although our rotational parameter B0 is quite accurate, the equilibrium rotational constant Be cannot be determined accurately. Table 5 illustrates the good agreement between the experimental 15N isotopic shifts and the corresponding ab initio values for the parameters published in Ref. [10]. The expected order of magnitude of the parameters is verified, except in two cases. First, the vibrational dependence of the sextic centrifugal distortion constant H is as large as the ground state value for the n7 contribution. It has to be noted that an identical behaviour was observed for HCCC14 . N [27]. Then, the rotational dependence, k5777J ; of the anharmonic constant k5777 is surprisingly large although, again, an identical behaviour was found for HCCC14N [27]. Although the analysis of the 15N species is performed independently of that of the normal species, the two analyses yield similar results. However, a significant difference is observed for the second anharmonic resonance
N 0.00000D þ 00 26.54972D 2 25 6.50848D 2 25 6.77537D 2 25 26.74953D 2 25 26.48267D 2 25 0.00000D þ 00 0.00000D þ 00 3.79472D 2 25 28.19311D 2 25 26.18968D 2 26 2.46645D 2 21 22.46415D 2 25 21.75295D 2 22 0.00000D þ 00 23.64379D 2 23 2.23123D 2 24 1.01602D 2 23 29.68777D 2 24 4.20961D 2 24 23.86393D 2 24 4.50563D 2 25 2.35038D 2 23 0.00000D þ 00 22.30764D 2 25 0.00000D þ 00 1.62762D 2 27 1.22250D 2 26 0.00000D þ 00
between n5 and 3n7 associated with the k5777 parameter. This parameter value is 0.05683(3) cm21 for HCCCN [27] and 0.0284(2) cm21 for HCCC15N. For HCCNC [25] this value is 0.2929(2) cm21. Thus the effects of this resonance are more localized for the HCCC15N molecule.
Fig. 2. Reduced upper state energies of HCCC15N from 653 to 666 cm21 in dependence of JðJ þ 1Þ:
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
309
Fig. 3. Reduced upper state energies of HCCC15N from 715 to 720 cm21 in dependence of JðJ þ 1Þ:
Fig. 5. Reduced upper state energies of HCCC15N from 934 to 941 cm21 in dependence of JðJ þ 1Þ:
It is possible to calculate any rovibrational level of HCCC15N from the direct diagonalisation of an energy matrix (for a given polyad, at a given J value) constructed according to the described model and with the molecular parameters listed in Table 4. This procedure is not simple and requires an adequate program, so that it is interesting to determine the corresponding effective state parameters Ev, B, D, H, L, M, and N according to power series in JðJ þ 1Þ: At the end of the analysis, we have applied a polynomial least-squares fit on the calculated rovibrational energies of all states up to 1335 cm21, to obtain the parameters listed in Table 6. The polynomial fit was limited to the sixth power in JðJ þ 1Þ; but the third power was enough for a few
unperturbed states. The fits were applied to the rovibrational energies up to J ¼ 110; with reduced weights in cases of local perturbations. The Jmax value was eventually reduced by steps of 10 units to finally obtain a standard deviation less than 1025 cm21.
Fig. 4. Reduced upper state energies of HCCC15N from 882 to 887 cm21 in dependence of JðJ þ 1Þ:
Fig. 6. Reduced upper state energies of HCCC15N from 1101 to 1108 cm21 in dependence of JðJ þ 1Þ:
6. Discussion To illustrate the major perturbations observed in the spectra, we present in the next figures the reduced rovibrational energies of HCCC15N in some energy ranges. The curves (continuous lines for e-states and dashed lines
310
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
Fig. 7. Reduced upper state energies of HCCC15N from 1152 to 1166 cm21 in dependence of JðJ þ 1Þ:
for f -states) correspond to the calculated values according to the global analysis, and the marks correspond to the upper states of the infrared transitions selected for the global fit. The first avoided crossings due to the anharmonic resonance associated with k5777 are observed between the n5 and 3n7 states as illustrated in Fig. 2. The perturbations due to the combination of the vibrational ‘-type resonance associated with r67 and the rotational ‘-type resonances are shown in Fig. 3. In Fig. 4 we illustrate on one hand the vibrational ‘-type resonance associated with r57 ; and on the other hand the k5777 interaction between the n5 þ n7 and 4n7 states. Fig. 5 illustrates the complex interaction between the n6 þ 2n7 substates, with in particular a broad avoided crossing between the two Pf substates. We also observe a complicated interaction between the n5 þ 2n7 substates (Fig. 6) with in particular a broad avoided crossing between the two Pe substates, but a lot of local perturbations are also due to the k5777 interaction between the n5 þ 2n7 and 5n7 states. In Fig. 7 we illustrate on one hand the vibrational ‘type resonance associated with r56 ; and on the other hand the k5777 interaction between the n5 þ n6 and n6 þ 3n7 states. The region of 1300 cm21 is more complicated as seen in Fig. 8. The 2n5 S and D states are in interaction on one hand with the n5 þ 3n7 and 6n7 states through the second order k5777 anharmonic resonance, and on the other hand with the n4 þ 2n7 state through the third order k45577 anharmonic resonance. A lot of avoided crossings have already been
Fig. 8. Reduced upper state energies of HCCC15N from 1290 to 1340 cm21 in dependence of JðJ þ 1Þ:
observed in the experimental spectra, but complementary assignments are expected in the near future for the energy domain above 1300 cm21. Acknowledgements This work has been supported by the ‘European Laboratory of High Resolution Spectroscopy’ (LEA HiRes). We thank the Deutsche Forschungsgemeinschaft for support.
References [1] B.E. Turner, Astrophys. J. 163 (1971) L35. [2] F.O. Clark, R.D. Brown, P.D. Godfrey, J.W.V. Storey, D.R. Johnson, Astrophys. J. 210 (1976) L139. [3] F. Wyrowski, P. Schilke, C.M. Walmsley, Astron. Astrophys. 341 (1999) 882. [4] F. Wyrowski, P. Schilke, S. Thornwirth, K.M. Menten, G. Winnewisser, Astrophys. J. 586 (2003) 344. [5] J.R. Goicoechea, J. Cernicharo, J.R. Pardo, M. Gue´lin, T.G. Phillips, in: G.L. Pilbratt, J. Cernicharo, A.M.H. Heras, T. Prusti, R. Harris (Eds.), Proceedings of the Symposium The Promise of the Herschel Space Observatory 12–15 December 2000, Toledo, Spain, ESA SP460, 2001. [6] D. Bockele´e-Morvan, D.C. Lis, J.E. Wink, D. Despois, J. Crovisier, R. Bachiller, D.J. Benford, N. Biver, P. Colom, J.K. Davies, E. Ge´rard,
A. Fayt et al. / Journal of Molecular Structure 695–696 (2004) 295–311
[7] [8] [9] [10] [11] [12] [13] [14] [15]
B. Germain, M. Houde, D. Mehringer, R. Moreno, G. Paubert, T.G. Phillips, H. Rauer, Astron. Astrophys. 353 (2000) 1101. V.G. Kunde, A.C. Aikin, R.A. Hanel, D.E. Jennings, W.C. Maguire, R.E. Samuelson, Nature 292 (1981) 686. L. Mbosei, A. Fayt, P. Dre´an, J. Cosle´ou, J. Mol. Struct. 517-518 (2000) 271. S. Thorwirth, H.S.P. Mu¨ller, G. Winnewisser, J. Mol. Spectrosc. 204 (2000) 133. P. Botschwina, M. Horn, S. Seeger, J. Flu¨gge, Mol. Phys. 78 (1993) 191. G.M. Plummer, D. Mauer, K.M.T. Yamada, K. Mo¨ller, J. Mol. Spectrosc. 130 (1988) 407. B. Coveliers, W.K. Ahmed, A. Fayt, H. Bu¨rger, J. Mol. Spectrosc. 156 (1992) 77. R.A. Creswell, G. Winnewisser, M.C.L. Gerry, J. Mol. Spectrosc. 65 (1977) 420. S. Thorwirth, H.S.P. Mu¨ller, G. Winnewisser, Phys. Chem. Chem. Phys. 3 (2001) 1236. P.D. Mallinson, R.L. de Zafra, Mol. Phys. 36 (1978) 827.
311
[16] J. Haekel, H. Ma¨der, Z. Naturforsch 43a (1988) 1111. [17] P. Wolf, H. Ma¨der, J. Mol. Struct. 190 (1988) 287. [18] G. Guelachvili, K. Narahari Rao, Handbook of Infrared Standards, San Diego, 1986. [19] G. Guelachvili, et al., Pure Appl. Chem. 68 (1996) 193. [20] R.A. Toth, J. Opt. Soc. Am. B10 (1993) 2006. [21] R.A. Toth, Appl. Opt. 33 (1994) 4851. [22] J.P. Chevillard, J.Y. Mandin, J.M. Flaud, C. Camy-Peyret, Can. J. Phys. 69 (1991) 1286. [23] J.P. Chevillard, J.Y. Mandin, J.M. Flaud, C. Camy-Peyret, Can. J. Phys. 67 (1989) 1065. [24] J.M. Brown, J.T. Hougen, K.B. Huber, J.W.C. Johns, I. Kopp, H. Lefe`bvre, A.J. Merer, D.A. Ramsay, J. Rostas, R.N. Zare, J. Mol. Spectrosc. 55 (1975) 500. [25] C. Vigouroux, A. Fayt, A. Guarnieri, A. Huckauf, H. Buerger, D. Lentz, D. Preugschat, J. Mol. Spectrosc. 202 (2000) 1–18. [26] K.M.T. Yamada, R.A. Creswell, J. Mol. Spectrosc. 116 (1986) 384. [27] L. Mbosei, E. Arie´, A. Fayt, unpublished results.