Global Existence Theorem for Nonlinear Wave Equation in Exterior Domain

Global Existence Theorem for Nonlinear Wave Equation in Exterior Domain

L e c t u r e N o t e s in Num. Appl. Anal., 6, 155-196 (1983) Recent Topics in Nonlinear PDE, Hiroshima, 1983 Global Existence Theorem for Nonlinear...

1MB Sizes 2 Downloads 140 Views

L e c t u r e N o t e s in Num. Appl. Anal., 6, 155-196 (1983) Recent Topics in Nonlinear PDE, Hiroshima, 1983

Global Existence Theorem for Nonlinear Wave Equation in Exterior Domain Yoshihiro SHIBATA* and Yoshio TSUTSUMI**

*

*Department of Mathematics, University of Tsukuba Ibaraki 306, Japan **Department of Pure and Applied Sciences, College of General Education, University of Tokyo Tokyo 113, Japan Supported in part by the Sakkokai Foundation.

81.

Introduction.

The g l o b a l e x i s t e n c e o f s o l u t i o n s f o r t h e n o n l i n e a r wave e q u a t i o n has been extensively studied. improvement r e c e n t l y .

F o r t h e Cauchy problem Klainerman [ Z ] has made a remarkable That i s , he showed t h a t i f t h e s p a t i a l dimension i s n o t

s m a l l e r than 6 and i n i t i a l d a t a a r e s m a l l and smooth, then t h e Cauchy problem f o r t h e f u l l y n o n l i n e a r wave e q u a t i o n has a unique c l a s s i c a l g l o b a l s o l u t i o n .

On t h e o t h e r hand i t i s i m p o r t a n t t o c o n s i d e r t h e i n i t i a l boundary v a l u e problem f o r t h e n o n l i n e a r wave e q u a t i o n i n an e x t e r i o r domain i n o r d e r t o s t u d y s c a t t e r i n g o f a r e f l e c t i n g o b j e c t f o r t h e n o n l i n e a r wave equation.

I n t h e p r e s e n t paper we

s h a l l prove t h a t i f t h e s p a t i a l dimension i s n o t s m a l l e r than 3 and i n i t i a l data a r e small and smooth, then we have t h e g l o b a l unique e x i s t e n c e theorem o f c l a s s i c a l solutions f o r

a

l a r g e c l a s s o f n o n l i n e a r wave equations i n e x t e r i o r domains

w i t h t h e homogeneous O i r i c h l e t boundary c o n d i t i o n , which i n c l u d e s t h e n o n l i n e a r v i b r a t i o n equation.

n

Let

be an unbounded domain i n lRn

,n2

3, w i t h Cm and compact boundary an.

We denote a t i m e v a r i a b l e by t o r xo and a space v a r i a b l e by x = (x1,.-.,xn), respectively. o r ,a,

(*)

a . and ,;a J

We s h a l l a b b r e v i a t e a / a t , a/ax. and (a/axl)al...(a/axn)an

J

r e s p e c t i v e l y , where

a

i s a multi-index w i t h

Supported i n p a r t by t h e Sakkokai Foundation. 155

101

to a t

= al+***+a

n

Yoshihiro SHIBATA and Yashio TSUTSUMI

166

.

and j = l,...,n

We s h a l l consider t h e f o l l o w i n g problem:

u = o

on [OP)

~ ( 0 ~ =x 1$o(X), where

2

t11= at

-

A =

a t2

x

an,

(atu)(o,x)

- j.11n a Jz. and

= $,(XI

hu = (aiu,

i n n,

a J. a ku, j,k=O,.-.,n).

i=O,.-.,n;

Before we s t a t e assumptions and t h e main theorem, we s h a l l g i v e n o t a t i o n s .

For any i n t e g e r N 2 0 we w r i t e

L e t 6 be an a r b i t r a r y open s e t i n Rn

.

F o r any p w i t h 1 5 p 5

standard Lp space d e f i n e d on p and i t s norm by Lp(S) and

ml

II.llB,py

we denote t h e respectively.

For a v e c t o r v a l u e d f u n c t i o n h = ( h l y . - * , h s ~ we p u t 2 l h I 2 = l h 1 I 2 + - . * + l h s l , ~ ~ h ~= / 1 ~ y~ p~ h j ~ ~ ~ , p j=l We a l s o w r i t e

We s e t HP~ ( c - ) = t f

E

L’’(F)

;

IIfll,,p,N

<

m

1. Note t h a t Ho(e)= Lp(&) p a r t i c u l a r l y .

L e t robe a f i x e d p o s i t i v e constant such t h a t an C I x r > ro we denote t h e subset I x

E

n ; 1x1

< r 1 by

nr.

E

P R n ; 1x1 < ro I .

For

F o r any r > ro and any

i n t e g e r k 2 1 we p u t 2 ~,(n) = I u

E

~ ~ ( ;n supp ) uct x

E

R” ; 1x1 5 r I 1,

Ok Hr(n)

E

k Hz(n) ; supp u

E

R n ; 1x1 5 r 1,

I u

c( x

“0 2 kle s h a l l sometimes use Hr(n) = lr(n). (u,v),

and t h e D i r i c h l e t norm

llullD by

a:ulas2 = 0 (la1 L k-111.

We d e f i n e t h e D i r i c h l e t i n n e r p r o d u c t

Nonlinear Wave Equation in Exterior 1)wnain

157

we denote t h e completion o f $(n) i n t h e D i r i c h l e t norm. By ,uN(&) we N denote t h e s e t o f C ( b ) - f u n c t i o n s having a l l d e r i v a t i v e s o f o r d e r 5 N bounded i n E . F o r two Banach spaces X and Y we denote t h e Banach space c o n s i s t i n g o f a l l

By H,(Q)

bounded l i n e a r o p e r a t o r s from X t o Y and i t s norm by B(X,Y) and II-II ]B(X,Y) ' 1 r e s p e c t i v e l y . For an i n t e r v a l I(.- R and a Banach space X we denote t h e s e t

o f m-times c o n t i n u o u s l y d i f f e r e n t i a b l e X-valued f u n c t i o n on I by Cm(I;X).

We s e t

For 1 ;< p 5 =, a nonnegative number k and a nonnegative i n t e g e r N we w r i t e

hL =

I

U

c IELr\CL-l([O,-);H,(s2));

L atu(O,x)

= 0 1.

F o r s i m p l i c i t y we a l s o use t h e a b b r e v i a t i o n s :

f(c)

= f(cl,-*-.~n)

where xc = x

1 1

v . = (v~,.**,vJ)

=

+...+xncn.

IRn

e x p ( - a x c ) f ( x ) dx,

For p o s i t i v e integers

5,

i, v e c t o r s u = (u, . * . . , u s ) ,

( 1 5 j 2 i) and a s c a l a r f u n c t i o n H(t.x,u)

J .

(dLH)(t,x,u)(vl

1

,*-*.vi)

by

(V

E

IRs) we d e f i n e

Yoshihiro SHIRATA and Yoshio TSUTSUMI

158

We s h a l l make t h e f o l l o w i n g assumptions. Assumption 1.1. (2) m

The s p a t i a l dimension n 2 3.

(1)

The n o n l i n e a r mapping F i s a r e a l - v a l u e d f u n c t i o n belonging t o

([0,-)

x

sl

x

{ A

E

R 2(n+1)

.> I XI

5 - 1 I).

(3) F(t,x,A)

O ( 1 ~ 1 ~ ) near

A =

0(1~1~)

x

near

0,

= 0,

if n 1 6 , if 3 5 n

5.

The e x t e r i o r domain n i s "non-trapping" i n t h e f o l l o w i n g sense:

(4)

G(t,x,y)

=

Let

be t h e Green f u n c t i o n f o r t h e f o l l o w i n g problem

2 (at

-

A ~ ) G= 0

i n ( 0 , ~ ) x n,

where y i s an a r b i t r a r y p o i n t i n n and ax i s t h e Laplace o p e r a t o r w i t h r e s p e c t t o x.

L e t a and b be a r b i t r a r y p o s i t i v e constants such t h a t b 2 a 2 ro. F o r

f o r any v

E

L:(n),

Remark 1.1.

where To depends o n l y on n, a, b and n.

I t is w e l l known t h a t i f t h e complement of B i s convex, t h e n

Assumption 1.1(4) i s s a t i s f i e d (see, e.g.,

Melrose [5]).

1.io

Nonlinear Wave Equation i n Exterior Dxnain

Now we s h a l l s t a t e t h e main theorem.

Theorem 1.1.

L e t m be an a r b i t r a r y i n t e g e r w i t h m

(Existence).

G.

Let

Assumption 1.1 be a l l s a t i s f i e d . 1)

P u t m = 2max(4[n/2]+7,

m+l) t 4[n/2]

4-

1. I f n 2 6, then t h e r e e x i s t

p o s i t i v e constants a and 6 o having t h e f o l l o w i n g p r o p e r t i e s : $1 E.6 2h[n/21+2(5)

and

f

€3:

2m+[n/21+1([0,-)

x

i)

If

@o

, €1,.

2m+[n/2]+3(;)

s a t i s f y f o r some 6 w i t h 0.

6 ~6~

and t h e c o m p a t i b i l i t y c o n d i t i o n o f o r d e r m , then Problem (M.P) has a s o l u t i o n

u

E

Cm +2

([o,-)

x

IAu12,0,m 2)

+

ii)

satisfying

lAu14,(n-1)/4,m

6’

Put m = 2max(3[n/2]+6,

m+l) + 3[n/2]

+ 7.

If 4

n 5 5, then t h e r e e x i s t

p o s i t i v e constants a and 6 o having t h e f o l l o w i n g p r o p e r t i e s :

@1 E J ~ ‘ ~ ’ ( ; )

and f

Il@OIlm,2iT;+2

+

E F2Fn ([0,-)

1141 Ilm,2iii+l

x

+

5)

s a t i s f y f o r some 6 w i t h 0

Iflm,o,2in‘

If

o0

< 6

E),

2m+ 2

(E),

A0

2 a6

and t h e c o m p a t i b i l i t y c o n d i t i o n of o r d e r ‘m, then Problem (M.P) has a s o l u t i o n

u

E

c ~ + ~ ( [ o x, i) ~ )satisfying IAU12,0,m

3)

$2

Let

+

E

IAUl-,(n-1

)/z.in

= <

6.

be a p o s i t i v e c o n s t a n t w i t h 0 <

3$+(3m +

7 ) ~+ ] 3[n/2]

+ 6.

E

5

1

, and

in

an i n t e g e r w i t h

I f n = 3, then t h e r e e x i s t p o s i t i v e constants

,

Yoshihiro SHIBATA and Yoshio TSUTSUMI

160

a and A0 having t h e f o l l o w i n g p r o p e r t i e s :

f

2%

~2

([I),-)x

5 ) s a t i s f y f o r some

I f $o

6 with 0 < 6

,i

E,,

5

2$+2

(z), o1

E$,*~'(;)

and

60

and t h e c o m p a t i b i l i t y c o n d i t i o n o f o r d e r m, t h e Problem (M.P) has a s o l u t i o n

u

E

Cm " ([G,-)

x

$) s a t i s f y i n g

(Uniqueness). C3([0,-) I*ulm,o,o

i) a r e

x

= <

6 1 and

Remark 1.2.

There e x i s t s a small c o n s t a n t 6 , > 0 such t h a t i f u, v

E

two s o l u t i o n s o f Problem (M.P) f o r t h e same data k i t h

I"lm,o,o (1)

2 1, then u

= v.

For t h e c o m p a t i b i l i t y c o n d i t i o n , see 54.2 and Mizohata

[6l. (2)

Since t h e n o n l i n e a r f u n c t i o n F i s d e f i n e d o n l y i n [ 0 , m ) ; Ihl

x

5

I

A E

1 I , we always assume t h a t I A U ~ ~ = ,< ~1, , when ~ we c o n s i d e r a

s o l u t i o n u o f Problem (M.P).

One o f t h e d i f f i c u l t i e s i n t h e p r o o f i s t h a t the l o s s o f d e r i v a t i v e s occurs a t each s t e p i n t h e i t e r a t i o n .

E s p e c i a l l y n o t e t h a t t h e n o n l i n e a r term F a l s o

depends on t h e d e r i v a t i v e of o r d e r 2 w i t h r e s p e c t t o time t i n our problem.

For

t h e Cauchy problem we can overcome such a d i f f i c u l t y by reducing a f u l l y n o n l i n e a r e q u a t i o n t o a q u a s i l i n e a r equation, f o l l o w i n g Oionne [I] (see a l s o Klainerman and Ponce [3] and Shatah [ l o ] ) .

For t h e i n i t i a l boundary v a l u e problem, however,

such methods a r e n o t a p p l i c a b l e . case n = 3.

Furthermore, t h e l o s s of decay occurs i n t h e

I n o r d e r t o overcome such d i f f i c u l t i e s , we s h a l l make use o f t h e

s o - c a l l e d Nash-Moser technique.

Our s t r a t e g y f o l l o w s Klainerman [ 2 ] and Shibata

Nonlinear Wave Equation in Exterior Dnmain

161

[12] (see a l s o Rabinowitz [9]).

A u n i f o r m decay e s t i m a t e and an L 2 - e s t i m a t e f o r a l i n e a r i z e d problem w i l l p l a y an i m p o r t a n t r o l e i n t h e p r o o f .

I n p a r t i c u l a r , t h e r e s u l t s o f decay estimates

a r e new and a r e proved i n t h e same way as Shibata [12] and Tsutsumi [13].

Tools

used i n a p p l y i n g t h e Nash-Moser technique, such as an i n t e r p o l a t i o n i n e q u a l i t y between a f a m i l y o f c e r t a i n semi-norms and a proper smoothing o p e r a t o r , a r e t h e same as those used i n Shibata [ll,121. Now we g i v e a well-known example, i.e.,

" t h e n o n l i n e a r v i b r a t i o n equation":

Example.

I n t h e course o f t h e p r o o f below a l l constants w i l l be s i m p l y denoted by C. In particular, C =

C(*,.--,*) w i l l denote a c o n s t a n t depending on t h e q u a n t i t j e s

appearing i n parentheses.

52. Uniform Decay Estimate.

In t h i s s e c t i o n we s h a l l

show a u n i f o r m decay e s t i m a t e o f s o l u t i o n s f o r t h e

f o l l o w i n g l i n e a r problem:

(2.1)

t_:iu

= f

u = o

in

[O,m)

x

R,

an

[a,-)

x

an,

Throughout S e c t i o n 2 we always assume t h a t t h e data $o, $1 and f o f t h e e q u a t i o n ( 2 . 1 ) a r e so n i c e f u n c t i o n s t h a t a l l t h e i r norms and semi-norms appearing below a r e bounded.

We d e f i n e u j ( x ) ( j 2 0 ) s u c c e s i v e l y by

162

Yoshihiro SHIBATA and Yoshio TSUTSUMI

i

q x ) =

U l ( X ) = *,(x),

$O(X)*

We s h a l l say t h a t t h e data $o, $1 and f o f t h e equation (2.1) s a t i s f y t h e c o m p a t i b i l i t y c o n d i t i o n o f o r d e r i n f i n i t y i f u . ( x ) = 0 on an ( j = 0, 1, 2,e.e).

J

I t i s known t h a t i f q0

E

C"(C),

q1

E

Cm(T2) and f

E

Cm([O,-)

x

C)

satisfy the

c o m p a t i b i l i t y c o n d i t i o n o f o r d e r i n f i n i t y , then Problem (2.1) has a unique solution u

E

Cm([O,-)

x

5 ) (see Mizohata [ 6 ] ) .

F o r t h a t s o l u t i o n we s h a l l show

t h e f o l l o w i n g u n i f o r m decay estimate:

Theorem 2.1.

L e t n 2 3.

1 . 1 ( 4 ) i s s a t i s f i e d f o r n.

Assume t h a t R i s "non-trapping",

L e t q0

E

Cm(E),

a1

E

Cm(E) and f

s a t i s f y the compatibility condition o f order i n f i n i t y .

E

i.e., Assumption Cm([O,-)

(1) i f n

p and p' a r e p o s i t i v e numbers (p may be i n f i n i t y ) such t h a t

2 '-'(l--) T P

Cm([O,-)

1 + P P

1,=

x

E)

Then, t h e s o l u t i o n u ( t , x )

5 ) o f (2.1) s a t i s f i e s t h e f o l l o w i n g estimates:

E

x

4 and >

1 and

1, then f o r each nonnegative i n t e g e r N

( 2 ) i f n 2 3 and p and p' a r e p o s i t i v e numbers ( p may be i n f i n i y ) such t h a t 1-1 1 -(1-12 = 1 and -1 + , = 1, then f o r any s u f f i c i e n t l y small a > 0 and each 2 P P P onnegative i n t e g e r N

Nonlinear Wave Equation in Exterior Domain

163

We s h a l l d i v i d e t h e p r o o f o f Theorem 2.1 i n t o s e v e r a l steps.

The s t r a t e g y

o f t h e p r o o f f o l l o w s Shibata [12] (see a l s o Tsutsumi [13]).

2.1. Local Energy Decay,

Theorem 2.2.

Here we s h a l l show t h e f o l l o w i n g theorem.

L e t n 2 3, Assume t h a t Assumption 1.1(4) holds.

L e t a and

b be a r b i t r a r y p o s i t i v e constants w i t h a, b 2 ro. L e t t h e d a t a J I ~J I, ~and f be smooth f u n c t i o n s s a t i s f y i n g t h e c o m p a t i b i l i t y c o n d i t i o n o f o r d e r i n f i n i t y such . R ( j = 0, 1) and supp f -. R i x Then, f o r any q w i t h J - a q 2 n-1 and each nonnegative i n t e g e r N t h e smooth s o l u t i o n u o f (2.1)

t h a t supp

0

$J.

s a t i s f i e s t h e f o l 1owing e s t i m a t e :

Following

We s h a l l f i r s t s t a t e t h e theorem needed f o r t h e proof o f Theorem 2 . 2 . Lax and P h i l l i p s C41, we s e t t h e H i l b e r t s p a c e 3 = { f = (fl,f2)

f2

E

2 L ( 8 ) 1 w i t h the inner product (f,g)

g = (g1,g2)),

= (fl,gl)D

; fl

+ (f2,g2)L2(n) 2

where ( - , - ) L 2 ( 8 ) i s t h e i n n e r p r o d u c t i n L ( 8 ) .

H,(n),

E

( f = (fl,f2),

F o r f = (fl,f2)

~ j !

we d e f i n e t h e l i n e a r o p e r a t o r A by

Then, i t f o l l o w s t h a t A i s a skew a d j o i n t o p e r a t o r ori

2 L ( 8 ) n H,(n)

& H 2 ( 8 ) n H,(n).

generated by A.

Theorem 2.3.

(1)

w i t h t h e domain D(A) =

L e t I U ( t ) 1 be t h e one parameter u n i t a r y group

F o r U ( t ) we have t h e f o l l o w i n g theorem.

L e t a and b be a r b i t r a r y p o s i t i v e constants w i t h a, b

Assume t h a t Assumption 1.1(4) holds.

I, 2).

;.

L e t f = (fl,f2) E X w i t h supp f . c J

> Qa

ro. (j =

Then,

i f n i s odd and n 2 3, then t h e r e e x i s t two constants C, 6

0 such t h a t

Yoshihiro SHIBATA and Ycshio TSUTSUMI

164 l u ( t ) f \ p , (b) = <

c

11 fllD

e-6t

where C and 6 depend o n l y on a,.b,

i f n i s even and n

2)

+

I I ~ ~I,I I t~ 2 0,

n and n;

4, then t h e r e e x i s t two constants C, 6 > 0 such

that

Remark 2.1.

Theorem 2.3(1) i s a l r e a d y w e l l known.

When n i s even and

n 2 4, t h e decay r a t e i n Theorem 2.3(2) seems t o be sharper than t h a t of a l r e a d y Melrose [5!).

known r e s u l t s (see, e.g.,

We d e f i n e 0- = I k

Sketch o f t h e p r o o f o f Theorem 2.3. and =

1 (1" {

k

, E

U(k.)f =

Q*'

;

-

3

n < arg k <

lom

e x p ( - m kt) U(t)f d t ,

Then we have (A

+ &T

k)G(k)f =

Hence, we have f o r k

(2.2)

; Im k

i f n i s odd and n 5 3,

5 I,

if

We define t h e Laplace t r a n s f o r m o f U ( t ) by ..I*

E C1

E

fl f 0-

F ( k ) f = (A + fl k ) - ' f

k

E

0-.

n i s even and n 2 4.

<

0 )

Nonlinear Wave Equation in Exterior Domain

165

2 1 2 where ( A + k ) - g denotes t h e s o l u t i o n u o f ( A + k ) u = g i n a, u = 0 on aa. Taking t h e i n v e r s e Laplace t r a n s f o r m o f (2.2), we o b t a i n (2.3)

U(t)f =

Z a L i

im-"" - m - & i o

e x p ( m k t ) (A + fl k ) - ' f

dk,

Thus, Theorem 2.3 f o l l o w s from a r o u t i n e c a l c u l u s i f we p r o p e r l y

f o r any 6 > 0.

s h i f t t h e contour o f t h e i n t e g r a l (2.3) by t h e r e l a t i o n ( A + k 2 ) - ' = k - ' -

+ k2)-'A and t h e f o l l o w i n g t h r e e lemmas ( f o r d e t a i l s , see Vainberg [17]

k-'(,

and Tsutsumi [14]):

Lemma 2.4.

(Vainberg [15]).

Let n

3.

w i t h a, b > ro. The r e s o l v e n t ( A + k 2 ) - l ( k to

D

2 2 as a B ( L a ( a ) , H ( n b ) ) - v a l u e d

function,

L e t a and b a r e p o s i t i v e constants L

D-) adntits a meromorphic e x t e n s i o n

Furthermore, t h e s e t o f a l l

p o l e s o f t h e meromorphic e x t e n s i o n has no l i m i t p o i n t i n 0 and does n o t l i e i n

D- i' ( R 1\

{

0

1).

Below we a l s o denote t h e meroniorphic e x t e n s i o n by ( A

Lemma 2.5. and n 2 3.

(Vainberg [17]).

+

kL)-'.

L e t a and b be p o s i t i v e constants w i t h a, b

Assume t h a t Assumption 1.1(4) holds.

ro

>

Then t h e r e e x i s t p o s i t i v e

constants a , B , C and T such t h a t f o r i n t e g e r s 0 5 s

1 and 0 2 j 5 2

i n the region V = I k s D ;

Lemma 2.6.

Vainberg [ 5, 161 and Tsutsumi [14]).

constants w i t h a, b > ro and n 2 3. such t h a t :

Ikl

(1)

(2)

Then t h e r e e x i s t s a p o s i t i v e c o n s t a n t y

i f n i s odd, ( A + k2)-'

Y j;

i f n i s even,

L e t a and b be p o s i t i v e

i s holomorphic i n t h e r e g i o n W = { k

E

0;

Yoshihiro SHIBATA and Yoshio TSUTSUMI

166

+ k 2 ) - l = Bl(k)

(A

i n t h e r e g i o n W' = I k

t k"'(1og

E

k)B2 t kn-2B3(k),

D ; Ikl

< y

2 2 B ( L a ( n ) , H ( 0, ) ) - v a l u e d f u n c t i o n , B2 i n W ' as a lB(Lg(i?),H2(~,))

I , where Bl(k) i s holomorphic i n W' as a 2 2 B(La(a),H (n,))

E

,

and B3(k) i s continuous

-valued function.

Now we s h a l l s t a t e t h e p r o o f o f Theorem 2.2.

'

L e t \r be t h e s o l u t i o n o f

Proof o f Theorem 2.2.

i

where vo

& V = A V

tf,

-

m

<

t

<

t

m

,

V(0) = VO' E

D(A),

f

E

V ( t ) = U(t)Vo + (see, e.g.,

c

C1(R1 ;:It), U(t

Mizohata [6]).

-

As i s w e l l known, we have t h e r e p r e s e n t a t i o n S ) f ( S ) ds

Therefore, we see from Theorem 2.3 t h a t f o r t h e data

Q0, 9, and f s a t i s f y i n g t h e assumptions o f Theorem 2.2 t h e s o l u t i o n u o f (2.1)

satisfies

i f n i s odd and n 2 3,

e-6t, t

t ) -n+l ,

if n i s even and n 2 4.

Here we have used the inequal it y

j

t

P(t

-

5)

1 t s ) - ~ds

C(q) ( 1 + t)-',

q > 0,

Nonlinear Wave Equation in Exterior Domain

167

A t l a s t Theorem 2.2 f o l l o w s from an i n d u c t i v e argument, (2.4) and t h e f o l l o w i n g we1 1-known e l 1i p t i c e s t i m a t e :

Lemma 2.7.

L e t a and b be a r b i t r a r y p o s i t i v e constants w i t h a

L e t a f u n c t i o n u s a t i s f y au = g i n na and u = 0 on an.

b > r 0'

>

Then, f o r each i n t e g e r

N 2 0, u s a t i s f i e s

2.2. Space.

Uniform Decay E s t i m a t e f o r S o l u t i o n s t o Wave Equation i n t h e F r e e I n t h i s s e c t i o n we s h a l l summarize t h e r e s u l t s concerning t h e decay o f

t h e s o l u t i o n t o t h e problem (2.5)

1x11=

i n [o,-)

f

U(O,X) = $,(XI,

x

(atu)(o,x)

R", i n R".

= q(x)

F o r g E Y ( R ~ we ) d e f i n e T ( t ) by a l i n e a r o p e r a t o r which naps g i n t o a s o l u t i o n o f t h e problem ( 2 . 5 ) w i t h

I),=,0,

$1 = g and f = 0.

Taking t h e

F o u r i e r t r a n s f o r m o f T ( t ) , we have

By u s i n g t h e above r e p r e s e n t a t i o n and t h e i n t e r p o l a t i o n technique we have t h e f o l l o w i n g w e l l known lemma (see, e.g.,

Lemma 2.8.

(2.6)

von Wahl [18] and Shatah [ l o ] ) :

F o r each i n t e g e r N 2 0 and any p w i t h 2

N+ 1 [ID T(t)gll;; 2 C(p,N,n)

n-1 --(1--) t

p

2 Ilgllp',N+[n/2]+2'

m

we have

Yoshihiro SHIBATA and Yoshio TSUTSUMI

168

1 1 f o r a l l t > 0, where p’ i s a r e a l number w i t h - + -,= 1. P P From Lemma 2.8 we have t h e f o l l o w i n g theorem:

Theorem 2.9.

L e t n 2 3.

L e t u ( t , x ) be t h e smooth s o l u t i o n o f (2.5) w i t h

, c + ( R n ) and f t h e data $o E Y ( R ~ ) $1

Then, f o r each i n t e g e r N

2 0,

Proof o f Theorem 2.9.

Cm([O,-)

R’)

bounded i n a l l norms 1 1 =l. below. L e t p and p’ be p o s i t i v e numbers such t h a t Y ( 1 - i ) ~1 and - + P P F o r s u f f i c i e n t l y small a > 0 we p u t E

x

-.

u s a t i s f i e s t h e f o l l o w i n g estimates:

u ( t , x ) can be represented as

u ( t ) = zd T ( t ) $ o + T ( t ) $ 1 +

:1

T(t

-

5)

f ( S ) ds.

Therefore, we o b t a i n Theorem 2.9 by u s i n g (2.6) o r (2.7) for t > 1 and (2.8) for 0 < t

<

1.

(Q. E. 0.)

Nonlinear Wave Equation in Exterior Domain

2.3.

P r o o f o f Theorem 2.1.

169

The p r o o f o f Theorem 2.1 i s e s s e n t i a l l y t h e

same as t h a t o f S h i b a t a [12] and Tsutsumi [13]. By t h e Seely technique we extend q o ( x ) , $ , ( X I and f(.,x)

C“-functions.

We denote t h e extended f u n c t i o n s by j b ( x ) , Tl(x)

respectively.

L e t u,(t,x)

from n t o Rn as and F(.,x),

be t h e smooth s o l u t i o n of t h e problem

F o r any i n t e g e r N 2 0 Theorem 2.9 g i v e s

where

(q(1-i)

,

1+ a

(a >

i f -(I--) n-1 2

2 P

>

1,

n l 2 if Z ( l - - ) 2 P

o),

= 1.

Next l e t y ( x ) be a f u n c t i o n b e l o n g i n g t o C i ( R n ) such t h a t ~ ( x =) 1 f o r 1x1 2 ro +1 and ~ ( x =) 0 f o r 1x1 2 ro + 2. (2.11)

u2(t,x)

= u(t,x)

-

(1

-

y(x))ul(t,x),

where u ( t , x ) i s t h e s o l u t i o n o f ( 2 . 1 ) . (2.12)

u u 2 =

Y f

+

9

Put

Then u2 s a t i s f i e s

i n [O,-)

x 0,

Yoshihiro SHIBATA and Yoshio TSUTSUMI

170

where g = 2

n

1

j=1

a .y a .u J

J 1

t AY u1

.

From (2.10) and (2.11) we have o n l y t o

e v a l u a t e u2 i n o r d e r t o o b t a i n t h e e s t i m a t e o f u. Applying Theorem 2.2 t o (2.12) w i t h b = ro+ 5, we have f o r any i n t e g e r N z 1

By t h e d e f i n i t i o n o f g and (2.10) we have f o r any i n t e g e r

N 20

where b = ro + 5. We s h a l l n e x t e v a l u a t e u2 f o r 1x1 > ro + 5.

Let

U(X)

be a Cm-function

such t h a t ~ ( x =) 1 f o r 1x1 2 ro t 3 and u ( x ) = 0 f o r 1x1 2 ro + 4. (2.14)

u ( ( 1 - u ) u 2 ) = (1-u)(yf t 9) + h

where h = 2

n

1 j=l

a

u

j

a u

j 2

+

AU

u2.

in

[o,-) x R" ,

Applying Theorem 2.9 t o (2.14), we have by

(2.13)'

' If1p',q,N+2[n/2]t3 where

Then

' If12,q,Nt2[n/2]t2

Nonlinear Wave Equation in Exterior Domain

Therefore, we o b t a i n Theorem 2.1 by (2.10),

(2.13),

171

(2.15) and t h e Sobolev

imbedding Theorem.

(Q. E. D.) Some Estimates f o r S o l u t i o n s of L i n e a r i z e d Problem.

53.

I n t h i s s e c t i o n we s h a l l show an L 2- e s t i m a t e and a u n i f o r m decay e s t i m a t e o f s o l u t i o n s f o r t h e f o l l o w i n g l i n e a r problem: (3.1)

2

0

= (1 + a (t,x))atu

,f,u

-

n

1 (&ij i,j=l

u = o u(0,x) where 6.

1j

+

n ’ 1 aJ(t,x)a.a u j=l J t

+

t aij(t,x))a.a.u

1 J

on [0,m)

. bJ(t,x)a.u = f ( t , x ) J

an,

x

i n R,

= (atu)(oyx) = 0

= 1 i f i = j and 6ij

n

1 j=o

= 0 if

iC j

We make t h e f o l l o w i n g assumptions:

Assumption 3.1. = (aJ(t,x),

(1)

g=UO,-)

Put j = O,..-,n;

A l l components o f & x

a

ij

(t.x),

i,j = l,-.-,n;

bJ(t,x),

j = O,....n)

are real-valued functions belonging t o

5).

(2)

aij(t,x)

(3)

F o r a l l 6 = (
= aji(t,x)

for a l l (t,x) E

E

Lo,-)

Rn and a l l ( t , x )

x E

5.

[O,-)

x ?i,

.

Yoshihiro SHIRATA and Yoshio TSUTSUMI

172

Then i f f o l l o w s t h a t f

E

d.i s

a s t r i c t l y hyperbolic operator.

EL-' (an i n t e g e r L 2 2), we have a unique s o l u t i o n u

[6]).

E

Thus, i f

FL (see Mizohata

By u s i n g Theorem Ap. 1 i n Appendix we can prove t h e f o l l o w i n g lemma

concerning an LL-estimate i n t h e same way as Shibata [ l l , 121.

L e t n 2 3.

Lemma 3.1.

Assumption 3.1 holds.

L e t L be any i n t e g e r w i t h L 2 0.

Then t h e r e e x i s t s a p o s i t i v e c o n s t a n t d depending o n l y

on n and n such t h a t i f f o r some n > 0 f

E

EL'',

Assume t h a t

t h e unique s o l u t i o n u

E

l,4

ZLt2

Im, +n,l

i 1,

Iw~,,o,o

5 d and

o f (3.1) s a t i s f i e s the following L

2

-

as t ima te:

Considering a s o l u t i o n u o f (3.1) as a s o l u t i o n o f

u(0,x) = (atu)(o,x)

= 0

i n n,

2 we have t h e f o l l o w i n g theorem concerning a decay e s t i m a t e and an L - e s t i m a t e by Theorem 2.1,

Lemna 3.1 and Theorem Ap.1 i n Appendix.

Theorem 3.2. Lemma 3.1.

L e t n 2 3.

L e t d be t h e p o s i t i v e constant described i n

Assume t h a t Assumption 3.1 holds.

K = L + 3[n/2]

+ 6.

Assume t h a t a l l norms of f and

t h e unique s o l u t i o n u

E

gK o f

an i n t e g e r L 2 0, p u t

For

A

(3.1) w i t h t h e data f

E

below a r e bounded.

EK-l s a t i s f i e s t h e

Then

Nonlinear Wave Equation in Exterior Domain

173

f o l l o w i n g estimates: ( 1 ) Suppose t h a t n 2 4. L e t p and p * be p o s i t i v e numbers such t h a t 1 +1 , = 1. I f 14 Im,O,O = q ( l - $ ) > 1 and ,1 1, then < d and 1 4 m , n - 1 P P -+I-$

z

(2)

Suppose t h a t n 1 3 .

2 n-1 -(l--) = 1 and 2 P and 14 lm,l+a,l 5

Here, f o r p =

54. 4.1.

m

1 1 - t -* = 1. P P 13 then

we d e f i n e

P-2

L e t p and p * be p o s i t i v e numbers such t h a t L e t a > 0 be s u f f i c i e n t l y small.

2 n-1 = 2 , p' = 1 and $I--)

P

I f I ~ j l ~2 , d ~ , ~

n-1 = -

2 .

I t e r a t i o n Scheme. Smoothing Operator.

A l i n e a r operator J,(e)

(e

_L

1 ) having the

f o l l o w i n g p r o p e r t i e s was constructed i n Shibata [12].

Lemma 4.1.

L e t e , k and p be r e a l numbers w i t h e 2 1, k 2 0 and 1 5 p

-

Then there e x i s t s a l i n e a r operator Sl(e) following properties:

w i t h t h e parameter e having t h e

m.

Yoshihiro SHIBATA and Yoshio TSUTSUMI

174

(1)

f o r any i n t e g e r N 2 0 and any f u n c t i o n u

ISl(e)ulp,k,N

= <

C(Pik,N)

and f o r any i n t e g e r i 2 0

(2)

f o r any i n t e g e r

and ( a l u ) ( o , x ) = 0

IUlp,k,N

and any f u n c t i o n u

EpyN with Iu) p,k,N

p,k,N

<

<

( i = O,.**,N-l)

f o r It1 5 1 and y ( t ) = 0 f o r It1 2 2 . $(el,e2)u

E

(U\

= 0;

Furthermore, we choose a f u n c t i o n v ( t )

(4.1)

:p’N

I

(a$l(e)u)(o,x)

N 20

with

E

= v(tej’)

E

C;(R

1 ) such t h a t f o r y ( t ) = 1

For 81 => 1 and e 2 ~

1 we, p u t

S,(e,)u.

By Lemma 4.1 we have t h e f o l l o w i n g theorem.

Lemna 4.2.

(1)

Let 1 5 p 5

-, e , 1 1

and e2 2 1.

Then,

f o r any i n t e g e r N 2 0, any r e a l number k 2 0 and any f u n c t i o n u

with I u ( p,k,N

,EpSN

<

IS2(el~e2)Ulp,k,N= < C(pSkYN) IUlp,k,N and f o r any i n t e g e r i 2 0

(a:S2(el (2)

with

,e,)u)(o,x)

-

=

o

;

f o r any i n t e g e r N 2 0, a r e a l number k 2 0 and any f u n c t i o n u

IuI Pik,N

<

and (a;u)(O,x)

= 0

(i= O,...,N-l)

€EpYN

Nonlinear Wave Equation in Exterior Domain

(3)

175

f o r any i n t e g e r M, N w i t h M > N 2 0, any r e a l numbers k , m w i t h

€ 3pyN

k > m 2 0 and any f u n c t i o n u

w i t h IuI

p,m,N

<

-

and ( a & ) ( o , x )

= 0

( i = 0,

1 ,..*,N-l)

4.2.

Compatibility Condition.

S i n c e t h e n o n l i n e a r term F a l s o depends on

t h e d e r i v a t i v e of o r d e r 2 w i t h r e s p e c t t o t i m e t i n o u r problem, we have t o pay s p e c i a l a t t e n t i o n t o t h e c o m p a t i b i l i t y c o n d i t i o n .

I n t h i s s e c t i o n we s h a l l

i n t r o d u c e t h e c o m p a t i b i l i t y c o n d i t i o n , f o l l o w i n g S h i b a t a [11? 12). we l e t u

E

Cm([O,m)

x

For s i m p l i c i t y

E ) and p u t

f ( t , x ) = n u + F(t,x,hu),

By t h e i m p l i c i t f u n c t i o n theorem i t f o l l o w s t h a t t h e r e e x i s t s a s u f f i c i e n t l y small p o s i t i v e c o n s t a n t d’ such t h a t i f

then t h e r e e x i s t f u n c t i o n s (4.3)

V. E

J

uJ. ( x ) = v ~ ( x , ~J;@,(x),

4’:”

( j 2 2 ) w i t h v.(x,O)

J

= 0 and

~ J X - ’ @ ~ ( X( )6,J - 2 f ) ( 0 3 ~ ) )

f o r a l l i n t e g e r s j 2 2. Thus, we i n t r o d u c e t h e c o m p a t i b i l i t y c o n d i t i o n i n t h e f o l l o w i n g form.

L e t d’ and v . be t h e same as i n (4,2) and (4.31, J We s h a l l say t h a t t h e data @ o ( x ) y +,(x) and f ( t , x ) s a t i s f y t h e

D e f i n i t i o n 4.1. respectively.

Yoshihiro SHIRATA and Yashio TSUTSUMI

176

c o m p a t i b i l i t y c o n d i t i o n o f o r d e r N i f $o, $1 and f s a t i s f y t h e f o l l o w i n g two conditions :

4.3.

I t e r a t i o n Scheme.

Let

% be

a p o s i t i v e c o n s t a n t described i n Theorem

L e t t h e c o m p a t i b i l i t y c o n d i t i o n of o r d e r

1.1.

$1 and f o f (M.P).

It1 2

We choose a f u n c t i o n y ( t )

It( 2

1 and y ( t ) = 0 f o r

C;(R 1 ) such t h a t y ( t ) = 1 f o r

E

Put

u,(x) = $,(x) and u . ( x ) ( j 2 2) a r e f u n c t i o n s c o n s t r u c t e d

where u o ( x ) = $,(x), i n 84.2.

2.

be s a t i s f i e d f o r t h e d a t a 40,

J

q Yf

Note t h a t v i s determined o n l y by $o,

and F.

By D e f i n i t i o n 4.1

and (4.3) i t f o l l o w s t h a t

-

a:(f

(1Jv + F ( t , x , A v ) ) ) I t +

f o r j = 0, l,...,m solution (4.4)

u

-

=

= 0

2 and t h a t v = 0 on [0,-)

x

an.

Putting w = u

o f (M.P), we see t h a t w s a t i s f i e s

tJw +

G(t,x,Aw)

= g

w(0,x) = (atw)(o,x)

in

= 0

[O,m)

x

R,

i n n,

where (4.5)

G(t,x,Aw)

=

1,

1

(1

-

2 r)(dxF)(t,x,Av

+ rAw)(Aw,Aw) d r ,

-

v for a

Nonlinear Wave Equation in Exterior Domain g = f

-

177

w

( u v + F(t,x,Av))

E

Em-’

I

Thus, we d e s c r i b e o u r i t e r a t i o n scheme f o r s o l v i n g t h e problem (4.4), f o l l o w i n g Klainerman [2] and Shibata [ 1, 121.

F i r s t we d e f i n e wo by t h e s o l u t i o n

of i n [O,-)

i w o = g

i n R.

= 0

wo(O,x) = (atwo)(o,x) Put

NOW we s h a l l d e f i n e a l r e a d y determined.

i

are ( p 2 0). F o r t h e moment we assume t h a t wo,~..,w P P L e t B be a f i x e d c o n s t a n t w i t h B > 1. L e t E be t h e p o s i t i v e

c o n s t a n t d e f i n e d i n Theorem 1 . 1 ( 3 ) .

Put

r

s,(ej)u,

if n

$- ( e j y e g ) u ,

i f n = 3,

,=E

(4.6)

,

e . = BJ. J

We define t h e smoothing o p e r a t o r S . by J

s.u = J

(4.7)

s,

and

s,

operator

2

by

(4.8)

.j

where

P

w P

2

4,

a r e t h e l i n e a r o p e r a t o r s d e f i n e d i n 54.1.

=xw+

(daG)(t,x,S

Aw )Aw.

P

P

We d e f i n e e: and eg- ( j 2 0 ) by J

e’ = (dAG)ft,x,Aw.)Ai j

J

j

-

(d,G)(t,x,S.nw.)& J J

j’

W e define the l i n e a r

Yoshihiro SHIBATA and Yoshio TSUTSUMI

178 e

C A

-

= G(t,x,Awjtl)

j

G(t,x A .) ' J'

-

(d,G)(t,x,Awj)Aij.

Put

+

e = e:

(4.9)

e

-1

(j 2 0).

We d e f i n e E j (j 2 0) by

Put

gp =

-

(Sp

-

Sp-l)Ep-l

-

SP e P-1 - (Sp - Sp-l)G(t,x,Awo)

( P 2 1).

F i n a l l y we d e f i n e \j by t h e s o l u t i o n o f

P

i P (o,x)

= ( a \j )(o,x)

=

t P

o

i n Q.

Thus, we can s u c c e s i v e l y determine two f u n c t i o n sequences I w {

i P 1.

P

1 and

Note t h a t

fwPtl

(4.13)

+ G(t,x,Awptl)

= g t (1

For wo and

i J.

-

Sp)G(t,x,AWo)

+ (1

-

Sp)Ep

+

ep.

(j 2 0) we have t h e f o l l o w i n g i m p o r t a n t lemma, which w i l l be

proved i n t h e n e x t s e c t i o n .

Lemma 4.3.

Assume t h a t Assumption 1.1 holds.

Theorem 1.1 be s a t i s f i e d . i n Theorem 1.1.

L e t a,

Then, wo and

E,

E, m

i . (j 2 0) J

L e t a l l assumptions i n

and A0 be p o s i t i v e constants d e f i n e d

s a t i s f y t h e f o l l o w i n g estimates:

Nonlinear Wave Equation in Exterior Domain

(1)

Suppose t h a t n 2 6.

(accordingly then Awo, AGj

= E

L e t 0 = max (4[n/21+7,

P+

3[n/2] + 6 ) . IE /I CP ( [ 0 , m ) x 4

z)

179

m+l) and

f

= 20 t [n/2] t 2

I f a and h0 a r e chosen s u f f i c i e n t l y s m a l l ,

and

4 f o r 6 s a t i s f y i n g t h e i n e q u a l i t i e s o f t h e d a t a i n Theorem 1.1-1) w i t h 0 < 6

(2) and

Suppose t h a t 4 5 n 2 5.

T=26 + l ( a c c o r d i n g l y

s m a l l , then !two,

AGj

E

=

-T IE n C

L e t B = max (3[n/2]+6, mtl) = max (12, mtl)

3[n/2]

t

6 = 'i:+ 12).

([0,-)

x

6)

' t

If a and 6 o a r e s u f f i c i e n t l y

and

f o r 6 s a t i s f y i n g t h e i n e q u a l i t i e s o f t h e d a t a i n Theorem 1.1-2) w i t h 0 < 6

(3) Suppose t h a t n = 3. integer w i t h r

i I [ t+

Let

60.

IJ

= ~ / 7and B =

( 3 m + 7 ) ~ ]( a c c o r d i n g l y

Ifa and 6o a r e chosen s u f f i c i e n t l y s m a l l , then

71 +

%=

Awe,

t

(m + 2 ) ~ . L e t

3[n/2] E

t

6

= yt

4 P € ! f \ C ([0,m)

z 60.

be an

9). x

5)

and

f o r 6 s a t i s f y i n g t h e i n e q u a l i t i e s o f t h e d a t a i n Theorem 1.1-3) w i t h 0 < 6 2 do.

65. P r o o f o f L e m a 4.3 and Main Results. We s h a l l now p r o v e Lemma 4.3 by an i n d u c t i o n argument. same n o t a t i o n s as i n 64.

We s h a l l use t h e

- L e t L denote an i n t e g e r and k denote a r e a l number.

Yoshihiro SHIBATA and Yoshio TSUTSUMI

180

For

t h e moment we always assume t h e f o l l o w i n g assumptions: '

[A.5.1]

Awo

E

V

N

zLflCL([O,m)

E) and

x

i f n 2 6,

w

CA.5.21

ko,.-.,kp

[A.5.3]

i f Ihl

a r e a l r e a d y determined and Lemma 4.3 h o l d s f o r

ko,**-,

* P '

z s1 ,

then f o r any i n t e g e r s N and L w i t h N ' 0

and

%

O 5 L 5 L

ld,G(-Y*J)Im,O,L N where

y=

<

C(n,L,N)

<

m,

+ 4[n/2] + 7 if n 2 6 and ';J =

+ 3[n/2] + 6 i f 3 5 n

Let

We s h a l l f i r s t prepare several lenmas t o prove Lemma 4.3. s u f f i c i e n t l y small p o s i t i v e c o n s t a n t and e s p e c i a l l y Noting t h a t

~ - E - B -L T.

and -B+o'i:)

T

T

=

5 if n

5.

T

be a

= 3.

if n = 3, we can prove t h e f o l l o w i n g

lemna i n t h e same way as Klainerman [2] and Shibata [ll,121.

Lemma 5.1.

Assume t h a t [A.5.1

the following: (a)

hwj

(b)

if n

-

31 h o l d .

For w . ( j = O,l,...,p+l) J

we have

-'i L IE fl c ([(I,-) x 6) ; Iv

E

2 4, then

'"J12,O,L

+

I"jlb(n),c(n),L

= <

C6

f o r -8+L

lAwj1b(n),c(n),L

= <

C s e J.

-B+L

1AwJ12,0,L

+

-'I,

f o r -B+L &

T

-

and 0 5 L 2 L,

Nonlinear Wave Equation in Exterior Domain

ISjAwj12,0,L

+

IsjAwJ1 b(n),c(n),L

= <

181

for L >

C(L) a ejBtL

where b ( n ) = 4 and c ( n ) = ( n - 1 ) / 4 i f n 2 6, and b ( n ) =

m

T,

and c ( n ) = (n-1)/2 i f

Y

i f n = 3, then f o r -@+uL 2

< C6

2,0,L

=

m,k,L

=

<

ca

f o r k-B+sL

-T,

_i -1,

for - B t d 2

T

f o r k-B+oL 2 for L >

12,0,L

= <

C(L) 6 9 j B + O L

IsjAwj Im,k,L

= <

C(k,L) 6 e t - B t a L

ISj"j

rv

L 5 L, h

T,

0 2 L 5 L and 0 5 k 5 1-E,

1, >

-

1-E o r L > L ;

i f n 2 4, then

(d) I(1

for k

and 0 5

-

sj)Awj12,0,L

+

I(1

-

Sj)Awjlb(n),c(n),L = < Csey'+L J

for

o

L

N

L,

where b ( n ) and c ( n ) a r e t h e same as i n ( b ) ; i f n = 3, then

(e)

I

-

'j)"j

Im,k,L

= <

c 6 et-B+oL

for 0

z k 5 1-E and 0 5 L z r .

By choosing 6 s u f f i c i e n t l y small we assume t h a t :

rA.5.41 < C6

IAwjlm,o,o

5 C l A w j 12,0,[n/21+1

=

lA'jl-,o,o

5 Cl~'jl2,0,[n/21+1

= <

From Theorem Ap.1,

rA.5.1

-

z a1 1

Cs 5 %

( j = O,l,...,p+l), ( j = O,l,-..,p).

41 and Lemmas 4.1 and 4.2 we have the following

Yoshihiro SHIBATA and Yoshio TSUTSUMI

182

1emma.

Lemma 5 . 2 .

For e . ( j = O,--.,p) J

Assume t h a t Assumption 1.1 holds.

the following:

rACL([O,-)

we have

&

ej

(a)

E)

E

]E

lej12,k,L

5

cs

lejll,k,L

<

c s e k-(1t7E)B+oL

=

x

;

(b)

Proof.

n,

for

‘jk-36toL

j

By t h e d e f i n i t i o n o f e j

i n t h e case o f n = 3.

Since e

j

= e*

5 k 2 2 ( 1 - ~ ) and 0 5 L 5 L,

i f n = 3,

f o r 0 5 k 5 1-E and 0 jL 2 L,

if n = 3.

-

T+B

(a) i s clear.

+

e:-, j

So, we s h a l l prove ( b ) o n l y

we have o n l y t o prove t h a t ( b ) holds ~

f o r e: and e - - , r e s p e c t i v e l y . However, we s h a l l prove o n l y f o r e: because we J j J can prove f o r e’- i n t h e same way. 2 Since dG , ej =

j

t,x,O)

lo{I, 1

= 0, i t f o l l o w s t h a t

l (d,G)(t,x,r’(S.Aw. 3 x

By Lemma 5.1,

(S.AW. J J

+ r(l

J

J

+

r(1

-

-

S.)Awj))dr’ J

S.)AW.,(l

J

J

-

1

Sj)AW

j’

Aij) d r .

Theorems Ap.1 and Ap.2 we have f o r k w i t h k-6 2

T

and k 5 1-E

183

Next by L e w a 5.

le;ll

,k,L

= c

, Theorems

Ap

c I(' [Awjlm,o,L

-

+ Ihw. 2,0,LI(1 J

sJ.

Thus, t h e l a s t i n e q u a l i t y i n ( b ) i s proved.

(Q. E. 0.)

By L e n a s 4.1,

Lemma 5.3. (a)

Ep

E

4.2, 5.2 and

ej

=

BJ we have t h e f o l l o w i n g lemma.

Assume t h a t Assumption 1.1 h o l d s . ' U r v

EL/7CL([0,-)

x

5)

Then,

;

(b 1 JEpl~,n-l,t

2

' /Eplq,n-l,L 3-4-

= c

c5

2

for -&+L

5

-T,

if n 2 6 ,

Yoshihiro SHIBATA and Yoshio TSUTSUMI

184

IEpl2,n-1 ,L

+

< C 63

IEp12,k,L

=

IEpll,k,L

= <

IEpll,k,L

lEp11 ,C,L 2

C6

3

< C 63 =

z -T,

for - 2 ~ t L

< C 63

=

for

T+B

k and k-38toL 2 -'I, i f

f o r k - ( 1 + 7 ~ ) ~ + o2L

ek-(1t7E)B+oL p

-T,

if 4

n

zn 2 5,

= 3,

if n = 3 ;

f o r k - ( 1 + 7 ~ ) @ + o L2

T,

0 2 k

z 1-E

and

'u

O ~ L L L , i f n = 3.

N o t i n g t h a t l - ~ - ( l t 7 ~2 )T,~ 2 ( 1 - ~ ) - 3 8 2 Lemmas 4.1,

N

T

and -3BtoL 2

4.2 and 5.3 the f o l l o w i n g lemma.

L e m a 5.4.

Assume t h a t Assumption 1.1 holds.

Then,

T~

we have by

Nonlinear Wave Equation in Exterior Domain

3 k-3B+aL ' ~ ) ~ p l 2 , k , L= < C(k,L) 6 ep+l

1('p+l

I(sp+l

-

Sp)Epll,k,L

By Assumption 1.1,

Lemna 5.5. (a)

= <

3 k-(1+7~)4+0L C(k,L) 6 ep+,

[A.5.1]

and [A.5.3]

E

'rl - i C ir ([0,-)

E

,

x

f o r k 2 T+B and L 2 0, i f n = 3, f o r k 2 0, and L 2 0, i f n = 3.

we have t h e f o l l o w i n g lemma.

Assume t h a t Assumption 1.1 holds.

G(t,x,Awo)

185

Then,

;

(b)

By Lemmas 4.1, 4.2 and 5.5 and Theorems Ap.1 and Ap.2 we have t h e f o l l o w i n g 1emma.

Yoshihiro SHIBATA and Yoshio TSUTSUMI

186

Combining Lemmas 5.2, fact

eo

=

5.4,

5.5 and 5.6 and u s i n g Lemmas 4.1,

4.2 and t h e

1, we have t h e f o l l o w i n g lemma.

Lemma 5.7.

Assume t h a t Assumption 1.1 holds.

90' gp+l

(a)

E

E"nC"([O,-)

x

5)

Then,

;

(b)

I n o r d e r t o use Theorem 3.2, we have t o e v a l u a t e t h e c o e f f i c i e n t s o f t h e

:.tj

operator

d e f i n e d i n (4.8).

A . = (d,F)(t,x,Av) 3

+

Noting t h a t (d,F)(t,x,Av)

Put

(d,G)(t,x,SjAwj). = 0 for

It1 2 2,

we have t h e f o l l o w i n g lemma by

Nonlinear Wave Equation in Exterior Domain

Lemma 5.1,

[A.5.1

Lemma 5.8. $o,

-

41, Theorems Ap.1, Ap.2 and Ap.3.

c

L e t L be a p o s i t i v e c o n s t a n t d e f i n e d i n [A.5.2].

$1 and f s a t i s f y a l l assumptions i n Theorem 1.1.

holds.

< C6

=

f o r -B+L 2

-T

and 0 5

L e t t h e data

Assume t h a t Assumption 1.1

Then we have t h e f o l l o w i n g :

IA014,d,L 4

187

L 5 L,

Yoshihiro SHIBATA and Yoshio TSUTSUMI

188

cy

[ A p t 1 12,1tE,L

~

62 el+E-B+oL P+l

l.

f o r 0 5 L 5 L.

I n p a r t i c u l a r , choosing 6 s u f f i c i e n t l y small, we have t h e f o l l o w i n g :

Here d i s a p o s i t i v e constant g i v e n by Lemma 3.1.

Proof.

We s h a l l g i v e t h e sketch o f t h e proof for,%

P + l o n l y i n t h e case

o f n = 3. Since (dhG)(t,x,O) we have by L e m a 5.1,

= 0,

2 (dAG)(t,x,O)

Theorems Ap.1,

= 0 and f o r It1 2 2

Ap.2 and Ap.3

( d X F ) ( t r x , h v ) = 0,

Nonlinear Wave Equation in Exterior Domain

1+E -8 Noting t h a t 7

-T

, we

have f o r

l+E 2 -8toL

2

189

T

F i n a l l y we have by Lemma 5.1

From the above lemmas we can complete the p r o o f o f Lemma 4.3.

Proof of Lemma 4.3. First

We s h a l l prove Lemma 4.3 by an i n d u c t i o n argument.

we assume f o r the moment t h a t r A . 5 . 1

have by Lemas 5.7, 5.8 and Theorem 3.2 t h a t

- 41 hold.

Then, i f n 2 6 , we

Yoshihiro SHIBATA and Yoshio TSUTSUMI

190

I"ptl12,O,L

I"ptl14,n-JL

4

2

t 6 max(1,

We have used t h e f a c t

2 4[n/2]

e -~+L+3[n/21+6) P+l

t

7 a t the l a s t i n e q u a l i t y .

by choosing 6 so small t h a t max { C(L)s ; 0 holds f o r

I n t h e same iptl,

eply 1

IL

zT 1 -5 1 we

I n particular,

see t h a t Lemma 4.31)

way i t i s c l e a r t h a t under t h e assumptions CA.5.11

and EA.5.31 Lemma 4.3(1) h o l d s f o r

i0,By

t h e way, we see by t h e assumption on

t h e data i n Theorem 1.1, Theorem 3.2, Theorems Ap.2 and Ap.3 t h a t [A.5.1]

5 . 31 h o l d .

and [A.

Therefore, an i n d u c t i o n argument g i v e s Lemma 4.3(1).

i n t h e same way we o b t a i n Lemma 4.3(2) f o r 4 2 n 5 5. F i n a l l y , f o r n = 3 we s h a l l v e r i f y t h a t under t h e assumptions [A.5.1 Lemma 4.3(3) h o l d s f o r 1 +

E

2 B +

T

iptl. By Theorem

3.2,

Lemmas 5.7,

41

5.8 and t h e f a c t t h a t

we have

We have used t h e f a c t s t h a t 1+€ -B+o 5

-T

and t h a t I + E - ( ~ - E ) B + C5 J 0 a t the

second i n e q u a l i t y and t h e l a s t i n e q u a l i t y , r e s p e c t i v e l y .

Thus, we have

I n p a r t i c u l a r , by choosing 6 so small t h a t max { C(L) & 2 ; 0 2 L obtain

-

-.I

L 1 5 1 we

Nonlinear Wave Equation in Exterior Domain

191

Next, by Theorem 3.2, Lemmas 5.5 and 5.8 we have

("ptl

<

L,l-€,L

=

+

,2,1+~-6 P+l

6'1

t

c ( L ) 6 3 [ e l + ~ - ( 1 + 7 ~ ) 8 + o ( L + 3 [ n / 2+4 1 1 P+l el+~-36+o(L+3[n/2]+4) P+1

eAl7-6 max (1, e

I+~-B+o(L+3[n/2]+6) P+ 1

+

<

-

qL1 &3[

( 1+E ) / 2 P+ 1

- 6+0 ( L+3 [n/ 2]+4) 1

1

1+~-36

ep+l

el+~-(1+7~)6+o(L+3[n/2]t4) P+l

+ e 2( 1+~)-46+o(L+3[n/2]+6) P+l

-6+0 5 - -T a t t h e f i r s t

We have used t h e f a c t s t h a t 1 + ~2 6+r and t h a t inequality. <

2 By t h e way, s i n c e z ~ + o ( 3 [ n / 2 ] + 4 ) - & 6

<

Oand 1 + 3 ~ - ( 3 - ~ ) 6 3+ ~ ( 3 [ n / 2 ] + 6 )

0, we have

( b 7 ~6+0 ) (L+3 [n/2]+4) 5 -1 2( 1 + )-46+a ~ (L+3[n/2]+6)

-

E-

- ( 1- E ) 5

( 1+E ) B+oL

-

Thus, i t f o l l o w s t h a t

By t h e Sobolev imbedding theorem and ( 5 . 1 ) we have

Therefore, by i n t e r p o l a t i n g between (5.2) and (5.3) we have

for 0

z k 2 1-E

and 0

L

IT.

Thus, s i n c e -.~6+o([n/2]+1) 2 0, we o b t a i n by

(5.4) for 0

(5.5) Ifwe choose 6 so s m a l l t h a t max

{

C(L) '6

;0

k 5 1-E and 0 5

5L

zy

cu

L 5 1.

15 1, t h e n (5.5) and

Yoshihiro SHIBATA and Yoshio TSUTSUMI

192

(5.1)’ give

L e n a 4.3(3) f o r ;p+l.

Since we can prove i n t h e same way as t h e

case o f n 2 6 t h a t Lemma 4.3(3) h o l d s f o r

wo

and t h a t [A.5.1]

and [A.5.3

-

41

T h i s completes t h e p r o o f o f

hold, an i n d u c t i o n argument g i v e s Lemma 4 . 3 ( 3 ) . Lemma 4.3.

(9. E. D.) P r o o f o f main r e s u l t s .

Put

m

Then, from Lemnas 4.1

-

3, Lemmas 5.1

-

6 and (4.6) we e a s i l y see t h a t u = v + w

i s t h e d e s i r e d s o l u t i o n o f (M.P) ( f o r d e t a i l s , see Klainerman [2] and Shibata

[ll,121).

Furthermore, we can prove the uniqueness o f t h e s o l u t i o n o f (M.P)

by t h e energy method i n t h e same way as Shibata [12].

(Q. E. D.)

Concluding Remarks.

(1)

When n = 3, we used t h e c u t - o f f f u n c t i o n i n time.

The authors do n o t know whether we can prove w i t h o u t i t f o r n = 3 i n t h e same way as Klainerman and Ponce [ 3 ] and Shatah (2)

[lo].

We can a l s o o b t a i n t h e analogous r e s u l t s f o r t h e mixed problems o f t h e

n o n l i n e a r Klein-Gordon equation and t h e n o n l i n e a r Schrodinger e q u a t i o n i n t h e same way (see, e.g.,

TsuTsumi [13]).

56. Appendix. I n t h i s s e c t i o n we s h a l l s t a t e several theorems which p l a y an i m p o r t a n t r o l e i n the p r e s e n t paper.

Theorem Ap.1.

Let

For t h e i r p r o o f , see Shibata [ll,121.

p = Rn o r a. L e t

and f and g be f u n c t i o n s from [O,-) @,

x

and

JI

be f u n c t i o n s f r o m ,g t o

R1

& to IR1 . Assume t h a t a l l semi-norms o f

$I,f and g appearing below a r e bounded.

k and

@

L e t M and

N be nonnegative i n t e g e r s ,

m be nonnegative numbers and p and q be r e a l numbers w i t h 1 5 p, q 2

m.

Nonlinear Wave Equation in Exterior Domain

Then,

Furthermore, i f F(t,x,O)

Theorem Ap.3.

Let

= 0, then

o0,

$1 and f be t h e data o f (M.P)

such t h a t a l l semi-

193

YoRhihiro SHIBATA and Yoshio TSUTSUMI

194

Let

norms appearing below a r e bounded. i n 54.

L e t H(t,x,x)

E Wm([O,m)

x

5

x

% and {

1x1

v ( t , x ) be t h e same as those d e f i n e d

2 1 1).

I f H(t,x,O)

= 0, then

References P. Dionne, Sur l e s p r o b l i m e de Cauchy hyperboliques b i e n poses, J . Analyse Math., c21

10 (1962). 1-90.

S. Klainerman, Global e x i s t e n c e f o r n o n l i n e a r wave equations, Corn. Pure

Appl. Math,, 33 (1980), 43-101.

S. Klainerman and G. Ponce, Global s m a l l amplitude s o l u t i o n s t o n o n l i n e a r e v o l u t i o n equations, Comm. Pure Appl. Math., 36 (1983), 133-141.

P. Lax and R. P h i l l i p s , S c a t t e r i n g Theory, Acad Press, 1967.

R. B. Melrose, S i n g u l a r i t i e s and energy decay i n a c o u s t i c a l s c a t t e r i n g , Duke Math. J . , 46 (1979), 43-59. r61

S. Mizohata, Quelque problemes au bord, du t y p e rnixte, pour des equations

hyperboliques, S h i n a i r s u r l e s Gquations aux derivees p a r t i e l l e s , C o l l i g e de France, (1966/67), 23-60. [71

A. Moser, A r a p i d l y convergent i t e r a t i o n method and n o n - l i n e a r d i f f e r e n t i a l equations, Ann. Scu. Norm. Pisa, 20(3) (1966), 265-315, 499-535.

r 81

J . Nash, The embedding problem f o r Riemannian m a n i f o l d s , Ann. Math., 63 (1965), 20-63.

r91

P. H. Rabinowitz, P e r i o d i c s o l u t i o n s o f n o n l i n e a r h y p e r b o l i c p a t i a l d i f f e r e n t i a l equations

II , Corn.

Pure Appl. Math.

, 22

(1969), 15-39.

J . Shatah, Global e x i s t e n c e o f small s o l u t i o n s t o n o n l i n e a r e v o l u t i o n equations, J . D i f f e r e n t i a l Eqs.

, 46

(19821, 409-425.

Y. Shibata, On t h e g l o b a l e x i s t e n c e o f c l a s s i c a l s o l u t i o n s o f mixed

Nonliiiear Wave Equation i n Exterior Domain

195

problem f o r some second o r d e r n o n - l i n e a r h y p e r b o l i c o p e r a t o r s w i t h d i s s i p a t i v e term i n t h e i n t e r i o r domain, Funk. Ekva., [12]

25 (1982), 303-345.

Y . Shibata, On t h e g l o b a l e x i s t e n c e o f c l a s s i c a l s o l u t i o n s o f second o r d e r

f u l l y n o n l i n e a r h y p e r b o l i c equations w i t h f i r s t o r d e r d i s s i p a t i o n i n t h e e x t e r i o r domain, [13]

Tsukuba J . Math., 7 ( 1 ) (1983), 1-68.

Y . Tsutsumi, Global s o l u t i o n s o f t h e n o n l i n e a r Schrodinger e q u a t i o n i n

e x t e r i o r domains, t o appear i n Corn. P. 0. E. [14]

Y . Tsutsumi, Local energy decay o f s o l u t i o n s t o t h e f r e e Schrodinger

e q u a t i o n i n e x t e r i o r domains, t o appear i n 3. Fac. S c i . Univ. Tokyo, Sect.

IA, Math. [15]

B. R. Vainberg, On t h e a n a l y t i c a l p r o p e r t i e s o f t h e r e s o l v e n t f o r a c e r t a i n c l a s s o f o p e r a t o r - p e n c i l s , Math. USSR Sbornik, 6 ( 2 ) (1968), 241-273.

[16]

B. R. Vainberg, On e x t e r i o r e l l i p t i c problems p o l y n o m i a l l y depending on a s p e c t r a l parameters and t h e a s y m p t o t i c behaviour f o r l a r g e t i m e o f non s t a t i o n a r y problems, Wath. USSR Sbornik, 21(2) (1973), 221-239.

[17]

B.

-

R. Vainberg, On t h e s h o r t wave asymptotic behaviour of s o l u t i o n s o f

s t a t i o n a r y problems and t h e a s y m p t o t i c behaviour as t

-+

o f solutions o f

n o n s t a t i o n a r y problems, Russian Math., Surveys, 30(2) (1975), 1-58.

[la]

W. von Wahl, LP-decay r a t e s f o r homogeneous wave equations, Math. Z.,

120 (1971), 93-106.

196

Yoshihiro SHIBATA and Yoshio TSUTSUMI