Applied Mathematics and Computation 219 (2012) 2180–2185
Contents lists available at SciVerse ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Globally bounded solutions of a system of nonlinear functional differential equations with iterated deviating argument Stevo Stevic´ Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia
a r t i c l e
i n f o
Keywords: Functional differential equation Globally bounded solutions Bounded first derivative Iterated deviating argument
a b s t r a c t Some sufficient conditions which guarantee the existence of a bounded solution together with its first derivative on the whole real line of a system of nonlinear functional differential equations with an iterated deviating argument dependent of unknown function, are given. Ó 2012 Elsevier Inc. All rights reserved.
1. Introduction Various questions of the theory of nonlinear differential or nonlinear functional differential equations, not solved (or partially solved) with respect to the highest-order derivatives, have been considered for a long time, see, for example, [1–7,9–17,31] (see also the references therein). One of the systems of functional differential equations whose particular cases have been studied considerably is the following:
x0 ðtÞ ¼ AxðtÞ þ Fðt; xðtÞ; xðf ðt; xðtÞÞÞ; x0 ðgðtÞÞÞ;
ð1Þ
where t 2 R; A ¼ diagðA1 ; A2 Þ; A1 and A2 are real constant matrices of dimensions p p and q q, respectively, p þ q ¼ N, and Fðt; x; y; zÞ; f ðt; xÞ, and gðtÞ are real-valued functions continuous for t 2 R and x; y; z 2 RN . Some iteration methods for approximating fixed points which are iterations of some iterative processes are introduced in our papers [18–22] (for related ideas in theory of difference equations see also [23–29]). This idea naturally suggests investigation of equations with continuous arguments, whose deviations of an argument depend on an unknown function which depend also of the function. These deviations are called iterated deviations, and we introduced them in [30] for the case of functional equations. Our aim is to present some sufficient conditions that guarantee the existence of bounded solutions together with its first derivative of the following system of nonlinear functional differential equations on R
x0 ðtÞ ¼ AxðtÞ þ Fðt; xðtÞ; xðv 1 ðtÞÞ; x0 ðgðtÞÞÞ;
ð2Þ
v 1 ðtÞ ¼ u1 ðt; xðu2 ðt; . . . xðuk ðt; xðtÞÞÞ . . .ÞÞÞ:
ð3Þ
where
A = diag(A1 ; A2 ), A1 and A2 are real constant matrices of dimensions p p and q q, respectively, p þ q ¼ N, F : R RN RN RN ! RN ; uj : R RN ! R, j ¼ 1; k; g : R ! R, and xðtÞ is an unknown function. For related results in the literature, see, for example, [2,8,10,12,14,15]. E-mail address:
[email protected] 0096-3003/$ - see front matter Ó 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2012.08.063
S. Stevic´ / Applied Mathematics and Computation 219 (2012) 2180–2185
2181
2. Main result In this section we prove the main result in this paper which is incorporated in the following theorem: Theorem 1. Suppose that the following conditions are satisfied: (i) the following inequalities hold
jeA1 t j 6 N1 ea1 t
and jeA2 t j 6 N2 ea2 t ;
t 2 Rþ ;
ð4Þ
where a1 , a2 ; N 1 , and N 2 are positive constants; (ii) functions Fðt; x; y; zÞ; uj ðt; xÞ; j ¼ 1; k; gðtÞ, are continuous for t 2 R; x; y; z 2 RN , and
supjFðt; 0; 0; 0Þj ¼ M f < 1; t2R
(iii) functions Fðt; x; y; zÞ; uj ðt; xÞ; j ¼ 1; k, satisfy the following Lipschitz conditions
jFðt; x1 ; y1 ; z1 Þ Fðt; x2 ; y2 ; z2 Þj 6 L1 jx1 x2 j þ L2 jy1 y2 j þ L3 jz1 z2 j; juj ðt; x1 Þ uj ðt; x2 Þj 6 lj jx1 x2 j;
ð5Þ
j ¼ 1; k;
ð6Þ N
N
N
where Li ; lj ; i 2 f1; 2; 3g, j ¼ 1; k, are positive constants, ðt; x1 ; y1 ; z1 Þ, ðt; x2 ; y2 ; z2 Þ 2 R R R R , and ðt; x1 Þ; ðt; x2 Þ 2 R RN ; (iv) there is a q 2 ð0; 1Þ such that
jAj þ
Q 3 k K j ji¼1 li 1X L2 X Lj þ < 1; q j¼1 q j¼1 ð1 qÞj
ð7Þ
! Q 3 k X X K j ji¼1 li N1 N2 6 q; Lj þ L2 þ j a1 a2 j¼1 j¼1 ð1 qÞ where
ð8Þ
N1 N2 N1 N2 ; Mf jAj þ1 : K ¼ max M f þ þ
a1
a2
a1
a2
Then, for sufficiently small Li ; lj ; i 2 f1; 2; 3g, j ¼ 1; k, system of equations (2) has a solution continuously differentiable and bounded for t 2 R together with its first derivative. Proof. Consider the system of integral equations
xðtÞ ¼
Z
þ1
Gðt sÞFðs; xðsÞ; xðv 1 ðsÞÞ; x0 ðgðsÞÞÞds;
ð9Þ
1
where
v 1 ðtÞ is defined in (3) and (
GðtÞ ¼
diagðeA1 t ; 0Þ;
t>0
diagð0; eA2 t Þ; t < 0:
By definition it is easy to see that function GðtÞ satisfies the following conditions: (a) if E denote the N N identity matrix, then
Gðþ0Þ Gð0Þ ¼ E; (b) for every t – 0
G0 ðtÞ ¼ AGðtÞ; from which it follows that every solution of system (9) is a solution of system (2). We will find a solution of system (9) by the method of successive approximations and also show that it is unique. Let sequence ðxn ðtÞÞn2N0 be defined as follows:
x0 ðtÞ ¼ 0; xnþ1 ðtÞ ¼
Z
x00 ðtÞ ¼ 0; þ1
1
ð10Þ
0 Gðt sÞFðs; xn ðsÞ; xn ðv ð1Þ n ðsÞÞ; xn ðgðsÞÞÞds;
0 x0nþ1 ðtÞ ¼ Axnþ1 ðtÞ þ Fðt; xn ðtÞ; xn ðv ð1Þ n ðtÞÞ; xn ðgðtÞÞÞ;
n 2 N0 ;
ð11Þ
S. Stevic´ / Applied Mathematics and Computation 219 (2012) 2180–2185
2182
where
v ðjÞ n ðtÞ ¼ uj ðt; xn ðujþ1 ðt; . . . xn ðuk ðt; xn ðtÞÞÞ . . .ÞÞÞ; We may regard that We show that
v
ðkþ1Þ ðtÞ n
j ¼ 1; k:
ð12Þ
¼ t.
jxnþ1 ðtÞ xn ðtÞj 6 Kqn ;
ð13Þ
jx0nþ1 ðtÞ x0n ðtÞj 6 Kqn ;
ð14Þ
and
for all t 2 R and n 2 N0 , where q 2 ð0; 1Þ is such that (7) and (8) hold. We have
Z t Z þ1 Gðt sÞFðs; 0; 0; 0Þds 6 N1 ea1 ðtsÞ jFðs; 0; 0; 0Þjds þ N2 ea2 ðstÞ jFðs; 0; 0; 0Þjds 1 1 t N1 N2 : 6 Mf þ
Z jx1 ðtÞ x0 ðtÞj ¼
þ1
a1
a2
From this it follows that
N1 N2 þ1 : jx01 ðtÞ x00 ðtÞj ¼ jAx1 ðtÞ þ Fðt; 0; 0; 0Þj 6 jAjjx1 ðtÞj þ jFðt; 0; 0; 0Þj 6 M f jAj þ
a1
a2
Hence, (13) and (14) hold for n ¼ 0. If (13) and (14) hold for an n 1, then
jx0n ðtÞj 6
n1 n1 X X jx0iþ1 ðtÞ x0i ðtÞj 6 Kqi 6 i¼0
i¼0
K : 1q
ð15Þ
Using (15) and the inductive hypothesis we also have that Z þ1 Z þ1 ð1Þ 0 0 jxnþ1 ðtÞ xn ðtÞj ¼ Gðt sÞFðs; xn ðsÞ; xn ðv ð1Þ ð s ÞÞ; x ðgð s ÞÞÞd s Gðt s ÞFð s ; x ð s Þ; x ð v ð s ÞÞ; x ðgð s ÞÞÞd s n1 n1 n n n1 n1 1 1 Z þ1 Z þ1 ð1Þ 6 L1 jGðt sÞjjxn ðsÞ xn1 ðsÞjds þ L2 jGðt sÞjjxn ðv ð1Þ n ðsÞÞ xn ðv n1 ðsÞÞjds 1 1 Z þ1 Z þ1 ð1Þ ð1Þ þ L2 jGðt sÞjjxn ðv n1 ðsÞÞ xn1 ðv n1 ðsÞÞjds þ L3 jGðt sÞjjx0n ðgðsÞÞ x0n1 ðgðsÞÞjds 1 1 ! Z þ1 3 X KL2 ð1Þ ð1Þ 6 jGðt sÞj Kqn1 Lj þ ð16Þ jv ðsÞ v n1 ðsÞj ds: 1q n 1 j¼1 By using condition (6) and inequality (15) we obtain ð1Þ
ð2Þ
ð2Þ
ð2Þ jv nð1Þ ðsÞ v n1 ðsÞj ¼ ju1 ðt; xn ðv ð2Þ n ðsÞÞÞ u1 ðt; xn1 ðv n1 ðsÞÞÞj 6 l1 jxn ðv n ðsÞÞ xn1 ðv n1 ðsÞÞj ð2Þ
6 l1 ðjxn ðv nð2Þ ðsÞÞ xn1 ðv nð2Þ ðsÞÞj þ jxn1 ðv nð2Þ ðsÞÞ xn1 ðv n1 ðsÞÞjÞ K ð2Þ jv ð2Þ 6 l1 Kqn1 þ n ðsÞ v n1 ðsÞj : 1q
ð17Þ
Assume that we have proved the inequality ð1Þ
jv nð1Þ ðsÞ v n1 ðsÞj 6 Kqn1
m2 X j¼0
Kj
Qj
i¼0 liþ1 j
ð1 qÞ
þ
K m1
Qm2 i¼0
liþ1
ð1 qÞm1
ðmÞ
jv ðmÞ n ðsÞ v n1 ðsÞj;
ð18Þ
for some 2 6 m 6 k. We have ðmÞ
ðmþ1Þ
ðmþ1Þ
jv nðmÞ ðsÞ v n1 ðsÞj ¼ jum ðt; xn ðv ðmþ1Þ ðsÞÞÞ um ðt; xn1 ðv n1 ðsÞÞÞj 6 lm jxn ðv nðmþ1Þ ðsÞÞ xn1 ðv n1 ðsÞÞj n ðmþ1Þ
6 lm ðjxn ðv nðmþ1Þ ðsÞÞ xn1 ðv nðmþ1Þ ðsÞÞj þ jxn1 ðv nðmþ1Þ ðsÞÞ xn1 ðv n1 ðsÞÞjÞ K ðmþ1Þ ð s Þ v ð s Þj : jv ðmþ1Þ 6 lm Kqn1 þ n1 1q n
ð19Þ
S. Stevic´ / Applied Mathematics and Computation 219 (2012) 2180–2185
2183
Using (19) in (18) we get ð1Þ
jv nð1Þ ðsÞ v n1 ðsÞj 6 Kqn1
m2 j Qj X K i¼0 liþ1
þ
K m1
Qm2
i¼0 liþ1 lm m1
Kqn1 þ
K ðmþ1Þ s s jv ðmþ1Þ ð Þ v ð Þj n1 1q n
ð1 qÞ ð1 qÞj Q Qm1 j j m m1 XK K ðmþ1Þ i¼0 liþ1 i¼0 liþ1 þ jv nðmþ1Þ ðsÞ v n1 ðsÞj: ¼ Kqn1 j ð1 qÞm j¼0 ð1 qÞ j¼0
ð20Þ
From (17), (20) and the induction we have that (18) holds for 2 6 m 6 k þ 1. If we take m ¼ k þ 1 in (18) we obtain ð1Þ
jv nð1Þ ðsÞ v n1 ðsÞj 6 Kqn1
k1 j Qj X K i¼0 liþ1 j¼0
ð1 qÞ
j
þ
Kk
Qk1
i¼0 liþ1 k
ð1 qÞ
ðkþ1Þ
jv nðkþ1Þ ðsÞ v n1 ðsÞj ¼ Kqn1
k1 j Qj X K i¼0 liþ1 j¼0
ð1 qÞj
:
ð21Þ
Using (21) in (16) and then employing condition (8), we get
! 3 k1 j Qj X X K i¼0 liþ1 KL2 n1 ds jxnþ1 ðtÞ xn ðtÞj 6 jGðt sÞj Kq Lj þ Kq j 1q 1 j¼1 j¼0 ð1 qÞ ! Z Q Z þ1 3 k t X X K j ji¼1 li a1 ðtsÞ a2 ðstÞ N 6 Kqn1 Lj þ L2 e d s þ N e d s 1 2 j 1 t j¼1 j¼1 ð1 qÞ ! Q j 3 k X X K j i¼1 li N1 N2 6 Kqn : 6 Kqn1 Lj þ L2 þ j a1 a2 j¼1 j¼1 ð1 qÞ Z
þ1
n1
ð22Þ
Using (5), (21) and (7), we get ð1Þ
0 0 jx0nþ1 ðtÞ x0n ðtÞj ¼ jAðxnþ1 ðtÞ xn ðtÞÞ þ Fðt; xn ðtÞ; xn ðv ð1Þ n ðtÞÞ; xn ðgðtÞÞÞ Fðt; xn1 ðtÞ; xn1 ðv n1 ðtÞÞ; xn1 ðgðtÞÞÞj ð1Þ
6 jAjjxnþ1 ðtÞ xn ðtÞj þ L1 jxn ðtÞ xn1 ðtÞj þ L2 jxn ðv nð1Þ ðtÞÞ xn ðv n1 ðtÞÞj ð1Þ
ð1Þ
þ L2 jxn ðv n1 ðtÞÞ xn1 ðv n1 ðtÞÞj þ L3 jx0n ðgðtÞÞ x0n1 ðgðtÞÞj Q 3 k X X K j ji¼1 li 6 jAjKqn þ Kqn1 Lj þ L2 Kqn1 6 Kqn : j j¼1 j¼1 ð1 qÞ
ð23Þ
Hence, (13) and (14) hold for every t 2 R and n 2 N0 . Using (13) and (14) and the fact 0 < q < 1, we see that the vector series
x0 ðtÞ þ
1 X ðxnþ1 ðtÞ xn ðtÞÞ n¼0
and
x00 ðtÞ þ
1 X ðx0nþ1 ðtÞ x0n ðtÞÞ n¼0
converge uniformly on R, which implies that the sequences ðxn ðtÞÞn2N0 and ðx0n ðtÞÞn2N0 converge to a continuously differentiable function, say xðtÞ, and its derivative respectively, which is a solution of system (9). Moreover, by letting n ! 1 in the following inequality
jxn ðtÞj 6
n1 n1 X X jxiþ1 ðtÞ xi ðtÞj 6 Kqi 6 i¼0
i¼0
K ; 1q
ð24Þ
we get that xðtÞ is bounded on R, while letting n ! 1 in inequality (15) we get that its first derivative is bounded too, and both functions are bounded by K=ð1 qÞ. Now we prove that solution xðtÞ is unique. Assume to the contrary that there is another continuously differentiable solution zðtÞ on R, which is bounded together with its first derivative and such that xðtÞ – zðtÞ. Let
kx zk1 ¼ max supjxðtÞ zðtÞj; supjx0 ðtÞ z0 ðtÞj : t2R
t2R
Let
v j ðtÞ ¼ uj ðt; xðujþ1 ðt; . . . xðuk ðt; xðtÞÞÞ . . .ÞÞÞ uj ðtÞ ¼ uj ðt; zðujþ1 ðt; . . . zðuk ðt; zðtÞÞÞ . . .ÞÞÞ; j ¼ 1; k. We may regard that
v kþ1 ðtÞ ¼ ukþ1 ðtÞ ¼ t. Then we have
S. Stevic´ / Applied Mathematics and Computation 219 (2012) 2180–2185
2184
Z þ1 Z þ1 jxðtÞ zðtÞj ¼ Gðt sÞFðs; xðsÞ; xðv 1 ðsÞÞ; x0 ðgðsÞÞÞds Gðt sÞFðs; zðsÞ; zðu1 ðsÞÞ; z0 ðgðsÞÞÞds 1 Z 1 þ1 6 jGðt sÞjðL1 jxðsÞ zðsÞj þ L2 jxðv 1 ðsÞÞ zðu1 ðsÞÞj þ L3 jx0 ðgðsÞÞ z0 ðgðsÞÞjds Z1 þ1 6 jGðt sÞjðL1 jxðsÞ zðsÞj þ L2 jxðv 1 ðsÞÞ xðu1 ðsÞÞjÞds 1 Z þ1 þ jGðt sÞjðL2 jxðu1 ðsÞÞ zðu1 ðsÞÞj þ L3 jx0 ðgðsÞÞ z0 ðgðsÞÞjÞds 1 ! Z þ1 3 X KL2 6 jGðt sÞj kx zk1 Lj þ jv 1 ðsÞ u1 ðsÞj ds: 1q 1 j¼1
ð25Þ
We have
jv 1 ðsÞ u1 ðsÞj ¼ ju1 ðs; xðv 2 ðsÞÞÞ u1 ðs; zðu2 ðsÞÞÞj 6 l1 jxðv 2 ðsÞÞ zðu2 ðsÞÞj 6 l1 ðjxðv 2 ðsÞÞ xðu2 ðsÞÞj þ jxðu2 ðsÞÞ zðu2 ðsÞÞjÞ 6 l1 kx zk1 þ
K jv 2 ðsÞ u2 ðsÞj : 1q
ð26Þ
Assume that we have proved the inequality
jv 1 ðsÞ u1 ðsÞj 6 kx zk1
m2 X j¼0
Kj
Qj
i¼0 liþ1 j
ð1 qÞ
þ
K m1
Qm2 i¼0
liþ1
ð1 qÞm1
jv m ðsÞ um ðsÞj;
ð27Þ
for some 2 6 m 6 k. We have
jv m ðsÞ um ðsÞj ¼ jum ðt; xðv mþ1 ðsÞÞÞ um ðt; zðv mþ1 ðsÞÞÞj 6 lm jxðv mþ1 ðsÞÞ zðumþ1 ðsÞÞj 6 lm ðjxðv mþ1 ðsÞÞ xðumþ1 ðsÞÞj þ jxðumþ1 ðsÞÞ zðumþ1 ðsÞÞjÞ K jv mþ1 ðsÞ umþ1 ðsÞj : 6 lm kx zk1 þ 1q
ð28Þ
Using (28) in (27) we get
jv 1 ðsÞ u1 ðsÞj 6 kx zk1
m 2 X j¼0
¼ kx zk1
Kj
Qj
i¼0 liþ1 j
ð1 qÞ
m1 j Qj X K i¼0 liþ1 j¼0
ð1 qÞj
þ
þ
K m1
Qm2
i¼0 liþ1 lm m1
ð1 qÞ
Q K m m1 i¼0 liþ1 m ð1 qÞ
kx zk1 þ
K jv mþ1 ðsÞ umþ1 ðsÞj 1q
jv mþ1 ðsÞ umþ1 ðsÞj:
ð29Þ
From (26), (29) and the induction we have that (27) holds for 2 6 m 6 k þ 1. For m ¼ k þ 1 we get
jv 1 ðsÞ u1 ðsÞj 6 kx zk1
k1 j Qj X K i¼0 liþ1 j¼0
ð1 qÞj
:
ð30Þ
Using (30) into (25) we get
jxðtÞ zðtÞj 6 kx zk1 6 kx zk1
Z
! Q 3 k X X K j ji¼1 li Lj þ L2 ds j 1 j¼1 j¼1 ð1 qÞ ! Q 3 k X X K j ji¼1 li N1 N2 6 qkx zk1 : Lj þ L2 þ j a1 a2 j¼1 j¼1 ð1 qÞ þ1
jGðt sÞj
ð31Þ
From (6) and (30) we have that
jx0 ðtÞ z0 ðtÞj ¼ jAðxðtÞ zðtÞÞ þ ðFðt; xðtÞ; xðv 1 ðtÞÞ; x0 ðgðtÞÞÞ Fðt; zðtÞ; zðu1 ðtÞÞ; z0 ðgðtÞÞÞj 6 jAjjxðtÞ zðtÞj þ L1 jxðtÞ zðtÞj þ L2 jxðv 1 ðtÞÞ xðu1 ðtÞÞj þ L2 jxðu1 ðtÞÞ zðu1 ðtÞÞj þ L3 jx0 ðgðtÞÞ z0 ðgðtÞÞj 1 0 j jQ ! K l i 3 3 k C B X X X KL2 B i¼1 C 6 kx zk1 jAj þ Lj þ Lj þ L2 jv 1 ðtÞ u1 ðtÞj 6 kx zk1 BjAj þ C 6 qkx zk1 : j A @ 1q j¼1 j¼1 j¼1 ð1 qÞ ð32Þ
S. Stevic´ / Applied Mathematics and Computation 219 (2012) 2180–2185
2185
From (31) and (32) it follows that
kx zk1 6 qkx zk1 which along with q < 1, implies xðtÞ zðtÞ, which is a contradiction, finishing the proof of the theorem. h Remark 1. If jAj < 1, then it is easy to see that for sufficiently small Li ; lj ; i 2 f1; 2; 3g j ¼ 1; k, there is a q 2 ð0; 1Þ such that conditions (7) and (8) hold. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]
R. Bellman, K.L. Cooke, Differential–Difference Equations, Academic Press, New York, 1963. M.A. Cruz, J.K. Hale, Existence, uniqueness, and continuous dependence for hereditary system, Annal. Mat. Pura Appl. 85 (4) (1970) 63–82. B.P. Demidovich, Lectures on the Mathematical Theory of Stability, Nauka, Moscow, 1970 (in Russian). J. Diblik, Asymptotic behaviour of solutions of a differential equation partly solved with respect to its derivative, Siberian Math. J. 23 (5) (1982) 80–91. J. Diblik, Solutions of a singular system of differential equations which is not solved with respect to the derivatives, Demonstratio Math. 17 (4) (1984) 1031–1041 (in Russian). J. Diblik, On conditional stability of the solutions of the systems of differential equations, not solved with respect to the derivatives, Sbornik VUT 1–4 (1985) 5–9. J. Diblik, The existence of solution of the singular Cauchy problem for systems of differential equations that are not solved for the derivatives, Publ. Inst. Math. 37 (51) (1985) 73–80 (in Russian). J. Diblik, Functional Differential Equations, University of Zˇilina, (2008). R.D. Driver, Existence and continuous dependence of solutions of a neutral functional–differential equation, Arch. Rat. Mech. Anal. 19 (2) (1965) 149– 166. L.J. Grimm, Existence and continuous dependence for a class of nonlinear neutral-differential equation, Proc. Amer. Math. Soc. 29 (3) (1971) 467–473. J. Hale, Theory of Functional Differential Equations, Springer, Berlin, 1977. M. Kwapisz, On the existence and uniqueness of solutions of certain integral–functional equation, Ann. Pol. Math. 31 (1) (1975) 23–41. O.P. Oliinychenko, Asymptotic properties of solutions of linear functional differential equations, Nelin. Kolyv. 3 (4) (2000) 489–496. G.P. Pelyukh, On global solutions of systems of nonlinear functional differential equations with deviating argument dependent on unknown functions, Ukrainian Math. J. 54 (3) (2001) 496–503. H.P. Pelyukh, O.P. Oliinychenko, Asymptotic properties of global solutions of systems of functional differential equations of neutral type with nonlinear deviations of an argument, Nonlinear Oscillat. 5 (4) (2002) 489–503. A.M. Samoilenko, G.P. Pelyukh, Solutions of systems of nonlinear functional differential equations bounded on the entire real axis and their properties, Ukr. Mat. Zh. 46 (6) (1994) 737–747. Yu.D. Shlapak, On periodic solutions of nonlinear second order differential equations, not solved with respect to the highest derivative, J. Ukrainian Math. 26 (6) (1974) 850–854 (in Russian). S. Stevic´, On stability results for a new approximating fixed points iteration process, Demonstratio Math. 34 (4) (2001) 873–880. S. Stevic´, Stability of a new iteration method for strongly pseudocontractive mappings, Demonstratio Math. 36 (2) (2003) 417–424. S. Stevic´, Stability results for /-strongly pseudocontractive mappings, Yokohama Math. J. 50 (2003) 71–85. S. Stevic´, Approximating fixed points of strongly pseudocontractive mappings by a new iteration method, Appl. Anal. 84 (1) (2005) 89–102. S. Stevic´, Approximating fixed points of nonexpansive mappings by a new iteration method, Bull. Inst. Math. Acad. Sinica 1 (3) (2006) 437–450. S. Stevic´, Existence of nontrivial solutions of a rational difference equation, Appl. Math. Lett. 20 (2007) 28–31. S. Stevic´, On the recursive sequence xnþ1 ¼ maxfc; xpn =xpn1 g, Appl. Math. Lett. 21 (8) (2008) 791–796. S. Stevic´, On a nonlinear generalized max-type difference equation, J. Math. Anal. Appl. 376 (2011) 317–328. S. Stevic´, On a system of difference equations, Appl. Math. Comput. 218 (2011) 3372–3378. S. Stevic´, On the difference equation xn ¼ xn2 =ðbn þ cn xn1 xn2 Þ, Appl. Math. Comput. 218 (2011) 4507–4513. S. Stevic´, Periodicity of a class of nonautonomous max-type difference equations, Appl. Math. Comput. 217 (2011) 9562–9566. S. Stevic´, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2012) 5010–5018. S. Stevic´, Unique existence of bounded continuous solutions on the real line of a class of nonlinear functional equations with complicated deviations, Appl. Math. Comput. 218 (2012) 7813–7817. L.A. Zhivotovskii, On the existence and uniqueness of solutions of differential equations with delay dependent on a solution and its derivative, Differents. Uravn. 5 (5) (1969) 880–889.