Accepted Manuscript Gold Catalyzed Intramolecular Hydroalkoxylation Assisted Ring Opening of Furans to the Corresponding Saturated γ-Keto Esters Chinta Nagaraju, Kavirayani R. Prasad PII:
S0040-4020(15)30119-8
DOI:
10.1016/j.tet.2015.10.017
Reference:
TET 27189
To appear in:
Tetrahedron
Received Date: 2 September 2015 Revised Date:
4 October 2015
Accepted Date: 6 October 2015
Please cite this article as: Nagaraju C, Prasad KR, Gold Catalyzed Intramolecular Hydroalkoxylation Assisted Ring Opening of Furans to the Corresponding Saturated γ-Keto Esters, Tetrahedron (2015), doi: 10.1016/j.tet.2015.10.017. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT
Graphical Abstract
AC C
EP
TE D
M AN U
SC
RI PT
Gold Catalyzed Intramolecular Hydroalkoxylation Assisted Ring Opening of Furans to the Corresponding Saturated γ-Keto Esters Chinta Nagaraju and Kavirayani R. Prasad*
ACCEPTED MANUSCRIPT 1
Tetrahedron journal hom epage: www. elsevi er.c om
Chinta Nagaraju and Kavirayani R. Prasad*
SC
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, INDIA FAX: +0091-80-23600529; E-mail:
[email protected]
RI PT
Gold Catalyzed Intramolecular Hydroalkoxylation Assisted Ring Opening of Furans to the Corresponding Saturated γ-Keto Esters
ABSTRACT
Article history: Received Received in revised form Accepted Available online
A facile ring opening of furans in furyl propargyl alcohols to the corresponding saturated γ-keto esters is observed in the gold(III) chloride catalyzed reaction with MeOH. It is found that the ring opening of furan is driven by the intramolecular hydroalkoxylation. Mitigating the intramolecular hydroalkoxylation led to the expected conjugated enyne resulting from the dehydration.
M AN U
ARTICLE INFO
Keywords: Gold catalysis Keto esters Ring opening reactions hydroalkoxylation
1. Introduction
propargyl alcohol 3 leading to dihydrofuran 2 and subsequent hydrogenation of 2. The furyl propargyl alcohols 3 can be procured easily by the addition of the substituted alkynes 4 to furfural 5 (Scheme-2).
AC C
EP
TE D
The availability of chiral furyl carbinols by simple methods has led to their use as effective building blocks in total synthesis of natural products.1 Notable reactions such as the Achmatowicz and Piancatelli reactions are extensively utilized for the synthesis of chiral dihydropyrones and cyclopentenones respectively from furyl carbinols.2,3 Some other transformations of furyl carbinols reported in the literature include the dehydrative dihydrofuran formation4 as well as nucleophilic substitution of the alcohol functionality (Scheme-1).5 During the course of our investigations concerning gold catalyzed intramolecular hydroalkoxylation reactions,6 we observed an interesting ring opening of furans in furyl propargyl alcohols to the corresponding saturated γ-keto esters driven by an intramolecular hydroalkoxylation of the alkyne, which is discussed in detail in this article.
2014 Elsevier Ltd. All rights reserved.
Scheme-1: Reactions of furyl carbinols 2. Results and Discussion In our program concerning the synthesis of analogues of Annonacae acetogenins, we required tetrahydrofuryl appended furyl carbinols of type 1. Synthesis of the furyl carbinols 1 was anticipated from the intramolecular hydroalkoxylation of furyl
Scheme 2. Retrosynthesis for furyl carbinol 1 Accordingly, at the outset, furyl propargyl alcohol 3a was synthesized by addition of the substituted alkyne 4a to furfural 5. AuCl3 catalyzed hydroalkoxylation reaction of 3a in MeOH, to our surprise furnished the saturated γ-keto ester 6a in 86% yield (Scheme-3).
ACCEPTED MANUSCRIPT Tetrahedron
Scheme 3. Reaction of 3a with AuCl3
M AN U
SC
Although, oxidative as well as acid mediated ring opening of furans to the corresponding E-but-2-en-1,4-diones and saturated 1,4-diones is documented in literature,7 to the best of our knowledge, facile opening of furan to the saturated γ-keto ester is not reported.8 A plausible mechanism for the formation of the product 6a is outlined in Scheme-4.
RI PT
2
TE D
Chart-1: Synthesis of saturated γ-keto esters 6b-k
Scheme-4: Plausible mechanism for the formation of 6a
Structure of the formed product was further confirmed by X-ray crystal structure analysis of the compound 6j (fig. 1).9
EP
It is proposed that the initial intramolecular hydroalkoxylation of 3a generates the dihydrofuryl furyl carbinol 2a, which under acidic conditions furnishes the stable carbocation 7. Activation of the furan in 7 and further reaction with MeOH leads to the 5methoxyfuryl substituted enol ether 9, which rearranges to the saturated γ-keto ester 6a.
AC C
The transformation was found to be general and the reaction of a series of structurally diverse furyl propargyl alcohols 3b-k with MeOH in presence of catalytic amount of AuCl3 afforded the corresponding tetrahydrofuryl appended saturated γ-keto esters 6b-k in good yields (Chart-1).
Fig 1: ORTEP diagram of 6j with displacement ellipsoids at 50% probability Interestingly, presence of other reactive functional groups such as allyl, benzyl and 4-methoxybenzyl in the substrate carbinols, which can compete in hydroalkoxylation as well as in the enyne cyclization reaction also furnished the product saturated γ-keto esters 6b-f in good yields. It was worth noting that the furyl propargyl alcohol 3l possessing a prenyl unit also afforded the product 6l in 60% yield. No enyne cyclization product was isolated in the reaction. Interestingly, reaction of the furyl propargyl alcohol 3m possessing a methyl substitution at the 5position of furan afforded an unidentifiable mixture of products (Scheme-5).
ACCEPTED MANUSCRIPT 3 grade MeOH was used. Melting points were uncorrected. 1H NMR and 13C NMR spectra were recorded either on a 400 MHz machine in CDCl3 as solvent with TMS as reference. HRMS was obtained using a micromass-QTOF spectrometer using electrospray ionization (ESI).
AC C
EP
TE D
RI PT
SC
M AN U
Scheme-5: Synthesis of saturated γ-keto ester 6l We reasoned that the driving force for the furan ring opening to form the saturated γ-keto ester is the formation of the triene 8 from 3a which under the reaction conditions rearranges to the product 6a. We anticipated that simple furyl propargyl alcohols lacking the pendant hydroxy group for intramolecular hydroalkoxylation should lead to simple dehydration of the secondary alcohol with concomitant nucleophilic addition of MeOH at the 5-position of furan. This was found to be the case and the reaction of simple furyl propargyl alcohols 11a-d with MeOH in presence of catalytic AuCl3 cleanly led to the formation of the conjugated enynes (as a scalemic E/Z mixture) 12a-d in good yields (Chart-2). Although Lewis acid catalyzed dehydrative dihydrofuran formation from furylcarbinols is known,4 the present procedure under mild reaction conditions compliments the existing procedures.
General Procedure for the synthesis of compound 4a: To a stirred solution of the alcohol (0.30 g, 1.37 mmol) in EtOAc (3 mL) was added IBX (1.16 g, 4.13 mmol) and the resulting suspension was refluxed for 8 h. After completion of the reaction (TLC), the reaction mixture was passed through a short pad of silica gel and the silica gel pad was washed with EtOAc (10 mL). The solvent was removed in vacuo to give the crude aldehyde. To a stirred solution of aldehyde thus obtained above in MeOH (5 mL) under a nitrogen atmosphere at 0 °C, was added The diazophosphonate (Ohira–Bestmann reagent) (0.45 g, 2.05 mmol) followed by anhydrous K2CO3 (0.28 g, 2.05 mmol) in one portion. The resulting reaction mixture was allowed to stir for 5 h at rt. After completion of the reaction (TLC), it was diluted with pet ether, quenched by addition of H2O and was extracted with pet ether (2 × 20 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous Na2SO4. Evaporation of solvent followed by silica gel column chromatography of the resulting crude residue with petroleum ether:Ether afforded the known alkyne 4a.
Chart-2: Formation of the conjugated enynes 12a-e from the furyl propargyl alcohols 11a-e. In conclusion, an unusual gold catalyzed ring opening of furan to the corresponding saturated γ-keto esters is observed in the reaction of furyl propargyl alcohols with AuCl3 in MeOH. The intramolecular hydroalkoxylation is essential for the ring opening of the furan to the saturated γ-keto esters, while simple furyl propargyl carbinols under similar conditions afforded the conjugated enynes involving dehydration/ ketalization. 3. General Information: Column chromatography was performed on Silica gel, Acme grade 100-200 mesh. TLC plates were visualized either with UV, in an iodine chamber, or with phosphomolybdic acid spray. All reagents were purchased from commercial sources and used without additional purification. THF was freshly distilled over Na-benzophenone ketyl. HPLC
Tert-butyl((2,2-dimethylbut-3-yn-1-yl)oxy)dimethylsilane (4a): 92% yield (0.27 g) as a colorless liquid. IR (neat) 3310, 2952, 2869, 2110, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 3.45 (s, 2H), 2.05 (s, 1H), 1.18 (s, 6H), 0.90 (s, 9H), 0.05 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 90.6, 71.1, 68.1, 33.3, 25.9, 25.3, 18.3, –5.4; HRMS for C12H24OSi+Na calcd 235.1494; found 235.1499. Tert-butyl((2-ethynyl-2-methylpent-4-en-1yl)oxy)dimethylsilane (4b): 84% yield (0.25 g) as a colorless oil. IR (neat) 3308, 2952, 2856, 2116, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.98-5.87 (m, 1H), 5.11-5.06 (m, 2H), 3.53 and 3.45 (ABq, J = 9.2, 2H), 2.30 (dd, J = 13.6, 7.2 Hz, 1H), 2.15 (dd, J = 13.2, 7.2 Hz, 1H), 2.11 (s, 1H), 1.17 (s, 3H), 0.91 (s, 9H), 0.06 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 134.7, 117.5, 88.7, 69.7, 69.1, 41.6, 36.9, 25.8, 23.3, 18.3, –5.4, –5.5; HRMS for C14H26OSi+Na calcd 261.1651; found 261.1651.
((2-Benzyl-2-methylbut-3-yn-1-yl)oxy)(tertbutyl)dimethylsilane (4c): 88% yield (0.26 g) as a colorless oil. IR (neat) 3308, 2944, 2856, 2111, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.33-7.23 (m, 5H), 3.48 and 3.41 (ABq, J = 9.6 Hz, 2H), 2.86 (d, J = 12.8 Hz, 1H), 2.73 (d, J = 12.8 Hz, 1H), 2.14 (s, 1H), 1.19 (s, 3H), 0.96 (s, 9H), 0.093 (s, 3H), 0.087 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 137.8, 130.7, 127.6, 126.3, 88.6, 70.8, 68.4, 42.6, 38.2, 25.9, 23.6, 18.3, –5.4, –5.5: HRMS for C18H28OSi+Na calcd 311.1807; found 311.1810. ((2-Allyl-2-ethynylpent-4-en-1-yl)oxy)(tertbutyl)dimethylsilane (4d): 72% yield (0.21 g) as a colorless oil. IR (neat) 3301, 2965, 2859, 2121, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.98-5.87 (m, 2H), 5.12-5.08 (m, 4H), 3.49 (s, 2H), 2.29 (dd, J = 13.2, 7.6 Hz, 2H), 2.21 (dd, J = 13.6, 6.8 Hz, 2H), 2.16 (s, 1H), 0.91 (s, 9H), 0.05 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 134.4, 117.8, 86.7, 71.3, 65.8, 40.5, 39.9, 25.8, 18.2, –5.5; HRMS for C16H28OSi+Na calcd 287.1807; found 287.1819.
ACCEPTED MANUSCRIPT Tetrahedron
((2,2-Bis(4-methoxybenzyl)but-3-yn-1-yl)oxy)(tertbutyl)dimethylsilane (4f): 90% yield (0.27 g) as a white crystalline compound. mp 58-60 °C; IR (neat) 3306, 2940, 2858, 2111, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.27 (d, J = 8.8 Hz, 4H), 6.83 (d, J = 8.4 Hz, 4H), 3.81 (s, 6H), 3.31 (s, 2H), 2.87 (d, J = 13.2 Hz, 2H), 2.70 (d, J = 13.2 Hz, 2H), 2.19 (s, 1H), 1.02 (s, 9H), 0.08 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 158.2, 131.7, 129.6, 113.0, 86.5, 73.9, 55.1, 43.3, 40.7, 26.0, 18.2, –5.4; HRMS for C26H36O3Si+Na calcd 447.2331; found 447.2334.
General Procedure for the synthesis of compound 3a: To a pre cooled (−78 °C) stirred solution of alkyne 4a (0.20 g, 0.94 mmol) in dry THF (2 mL) was added n-BuLi (0.69 mL of 1.5 M solution in hexanes, 1.03 mmol) dropwise and the resulting solution was stirred for 1 h at the same temperature. To the lithium acetylide thus generated, was added a solution of furfural 5 (0.086 mL, 1.03 mmol) in THF (1 ml). The reaction mixture was slowly allowed to warm up to room temperature over a period of 1 h and after completion of the reaction (as indicated by TLC), it was quenched by addition of sat. NH4Cl solution (4 mL), extracted with Et2O (2 × 10 mL). The combined ethereal extracts were washed with brine (10 mL) and dried over anhydrous Na2SO4. Evaporation of the solvent followed by silica gel column chromatography of the resulting crude residue with petroleum ether:EtOAc as eluent afforded the propargyl alcohol 3a. 5-((Tert-butyldimethylsilyl)oxy)-1-(furan-2-yl)-4,4dimethylpent-2-yn-1-ol (3a): 94% yield (0.27 g) as a yellow color oil. IR (neat) 3426, 2931, 2923, 2858, 2215, 1636 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.39 (s, 1H), 6.43 (d, J = 3.2 Hz, 1H), 6.33 (s, 1H), 5.42 (d, J = 6.8 Hz, 1H), 3.46 (s, 2H), 2.30 (d, J = 6.8 Hz, 1H), 1.20 (s, 6H), 0.89 (s, 9H), 0.04 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.6, 142.8, 110.2, 107.6, 92.3, 77.5, 71.0, 58.2, 33.5, 25.8, 25.2, 18.3, –5.5; HRMS for C17H28O3Si+Na calcd 331.1705; found 331.1710.
M AN U
Tert-butyl((1-ethynylcyclohexyl)methoxy)dimethylsilane (4g): 82% yield (0.28 g) as a colorless oil. IR (neat) 3307, 2930, 2852, 2114, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 3.48 (s, 2H), 2.11 (s, 1H), 1.70-1.58 (m, 7H), 1.40-1.31 (m, 2H), 1.22-1.06 (m, 1H), 0.90 (s, 9H), 0.05 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 88.7, 71.2, 70.3, 39.2, 33.4, 26.0, 25.9, 22.6, 18.3, –5.4; HRMS for C15H28OSi+Na calcd 275.1807; found 275.1809.
(2-Ethynyl-2-(methoxymethyl)propane-1,3-diyl)dibenzene (4m): 91% yield (0.27 g) as a colorless oil. IR (neat) 3306, 2962, 2859, 2111, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.37-7.27 (m, 10H), 3.37 (s, 3H), 3.01 (s, 2H), 3.00 (d, J = 13.2 Hz, 2H), 2.83 (d, J = 13.2 Hz, 2H), 2.24 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 137.3, 130.8, 127.7, 126.4, 85.9, 73.8, 58.4, 42.4, 42.1; HRMS for C19H20O+Na calcd 287.1412; found 287.1417.
RI PT
Tert-butyl((2,2-dibenzylbut-3-yn-1-yl)oxy)dimethylsilane (4e): 83% yield (0.33 g) as a colorless oil. IR (neat) 3306, 2962, 2859, 2111, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 7.2 Hz, 4H), 7.31-7.22 (m, 6H), 3.34 (s, 2H), 2.95 (d, J = 12.8 Hz, 2H), 2.78 (d, J = 12.8 Hz, 2H), 2.21 (s, 1H), 1.03 (s, 9H), 0.08 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 137.5, 130.9, 127.6, 126.4, 86.1, 74.2, 64.5, 43.1, 41.7, 26.0, 18.2, –5.5; HRMS for C24H32OSi+Na calcd 387.2120; found 387.2122.
SC
4
Tert-butyl((1-ethynylcyclopentyl)methoxy)dimethylsilane (4h): 84% yield (0.29 g) as a colorless oil. IR (neat) 3308, 2940, 2859, 2115, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 3.55 (s, 2H), 2.08 (s, 1H), 1.79-1.58 (m, 8H), 0.90 (s, 9H), 0.06 (s, 6H); 13 C NMR (100 MHz, CDCl3) δ 91.2, 77.3, 68.3, 44.2, 36.2, 25.9, 25.2, 18.3, –5.3; HRMS for C14H26OSi+Na calcd 261.1651; found 261.1655.
EP
TE D
Tert-butyl((2-ethynyl-2,3-dihydro-1H-inden-2yl)methoxy)dimethylsilane (4j): 93% yield (0.27 g) as a colorless oil. IR (neat) 3302, 2942, 2858, 2112, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.21-7.15 (m, 4H), 3.63 (s, 2H), 3.22 and 3.15 (ABq, J = 15.6 Hz, 4H), 2.12 (s, 1H), 0.90 (s, 9H), 0.07 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 141.4, 126.4, 124.5, 89.8, 68.4, 67.9, 44.2, 42.4, 25.8, 18.3, –5.4; HRMS for C18H26OSi+Na calcd 309.1651; found 309.1661.
AC C
1-(2-Ethynyl-2,3-dihydro-1H-inden-2-yl)ethan-1-ol (4k): 94% yield. mp 108-110 °C; IR (neat) 3400, 2992, 2123, 1641, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.25-7.15 (m, 4H), 3.78 (qn, J = 6.4 Hz, 1H), 3.28 (s, 2H), 3.14 and 3.06 (ABq, J = 16.0 Hz, 2H), 2.17 (s, 1H), 1.91 (d, J = 7.6 Hz, 1H), 1.33 (d, J = 6.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 141.2, 141.0, 126.7, 126.6, 124.6, 124.3, 88.0, 72.6, 70.3, 49.5, 44.0, 42.8, 19.4; HRMS for C13H14O+Na calcd 209.0942; found 209.0940. (S)-Tert-butyl((2-ethynyl-2,6-dimethylhept-5-en-1yl)oxy)dimethylsilane (4l): 91% yield (0.31 g) as a colorless oil. IR (neat) 3309, 2929, 2858, 2111, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.14 (t, J = 7.2 Hz, 1H), 3.54 and 3.46 (ABq, J = 9.6 Hz, 2H), 2.16-2.08 (m, 2H), 2.10 (s, 1H), 1.69 (s, 3H), 1.63 (s, 3H), 1.59-1.49 (m, 1H), 1.45-1.30 (m, 1H), 1.18 (s, 3H), 0.90 (s, 9H), 0.06 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 131.5, 124.4, 89.1, 69.5, 69.3, 37.2, 37.1, 25.8, 25.7, 23.8, 23.5, 18.3, 17.6, –5.5; HRMS for C17H32OSi+Na calcd 303.2120; found 303.2124.
4-(((Tert-butyldimethylsilyl)oxy)methyl)-1-(furan-2-yl)-4methylhept-6-en-2-yn-1-ol (3b): 91% yield (0.25 g) as a yellow color oil. IR (neat) 3440, 2965, 2923, 2860, 2241, 1649 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.40 (s, 1H), 6.44 (d, J = 2.8 Hz, 1H), 6.34 (s, 1H), 5.98-5.86 (m, 1H), 5.44 (d, J = 6.8 Hz, 1H), 5.115.07 (m, 2H), 3.54 (dd, J = 9.2, 2.4 Hz, 1H), 3.46 (d, J = 9.6 Hz, 1H), 2.33 (dd, J = 13.6, 7.2 Hz, 1H), 2.22 (d, J = 7.2 Hz, 1H), 2.17 (dd, J = 13.2, 7.2 Hz, 1H), 1.18 (s, 3H), 0.90 (s, 9H), 0.05 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.6, 142.9, 134.6, 117.7, 110.2, 107.6, 90.7, 79.2, 69.1, 58.2, 41.6, 37.1, 25.8, 23.2, 18.2, – 5.48, –5.51; HRMS for C19H30O3Si+Na calcd 357.1862; found 357.1868. 4-Benzyl-5-((tert-butyldimethylsilyl)oxy)-1-(furan-2-yl)-4methylpent-2-yn-1-ol (3c): 92% yield (0.24 g) as a yellow color oil. IR (neat) 3438, 2942, 2922, 2858, 2222, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.41 (s, 1H), 7.32-7.20 (m, 5H), 6.34 (s, 2H), 5.42 (d, J = 5.6 Hz, 1H), 3.50 (dd, J = 9.6, 5.2 Hz, 1H), 3.43 (dd, J = 9.6 Hz, 2.4, 1H), 2.16 (d, J = 6.4 Hz, 1H), 1.20 (s, 3H), 0.95 (s, 9H, 0.08 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.4, 142.8, 137.8, 130.7, 127.7, 126.3, 110.2, 107.6, 90.6, 80.3, 68.4, 58.2, 42.6, 38.4, 25.9, 23.6, 23.5, 18.3, –5.4, –5.5; HRMS for C23H32O3Si+Na calcd 407.2018; found 407.2022. 4-Allyl-4-(((tert-butyldimethylsilyl)oxy)methyl)-1-(furan-2yl)hept-6-en-2-yn-1-ol (3d): 84% yield (0.23 g) as a yellow color oil. IR (neat) 3440, 2916, 2211, 1641, 1600 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 0.4 Hz, 1H), 6.45 (d, J = 3.2 Hz, 1H), 6.35 (dd, J = 2.8, 2.0 Hz, 1H), 5.97-5.87 (m, 2H), 5.46 (d, J = 7.2 Hz, 1H), 5.12-5.08 (m, 4H), 3.51 (s, 2H), 2.32 (dd, J = 13.6, 7.6 Hz, 2H), 2.25 (d, J = 7.2 Hz, 1H), 2.23 (dd, J = 14.0,
ACCEPTED MANUSCRIPT 5
4-(((Tert-butyldimethylsilyl)oxy)methyl)-1-(furan-2-yl)-4,8dimethylnon-7-en-2-yn-1-ol (3l): 91% yield (0.24 g) as a yellow color oil. IR (neat) 3426, 2931, 2858, 2215, 1636 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.39 (s, 1H), 6.43 (d, J = 2.8 Hz, 1H), 6.33 (s, 1H), 5.44 (d, J = 6.8 Hz, 1H), 5.12 (t, J = 6.4, 1H), 3.54 (dd, J = 9.6, 3.2 Hz, 1H), 3.47 (d, J = 9.2 Hz, 1H), 2.22 (d, J = 6.8 Hz, 1H), 2.12-2.07 (m, 2H), 1.68 (s, 3H), 1.58-1.51 (m, 1H), 1.421.34 (m, 1H), 1.19 (s, 3H), 0.90 (s, 9H), 0.04 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.6, 142.8, 131.5, 124.3, 110.2, 107.6, 91.1, 79.0, 69.2, 58.3, 37.3, 37.2, 25.8, 25.7, 23.65, 23.63, 18.3, 17.6, –5.5; HRMS for C22H36O3Si+Na calcd 399.2331; found 399.2334.
M AN U
5-((Tert-butyldimethylsilyl)oxy)-1-(furan-2-yl)-4,4-bis(4methoxybenzyl)pent-2-yn-1-ol (3f): 91% yield (0.22 g) as a yellow color oil. IR (neat) 3447, 2953, 2930, 2065, 1612, 1512 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.43 (s, 1H), 7.26-7.21 (m, 4H), 6.81-6.78 (m, 4H), 6.34 (dd, J = 2.8, 1.6 Hz, 1H), 6.24 (d, J = 3.2 Hz, 1H), 5.39 (d, J =6.8 Hz, 1H), 3.80 (s, 6H), 3.32 (s, 2H), 2.89 (dd, J = 13.2, 2.8 Hz, 2H), 2.71 (d, J = 12.8 Hz, 1H), 2.17 (d, J = 6.8 Hz, 1H), 1.01 (s, 9H), 0.08 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 158.21, 158.20, 153.3, 142.7, 131.74, 131.73, 129.6, 113.0, 110.2, 107.5, 88.7, 83.4, 64.3, 58.2, 55.1, 43.6, 40.7, 25.9, 18.2, –5.45; HRMS for C31H40O5Si+Na calcd 543.2543; found 543.2546.
1-(Furan-2-yl)-3-(2-(1-hydroxyethyl)-2,3-dihydro-1H-inden2-yl)prop-2-yn-1-ol (3k) : 97% yield (0.29 g) as a yellow color oil. IR (neat) 3441, 2945, 2216, 1600 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.37 (s, 1H), 7.25-7.15 (m, 4H), 6.31 (s, 1H), 6.28 (s, 1H), 5.41 (d, J = 4.0 Hz, 1H), 3.80-3.75 (m, 1H), 3.31 and 3.25 (ABq, J = 16.4 Hz, 2H), 3.13 (dd, J = 15.6, 4.4 Hz, 1H), 3.04 (dd, J = 16.0, 4.0 Hz, 1H), 2.56 (bs, 1H), 1.86 (bs, 1H), 1.33 (d, J = 6.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 153.3, 142.8, 141.0, 126.6, 124.3, 110.3, 107.5, 89.9, 79.5, 73.0, 58.0, 49.7, 44.1, 42.8, 19.5; HRMS for C18H18O3+Na calcd 305.1154; found 305.1157.
RI PT
4,4-Dibenzyl-5-((tert-butyldimethylsilyl)oxy)-1-(furan-2yl)pent-2-yn-1-ol (3e): 85% yield (0.21 g) as a yellow color oil. IR (neat) 3441, 2981, 2920, 2214, 1612, 1512 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.45 (s, 1H), 7.39-7.36 (m, 4H), 7.31-7.28 (m, 6H), 6.37 (d, J = 1.6 Hz, 1H), 6.27 (s, 1H), 5.42 (d, J = 6.8 Hz, 1H), 3.40 (s, 2H), 3.03 (d, J = 13.2 Hz, 2H), 2.85 (d, J = 12.8 Hz, 2H), 2.29 (bs, 1H), 1.09 (s, 9H), 0.14 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.2, 142.7, 137.5, 130.8, 127.6, 126.4, 126.3, 110.2, 107.5, 88.3, 83.6, 64.3, 58.1, 43.3, 41.6, 25.9, 18.2, –5.5; HRMS for C29H36O3Si+Na calcd 483.2331; found 483.2333.
3.62 (s, 2H), 3.20 and 3.16 (ABq, J = 16.4 Hz, 4H), 2.23 (bs, 1H), 0.87 (s, 9H), 0.04 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.5, 142.8, 141.3, 126.5, 124.5, 110.2, 107.7, 91.8, 91.8, 77.8, 67.8, 58.3, 44.3, 42.4, 25.8, 18.3, –5.4; HRMS for C23H30O3Si+Na calcd 405.1862; found 405.1862.
SC
7.2 Hz, 2H), 0.90 (s, 9H), 0.04 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.5, 142.9, 134.4, 117.9, 110.3, 107.6, 88.8, 81.0, 65.8, 58.2, 40.7, 39.9, 25.8, 18.2, –5.5; HRMS for C21H32O3Si+Na calcd 383.2018; found 383.2024.
TE D
3-(1-(((Tert-butyldimethylsilyl)oxy)methyl)cyclohexyl)-1(furan-2-yl)prop-2-yn-1-ol (3g): 91% yield (0.25 g) as a yellow color oil. IR (neat) 3438, 2940, 2918, 2878, 2241, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.40 (s, 1H), 6.47 (d, J = 2.8 Hz, 1H), 6.34 (d, J = 0.8 Hz, 1H), 5.47 (d, J = 6.4 Hz, 1H), 3.5 (s, 2H), 2.26 (bs, 1H), 1.68-1.61 (m, 7H), 1.42-1.30 (m, 3H), 0.90 (s, 9H), 0.05 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.9, 143.8, 110.2, 107.6, 90.7, 79.9, 71.1, 58.3, 39.4, 33.4, 26.0, 25.9, 22.8, 18.3, – 5.4; HRMS for C20H32O3Si+Na calcd 371.2018; found 371.2020.
AC C
EP
3-(1-(((Tert-butyldimethylsilyl)oxy)methyl)cyclopentyl)-1(furan-2-yl)prop-2-yn-1-ol (3h): 93% yield (0.26 g) as a yellow color oil. IR (neat) 2955, 2933, 2859, 2243, 1649 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.40 (s, 1H), 6.44 (d, J = 3.2 Hz, 1H), 6.33 (dd, J = 2.8, 1.6 Hz, 1H), 5.43 (d, J = 5.2 Hz, 1H), 3.56 (s, 2H), 2.24 (d, J = 6.4 Hz, 1H), 1.78 (bs, 6H), 1.68-1.62 (m, 2H), 0.90 (s, 9H), 0.05 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.8, 142.8, 110.2, 107.6, 93.0, 77.5, 68.3, 58.3, 44.4, 36.1, 25.8, 25.1, 18.3, –5.4; HRMS for C19H30O3Si+Na calcd 357.1862; found 357.1866.
5-((Tert-butyldimethylsilyl)oxy)-1-(furan-2-yl)pent-2-yn-1-ol (3i): 92% yield (0.28 g) as a yellow color oil. IR (neat) 3440, 2981, 2930, 2858, 2211, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.41 (s, 1H), 6.44 (d, J = 2.8 Hz, 1H), 6.35 (dd, J = 4.8, 1.6 Hz, 1H), 5.44 (d, J = 5.6 Hz, 1H), 3.76 (t, J = 7.2 Hz, 2H), 2.49 (td, J = 7.2, 2.0 Hz, 2H), 2.30 (d, J = 5.6 Hz, 1H), 0.90 (s, 9H), 0.07 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.4, 142.8, 110.3, 107.5, 83.8, 78.6, 61.6, 58.3, 25.8, 23.1, 18.3, –5.3; HRMS for C15H24O3Si+Na calcd 303.1392; found 303.1392. 3-(2-(((Tert-butyldimethylsilyl)oxy)methyl)-2,3-dihydro-1Hinden-2-yl)-1-(furan-2-yl)prop-2-yn-1-ol (3j): 95% yield (0.254 g) as a yellow color oil. IR (neat) 3441, 2945, 2216, 1600 cm-1; 1 H NMR (400 MHz, CDCl3) δ 7.39 (s, 1H), 7.20-7.14 (m, 4H), 6.38 (d, J = 3.2 Hz, 1H), 6.32 (s, 1H), 5.43 (d, J = 6.8 Hz, 1H),
4,4-Dibenzyl-1-(furan-2-yl)-5-methoxypent-2-yn-1-ol (11e): 93% yield (0.25 g) as a yellow color oil. IR (neat) 3440, 2981, 2930, 2858, 2211, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.44 (s, 1H), 7.34-7.28 (m, 10H), 6.36 (s, 1H), 6.26 (s, 1H), 5.42 (d, J = 5.6 Hz, 1H), 3.37 (s, 3H), 3.09 (s, 2H), 3.03 (d, J = 13.2 Hz, 2H), 2.85 (d, J = 13.2 Hz, 2H), 2.47 (bs, 1H); 13C NMR (100 MHz, CDCl3) δ 153.2, 142.7, 137.3, 130.8, 127.7, 126.4, 110.2, 107.5, 88.0, 83.3, 73.6, 58.3, 58.1, 42.3, 42.27; HRMS for C24H24O3+Na calcd 383.1623; found 383.1624. General Procedure for the synthesis of compound 6a: To a stirred solution of alcohol 3a (0.10 g, 0.32 mmol) in MeOH (1 mL) at room temperature was added AuCl3 (0.002 g, 0.006 mmol) and the resulting reaction mixture was heated to reflux and stirred under reflux for 30 min. MeOH was evaporated off and the resulting crude residue was purified by silica gel column chromatography with petroleum ether:EtOAc as eluent afforded the keto ester 6a. Methyl (E)-5-(4,4-dimethyldihydrofuran-2(3H)-ylidene)-4oxopentanoate (6a): 86% yield (0.06 g) as a thick yellow color oil. IR (neat) 2955, 2858, 1736, 1678, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.75 (d, J = 0.8 Hz, 1H), 3.85 (s, 2H), 3.65 (s, 3H), 2.90 (s, 2H), 2.71 (t, J = 6.8 Hz, 2H), 2.55 (t, J = 6.8 Hz, 2H), 1.09 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 197.3, 177.0, 173.6, 98.5, 82.2, 51.6, 45.7, 37.84, 37.8, 28.1, 25.2; HRMS for C12H18O4+Na calcd 249.1103; found 249.1106. Methyl (E)-5-(4-allyl-4-methyldihydrofuran-2(3H)-ylidene)4-oxopentanoate (6b): 81% yield (0.06 g) as a thick yellow color oil. IR (neat) 2952, 1736, 1678, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.79-5.66 (m, 1H), 5.76 (s, 1H), 5.09 (d, J = 2.0 Hz, 1H), 5.05 (d, J = 11.2 Hz, 1H), 3.96 (d, J = 8.8 Hz, 1H), 3.82 (d, J = 8.4 Hz, 1H), 3.66 (s, 3H), 2.97 and 2.90 (ABq, J = 18.4,
ACCEPTED MANUSCRIPT Tetrahedron
Methyl (E)-5-(4-benzyl-4-methyldihydrofuran-2(3H)ylidene)-4-oxopentanoate (6c): 78% yield (0.06 g) as a thick yellow color oil. IR (neat) 2980, 2858, 1734, 1676, 1601 cm-1; 1 H NMR (400 MHz, CDCl3) δ 7.32-7.20 (m, 3H), 7.10 (d, J = 7.2 Hz, 2H), 5.78 (s, 1H), 4.06 (d, J = 8.8 Hz, 1H), 3.79 (d, J = 8.4 Hz, 1H), 3.68 (s, 3H), 3.05 and 2.93 (ABq, J = 18.0 Hz, 2H), 2.73 (t, J = 6.4 Hz, 2H), 2.69 (s, 2H), 2.58 (t, J = 6.8 Hz, 2H) 1.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.2, 176.4, 173.6, 137.3, 129.9, 128.2, 126.5, 98.8, 80.0, 51.6, 43.92, 43.88, 42.3, 37.8, 28.1, 23.0; HRMS for C18H22O4+Na calcd 325.1416; found 325.1418.
Methyl (E)-5-(1',3'-dihydro-2H-spiro[furan-3,2'-inden]5(4H)-ylidene)-4-oxopentanoate (6j): 78% yield (0.06 g) as a white crystalline compound. mp 113-115 °C; IR (neat) 3021, 2916, 1736, 1676, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.19-7.14 (m, 4H), 5.85 (s, 1H), 4.11 (s, 2H), 3.68 (s, 3H), 3.21 (s, 2H), 2.98 (s, 4H), 2.76 (t, J = 6.8 Hz, 2H), 2.58 (t, J = 6.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 197.3, 176.2, 173.7, 141.3, 126.7, 124.6, 98.8, 81.0, 51.7, 49.6, 43.6, 42.6, 37.9, 28.1; HRMS for C18H20O4+Na calcd 323.1259; found 323.1259. Methyl (E)-5-(2-methyl-1',3'-dihydro-2H-spiro[furan-3,2'inden]-5(4H)-ylidene)-4-oxopentanoate (6k): 83% yield (0.05 g) as a light yellow color oil. IR (neat) 3021, 2916, 1736, 1676, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.16 (bs, 4H), 5.80 (s, 1H), 4.40 (q, J = 6.4 Hz, 1H), 3.67 (s, 3H), 3.33-3.26 (m, 2H), 3.11-3.01 (m, 2H), 2.93 (s, 2H), 2.74 (t, J = 6.4 Hz, 2H), 2.56 (t, J =6.4 Hz, 2H), 1.23 (d, J = 6.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 197.4, 175.1, 173.7, 141.3, 140.9, 126.7, 126.6, 124.5, 124.5, 98.6, 85.6, 52.0, 51.6, 44.5, 42.8, 38.3, 37.9, 28.1, 15.7; HRMS for C19H22O4+Na calcd 337.1416; found 337.1411.
M AN U
Methyl (E)-5-(4,4-diallyldihydrofuran-2(3H)-ylidene)-4oxopentanoate (6d): 79% yield (0.06 g) as a thick yellow color oil. IR (neat) 3021, 2916, 1738, 1674, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.78-5.67 (m, 2H), 5.75 (s, 1H), 5.11 (d, J = 3.6 Hz, 2H), 5.08 (d, J = 10.8 Hz, 2H), 3.95 (s, 2H), 3.66 (s, 3H), 2.98 (d, J = 1.6 Hz, 2H), 2.71 (t, J J = 6.8 Hz, 2H), 2.57 (t, J = 6.4 Hz, 2H), 2.15 (d, J = 7.6 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ 197.2, 176.6, 173.6, 133.1, 119.0, 98.3, 78.5, 51.6, 44.2, 42.0, 40.4, 37.8, 28.2; HRMS for C16H22O4+Na calcd 301.1416; found 301.1420.
Methyl (E)-5-(dihydrofuran-2(3H)-ylidene)-4-oxopentanoate (6i): 68% yield (0.05 g) as a thick yellow color oil. IR (neat) 2955, 2858, 1736, 1678, 1604 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.78 (s, 1H), 4.21 (t, J = 6.8 Hz, 2H), 3.66 (s, 3H), 3.09 (t, J = 8.0 Hz, 2H), 2.71 (t, J = 6.4 Hz, 2H), 2.57 (t, J = 6.8 Hz, 2H), 2.13-2.05 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 197.1, 176.9, 173.6, 97.5, 71.5, 51.5, 37.7, 30.9, 28.1, 23.5; HRMS for C10H14O4+Na calcd 221.0790; found 221.0792.
RI PT
2H), 2.71 (t, J = 6.4, 2H), 2.56 (t, J = 6.8, 2H), 2.13 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 197.2, 176.7, 173.6, 133.5, 118.7, 98.5, 86.4, 51.6, 44.0, 42.7, 41.0, 37.8, 28.2, 23.1; HRMS for C14H20O4+Na calcd 275.1259; found 275.1259.
SC
6
TE D
Methyl (E)-5-(4,4-dibenzyldihydrofuran-2(3H)-ylidene)-4oxopentanoate (6e): 85% yield (0.07 g) as a thick yellow color oil. IR (neat) 3027, 2916, 1738, 1677, 1600 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.31-7.22 (m, 6H), 7.11 (d, J = 7.2 Hz, 4H), 5.61 (s, 1H), 4.02 (s, 2H), 3.69 (s, 3H), 3.07 (s, 2H), 2.75 (s, 4H), 2.67 (t, J = 6.8 Hz, 2H), 2.58 (t, J = 6.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 197.1, 176.1, 173.6, 136.7, 130.4, 128.3, 126.7, 98.5, 76.4, 51.6, 46.4, 42.1, 40.4, 37.8, 28.2; HRMS for C24H26O4+Na calcd 401.1729; found 401.1732.
AC C
EP
Methyl (E)-5-(4,4-bis(4-methoxybenzyl)dihydrofuran-2(3H)ylidene)-4-oxopentanoate (6f): 82% yield (0.07 g) as a thick yellow color oil. IR (neat) 2994, 2913, 1738, 1676, 1600 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.01 (d, J = 8.4, 4H), 6.82 (d, J = 8.4 Hz, 4H), 5.61 (s, 1H), 4.00 (s, 2H), 3.80 (s, 6H), 3.69 (s, 3H), 3.03 (s, 2H), 2.70-2.66 (m, 2H), 2.67 (s, 4H), 2.58 (t, J = 6.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 197.1, 176.4, 173.6, 158.4, 131.4, 128.8, 113.7, 98.5, 76.6, 55.2, 51.6, 46.6, 41.2, 40.4, 37.8, 28.2; HRMS for C26H30O6+Na calcd 461.1940; found 461.1941.
Methyl (E)-4-oxo-5-(2-oxaspiro[4.5]decan-3ylidene)pentanoate (6g): 80% yield (0.06 g) as a thick yellow color oil. IR (neat) 2955, 2858, 1738, 1676, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.76 (s, 1H), 3.94 (s, 2H), 3.68 (s, 3H), 2.95 (s, 2H), 2.72 (t, J = 6.8 Hz, 2H), 2.58 (t, J = 6.8 Hz, 2H), 1.601.40 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 197.3, 177.1, 173.7, 98.4, 51.7, 41.8, 37.8, 34.7, 28.2, 25.6, 23.3; HRMS for C15H22O4+Na calcd 289.1416; found 289.1422. Methyl (E)-4-oxo-5-(2-oxaspiro[4.4]nonan-3ylidene)pentanoate (6h): 79% yield (0.06 g) as a thick yellow color oil. IR (neat) 2952, 1738, 1676, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.76 (s, 1H), 3.98 (s, 2H), 3.67 (s, 3H), 3.02 (d, J = 1.2 Hz, 2H), 2.72 (t, J = 6.8 Hz, 2H), 2.57 (t, J = 6.8 Hz, 2H), 1.70-1.56 (m, 8H); 13C NMR (100 MHz, CDCl3) δ 197.3, 177.1, 173.7, 98.3, 81.0, 51.6, 48.8, 44.0, 37.8, 36.1, 28.2, 24.4; HRMS for C14H20O4+Na calcd 275.1259; found 275.1265.
Methyl (S,E)-5-(4-methyl-4-(4-methylpent-3-en-1yl)dihydrofuran-2(3H)-ylidene)-4-oxopentanoate (6l): 60% yield (0.05 g) as a thick yellow color oil. IR (neat) 2955, 2858, 1736, 1678, 1601 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.77 (s, 1H), 5.04 (t, J = 6.0 Hz, 1H), 3.92 and 3.87 (ABq, J = 8.8 Hz, 2H), 3.67 (s, 3H), 3.01 (d, J = 18.4 Hz, 1H), 2.84 (d, J = 18.0, 1H), 2.72 (t, J = 6.8 Hz, 2H), 2.57 (t, J = 6.8 Hz, 2H), 2.01-1.90 (m, 2H), 1.66 (s, 3H), 1.58 (s, 3H), 1.43 (t, J = 8.4 Hz, 2H), 1.07 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.3, 177.0, 173.7, 132.1, 123.7, 98.5, 81.4, 51.7, 44.5, 41.2, 38.7, 28.2, 25.6, 23.7, 23.1, 17.6; HRMS for C17H26O4+Na calcd 317.1729; found 317.1732. General Procedure for the synthesis of compound 12a: To a stirred solution of propargyl alcohol 11a (0.10 g, 0.73 mmol) in MeOH (1 mL) at room temperature was added AuCl3 (0.004 g, 0.015 mmol) and the resulting reaction mixture was stirred at room temperature for 1 h. After completion of the reaction (TLC), MeOH was evaporated off and the resulting crude residue was purified by silica gel column chromatography with petroleum ether:EtOAc as eluent afforded the isomeric acetals 12a. 2-(But-2-yn-1-ylidene)-5-methoxy-2,5-dihydrofuran (12a) (Data for Major Isomer): 64% yield (0.07 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 6.34 (d, J = 5.2 Hz, 1H), 6.12 (s, 2H), 4.64 (d, J =2.0 Hz, 1H), 3.47 (s, 3H), 2.04 (d, J = 2.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 164.3, 131.4, 128.8, 110.1, 91.3, 80.9, 74.6, 54.8, 4.9; HRMS for C9H10O2+Na calcd 173.0578; found 173.0580. Data for Minor Isomer: 25% yield (0.028 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 6.78 (d, J = 6.0 Hz, 1H), 6.17 (d, J = 5.6 Hz, 1H), 6.04 (s, 1H), 5.00 (s, 1H), 3.41 (s, 3H), 1.97 (s, 3H); 13C NMR (100
ACCEPTED MANUSCRIPT
We thank Prof. Martin E. Maier, Institute for Organic Chemistry, University of Tuebingen, Germany for the helpful discussions concerning the mechanism of the reaction. C. N. thanks CSIR, New Delhi for a research fellowship. References and notes 1. 2.
3.
Heterocycles in Natural Products Synthesis Majumdar, K. C.; Chattopadhyay, S. K (Eds); Wiley-VCH, Weinheim, 2011. (a) Cuccarese, M. F., O’Doherty, G. A. In Asymmetric Synthesis II: More Methods and Applications; Christmann, M.; Braese, S. (Eds). Wiley−VCH: Weinheim, 2012 (b) Achmatowicz, O., Jr.; Bukowski, P.; Szechner, B.; Zwierzchowska, Z.; Zamojski, A. Tetrahedron 1971, 27, 1973-1996. (a) Piancatelli, G.; Scettri, A.; Barbadoro, S. Tetrahedron Lett. 1976, 17, 3555-3558. For a review, see: (b) Piutti, C.; Quartieri, F. Molecules 2013, 18, 12290. For recent examples, see: (c) Veits, G. K.; Wenz, D. R.; Read de Alaniz, J. Angew. Chem., Int. Ed. 2010, 49, 9484. (d) Palmer, L. I.; Read de Alaniz, J. Angew. Chem., Int. Ed. 2011, 50, 7167. (c) Palmer, L. I.; Read de Alaniz, J. Org. Lett. 2013, 15, 476. (d) Wenz, D. R.; Read de Alaniz, J. Org. Lett. 2013, 15, 3250. (e) Yu, D.; Tahai, V. T.; Palmer, L. I.; Veits, G. K.; Cook, J. E.; Read de Alaniz, J.; Hein, J. E. J. Org. Chem. 2013, 78, 12784. (f) Fisher, D.; Palmer, L. I.; Cook, J. E.; Davis, J. E.; Read de Alaniz, J. Tetrahedron 2014, 70, 4105. (g) Lebœuf, D.; Gandon, V.; Schulz, E. Org. Lett. 2014, 16, 6464-6467. (a) Denisov, V. R.; Shevchenko, Z. A.; Khlebova, G. N.; Alekseeva, E. M.; Favorskaya, I. A. J. Org. Chem. U.S.S.R. (Engl. Transl.) 1984, 20, 2530-2533. (b) Gao, Y.; Wu, W. –L.; ; Ye, B.; Zhou, R.; Wu, Y. –L. Tetrahedron Lett, 1996, 37, 893-896. (c) Gao, Y.; Wu, W. –L.; ; Ye, B.; Wu, Y. –L.; Zhou, R. Tetrahedron, 1998, 54, 12523-12538. (a) Dhiman, S.; Ramasastry, S. S. V. Org. Biomol. Chem. 2013, 11, 4299-4303. (b) Dhiman, S.; Ramasastry, S. S. V. Indian J. Chem., Sect. A 2013, 52, 1103. (c) Dhiman, S.; Ramasastry, S. S. V. J. Org. Chem. 2013, 78, 10427−10436. (a) Prasad, K. R.; Nagaraju, C. Org. Lett., 2013, 15, 2778-2781. (b) Nagaraju, C.; Prasad, K. R. Angew. Chem., Int. Ed. 2014, 53, 10997-11000. For a strategy of oxidative ring opening of furan to the corresponding E-but-2-en-1,4-dione in natural product synthesis see: (a) Kobayashi, Y; Nakano, M; Kumar, G. B; Kishihara, K. J. Org. Chem. 1998, 63, 7505-7515. (b) Prasad, K. R; Pawar, A. B. Org. Lett. 2011, 13, 4252-4255. (c) Prasad, K. R.; Revu. O. J. Org. Chem. 2014, 79, 1461−1466. For acid mediated ring opening of 2,5-di substituted furans to the corresponding 1,4-diones see: (d) Büchi, G.; Wüest, H. J. Org. Chem. 1966, 31, 977–978. (e) Waidmann, C. R.; Pierpont, A. W.;Batista, E. R.; John C. Gordon, J. C.; Martin, R. L.; Silks, L. A. P.; West, R. M.; Wu, R. Catal. Sci. Technol., 2013, 3, 106-115. The reported synthesis for saturated γ-keto esters from furans involve the initial oxidation of furans to the 2,5-dialkoxy furans followed by reaction with ruthenium hydride or TMSI. (a) Hirai, K., Suzuki, H., Kashiwagi, H., Moro-oka, Y.; Ikawa, T. Chem. Lett, 1982, 23 (b) Feringa, B. L.; Dannenberg, W. Tetrahedron Lett, 1983, 13, 509-514. Feringa and Dannenberg also reported a procedure involving the conversion of furans to γmethoxybutyrolactone and subsequent reduction/esterification sequence. The crystallographic data has been deposited with the Cambridge Crystallographic Data Center. CCDC No. 1027186 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
TE D
M AN U
2-(Hex-2-yn-1-ylidene)-5-methoxy-2,5-dihydrofuran (12c): DATA for Major Isomer: 68% yield (0.07 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 6.34 (d, J =5.2 Hz, 1H), 6.12 (d, J = 5.2 Hz, 1H), 6.11 (s, 1H), 4.70 (s, 1H), 3.47 (s, 3H), 2.37 (td, J = 6.8, 1.6 Hz, 2H), 1.63-1.55 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 164.2, 131.3, 128.8, 110.0, 95.6, 81.0, 75.5, 54.8, 22.2, 21.9, 13.5; HRMS for C11H14O2+Na calcd 201.0891; found 201.0891. Data for Minor Isomer: 22% yield (0.02 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 6.78 (d, J = 5.6 Hz, 1H), 6.17 (d, J = 5.6 Hz, 1H), 6.05 (s, 1H), 5.02 (s, 1H), 3.41 (s, 3H), 2.31 (td, J = 7.2, 1.2 Hz, 2H), 1.61-1.53 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 166.0, 131.9, 127.4, 109.7, 92.1, 81.8, 76.1, 54.4, 22.4, 21.6, 13.5; HRMS for C11H14O2+Na calcd 201.0891; found 201.0891.
Acknowledgments
RI PT
2-Methoxy-5-(3-phenylprop-2-yn-1-ylidene)-2,5dihydrofuran (12b): DATA for Major Isomer: 55% yield (0.059 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 7.2 Hz, 2H), 7.33-7.28 (m, 3H), 6.42 (d, J = 5.6 Hz, 1H), 6.22 (d, J = 5.6 Hz, 1H), 6.17 (s, 1H), 4.91 (s, 1H), 3.52 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 165.0, 132.4, 131.3, 128.8, 128.1, 127.7, 123.9, 110.3, 94.5, 85.0, 80.5, 55.0; HRMS for C14H12O2+Na calcd 235.0735; found 235.0737. Data for Minor Isomer: 32% yield (0.03 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 7.42 (d, J = 6.8 Hz, 2H), 7.33-7.26 (m, 3H), 6.91 (d, J = 6.0 Hz, 1H), 6.28 (d, J = 6.0 Hz, 1H), 6.11 (s, 1H), 5.26 (s, 1H), 3.46 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 166.8, 132.9, 131.0, 128.2, 127.6, 127.4, 123.9, 110.1, 91.6, 85.9, 81.4, 54.7; HRMS for C14H12O2+Na calcd 235.0735; found 235.0731.
7 Isomer: 21% yield (0.02 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 7.34-7.23 (m, 10H), 6.44 (d, J = 5.6 Hz, 1H), 6.13 (d, J = 5.6 Hz, 1H), 6.03 (s, 1H), 5.00 (s, 1H), 3.43 (s, 3H), 3.36 (s, 3H), 3.04 (s, 2H), 3.20 (d, J = 12.8 Hz, 2H), 2.81 (d, J = 12.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 166.4, 137.8, 131.9, 130.8, 127.7, 127.5, 126.3, 109.8, 93.3, 81.9, 81.4, 73.8, 58.3, 54.7, 43.2, 42.8; HRMS for C25H26O3+Na calcd 397.1780; found 397.1777.
SC
MHz, CDCl3) δ 166.1, 131.9, 127.3, 109.7, 87.5, 81.7, 75.1, 54.4, 4.5; HRMS for C9H10O2+Na calcd 173.0578; found 173.0580.
AC C
EP
2-(5-(Benzyloxy)pent-2-yn-1-ylidene)-5-methoxy-2,5dihydrofuran (12d): DATA for Major Isomer: 60% yield (0.06 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 7.37-7.25 (m, 5H), 6.35 (d, J = 5.6, 1H), 6.15 (d, J = 5.6, 1H), 6.12 (s, 1H), 4.66 (s, 1H), 4.58 (s, 2H), 3.65 (t, J = 7.2, 2H), 3.46 (s, 3H), 2.73 (t, J = 7.2, 2H); 13 C NMR (100 MHz, CDCl3) δ 164.6, 138.1, 131.7, 128.8, 128.3, 127.6, 127.5, 110.1, 91.8, 80.6, 76.5, 72.8, 68.5, 54.7, 21.3; HRMS for C17H18O3+Na calcd 293.1154; found 293.1158. Data for Minor Isomer: 20% yield (0.02 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 7.36-7.26 (m, 5H), 6.77 (d, J = 5.6 Hz, 1H), 6.18 (d, J = 5.6 Hz, 1H), 6.05 (s, 1H), 5.01 (s, 1H), 4.57 (s, 2H), 3.62 (t, J = 6.8 Hz, 2H), 3.42 (s, 3H), 2.66 (t, J = 6.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 166.5, 138.1, 132.2, 128.4, 127.7, 127.6, 127.4, 109.8, 88.5, 81.4, 77.2, 72.9, 68.6, 54.5, 21.1; HRMS for C17H18O3+Na calcd 293.1154; found 293.1158. 2-(4,4-Dibenzyl-5-methoxypent-2-yn-1-ylidene)-5-methoxy2,5-dihydrofuran (12e): Data for Major Isomer: 64% yield (0.07 g) as a yellow color oil. IR (neat) 3000, 2929, 2838, 2221, 1639; 1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 7.2 Hz, 4H), 7.34-7.24 (m, 6H), 6.36 (d, J = 5.6 Hz, 1H), 6.18 (s, 2H), 4.65 (s, 1H), 3.54 (s, 3H), 3.35 (s, 3H), 3.04 (d, J = 12.8 Hz, 2H), 3.04 (s, 2H), 2.88 (d, J = 12.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 164.8, 137.8, 131.6, 130.9, 129.0, 127.6, 126.2, 110.0, 96.6, 81.1, 80.7, 73.6, 58.3, 54.7, 43.2, 42.83, 42.79; HRMS for C25H26O3+Na calcd 397.1780; found 397.1777. Data for Minor
4.
5.
6.
7.
8.
9.
ACCEPTED MANUSCRIPT 8
Tetrahedron Supplementary Material
AC C
EP
TE D
M AN U
SC
RI PT
General experimental procedures and copies of 1H NMR and 13C NMR spectra for all the new compounds synthesized are provided.
ACCEPTED MANUSCRIPT
Supporting Information Gold Catalyzed Intramolecular Hydroalkoxylation Assisted Ring Opening of Furans to the Corresponding Saturated γ-Keto Esters
RI PT
Chinta Nagaraju and Kavirayani R. Prasad*
SC
Department of Organic Chemistry Indian Institute of Science, Bangalore 560 012, INDIA E-mail:
[email protected]; FAX:0091-80-23600529
1. 1H and 13CNMR Spectra……………………..……………………………..……....…S2
AC C
EP
TE D
M AN U
2. ORTEP diagram of the compound 6j ………………………………………………S52
S1
0.049
0.897
1.179
2.053
3.449
ACCEPTED MANUSCRIPT
4
3
1
0
ppm
-5.427
18.332
25.874 25.287
33.325
AC C
EP
TE D
77.319 77.001 76.684 71.103 68.072
H NMR spectrum of compound 4a 90.568
1
2
6.433
5
9.918
6
6.465
7
1.000
8
2.100
9
M AN U
SC
RI PT
TBSO
190
180
170
160
150
140
130 13
120
110
100
90
80
70
60
50
40
30
20
10
0
C NMR spectrum of compound 4a
S2
ppm
AC C EP TE D
190
180
170
160
150
8 7
1
6
H NMR spectrum of compound 3a
140
13
130
120
110
100
90
80
70
60
50
40
30
20
10
6.356
9.840
6.586
2
-5.469
18.282
3
25.821 25.188
33.521
4
1.005
2.189
5
58.215
77.540 77.315 76.998 76.680 71.038
92.352
1.004
M AN U 110.205 107.619
1.012 1.022
1.000
9
142.841
153.651
SC
RI PT
0.043
0.891
1.198
2.311 2.294
3.462
5.431 5.414
6.439 6.431 6.327
7.388 7.257
ACCEPTED MANUSCRIPT
1 ppm
0
C NMR spectrum of compound 3a
S3
ppm
AC C
210
200
EP TE D
8
190
180
170 7
1
160 6
H NMR spectrum of compound 6a
150 13
140
130
120
110
100
90
80
70
60
50
40
28.146 25.213
37.843 37.792 6.317
3
45.681
51.621
4
2.063 2.114 2.125
2.070 3.107
5
82.223 77.315 76.997 76.679
M AN U 1.000
9
98.549
177.007 173.660
197.285
SC
RI PT
1.092
2.898 2.724 2.707 2.690 2.569 2.552 2.536
3.847 3.652
5.757 5.755
7.264
ACCEPTED MANUSCRIPT
2 1
30
ppm
20
10 ppm
C NMR spectrum of compound 6a
S4
AC C EP TE D
180
170
160
150 7
1
140
130 13
120 88.727
8 6
H NMR spectrum of compound 4b
110
100
90
80
70
60
50
40
30
20
10
-5.464 -5.497
6.104
2 9.201
3
3.242
4
1.074 2.024
2.093
5
41.593 36.954 29.282 27.421 25.847 23.332 18.295 13.736 8.738
77.320 77.003 76.686 69.672 69.145
2.047
M AN U
1.000
9
117.553
134.690
SC
RI PT
0.056
3.540 3.517 3.459 3.436 2.333 2.314 2.299 2.281 2.175 2.157 2.142 2.122 2.111 1.167 0.907
7.264 5.980 5.962 5.954 5.940 5.936 5.921 5.915 5.904 5.894 5.876 5.111 5.085 5.069
ACCEPTED MANUSCRIPT
1 0 ppm
0
C NMR spectrum of compound 4b
S5
ppm
AC C EP
190
180
170
TE D 1
160
150
140 1.022 1.038
7 6
H NMR spectrum of compound 3b
130 13
120
110
100
90
80
70
60
50
40
30
20
-5.483 -5.514
10
6.215
2 9.928
3.209
3
25.816 23.195 18.263
1.065 2.100
4
41.654 37.165
2.211
2.152
1.011
1.062
5
58.259
79.248 77.317 76.999 76.681 69.085
90.686
110.247 107.632
M AN U
117.676
8
134.662
1.000
9
142.871
153.630
SC
RI PT
0.049
3.552 3.546 3.529 3.522 3.475 3.451 2.358 2.340 2.324 2.306 2.229 2.211 2.196 2.178 2.163 2.144 1.182 0.900
6.447 6.440 6.341 5.954 5.933 5.907 5.887 5.449 5.432 5.111 5.083 5.071
7.400 7.264
ACCEPTED MANUSCRIPT
1 ppm
0
C NMR spectrum of compound 3b
S6
ppm
AC C
200
EP TE D
190 8
180
170 7
1
160 6
H NMR spectrum of compound 6b
150
13
140
130
120
110
100
90
80
70
60
50
3.081
2
40
30
23.160
3
28.169
2.093
4
2.055 2.052 2.017
1.031 1.041 3.048
2.082
5
51.630 43.996 42.762 41.062 37.821
80.461 77.319 77.001 76.683
98.528
118.668
M AN U 2.000
9
133.513
176.722 173.640
197.247
SC
RI PT
5.777 5.759 5.735 5.716 5.692 5.674 5.090 5.085 5.068 5.040 3.975 3.953 3.829 3.808 3.659 2.995 2.949 2.921 2.875 2.728 2.712 2.695 2.578 2.561 2.544 2.141 2.122 1.074
7.263
ACCEPTED MANUSCRIPT
1 ppm
20
10 ppm
C NMR spectrum of compound 6b
S7
AC C EP TE D
180
170
160
150
140
8 7
1
130 13
6
H NMR spectrum of compound 4c
120
110
100
90
80
70
60
50
40
30
20
10
6.404
2
-5.388 -5.463
3.185 9.828
3
25.896 23.641 18.324
1.000
4
2.161
5
42.567 38.173
77.317 77.000 76.682 70.782 68.448
M AN U 2.172
9
88.649
5.644
10
130.668 127.632 126.301
137.771
SC
RI PT
0.093 0.087
1.189 0.959
2.140
3.496 3.473 3.426 3.402 2.873 2.841 2.744 2.712
7.330 7.314 7.311 7.306 7.303 7.287 7.282 7.267 7.265 7.253 7.236
ACCEPTED MANUSCRIPT
1 ppm
0
C NMR spectrum of compound 4c
S8
ppm
AC C EP
TBSO OH
190
180
O
Ph
170
160
TE D
8
150
140 7
1 6
H NMR spectrum of compound 3c
130 13
120
110
100
90
80
70
60
50
40
30
20
6.636
2
-5.396 -5.473
3.295 10.315
0.946
3
25.874 23.569 23.539 18.302
42.634 38.403
4
1.115 1.089
2.296
1.000
5
58.254
80.301 77.320 77.002 76.685 68.375 68.345
90.619
110.247 107.607
M AN U
2.031
9
130.675 127.660 126.303
6.023
10
137.789
SC
RI PT
TBSO
142.825
153.414
10
0.082
0.950
1.204
3.514 3.501 3.490 3.478 3.442 3.436 3.418 3.413 2.901 2.869 2.734 2.701 2.168 2.152
5.426 5.423 5.409
6.337
7.415 7.295 7.276 7.265 7.256 7.236
ACCEPTED MANUSCRIPT
OH O
Ph
1 ppm
0
C NMR spectrum of compound 3c
S9
ppm
AC C
200
EP
190
Ph O
180
O
170
160 7
1 6
H NMR spectrum of compound 6c
150
13
140
130
120
110
100
90
80
70
60
3.081
2
50
40
30
23.029
3
28.128
4
4.118 2.129
2.086
1.059 3.049
1.044
5
51.654 43.923 43.878 42.286 37.807
79.972 77.321 77.003 76.685
98.765
M AN U 1.000
8
129.947 128.252 126.557
9
137.289
3.264 2.095
SC
RI PT
O
OMe
O
TE D
176.452 173.636
197.243
1.045
4.073 4.051 3.800 3.779 3.677 3.069 3.024 2.958 2.912 2.744 2.728 2.711 2.689 2.597 2.580 2.564
5.779
7.301 7.284 7.265 7.245 7.227 7.113 7.095
ACCEPTED MANUSCRIPT
Ph O OMe
O
1 ppm
20
ppm
C NMR spectrum of compound 6c
S10
AC C EP TE D
190
180 8
170
160 7
1
150
140 6
H NMR spectrum of compound 4d
130 13
120
110
100
90
80
70
60
50
40
30
20
10
6.428
9.488
2
-5.564
18.227
3
25.813
4
5.216
2.080
5
40.488 39.920
77.317 76.999 76.682 71.347 65.868
86.745
4.074
M AN U
2.000
9
117.781
134.411
SC
RI PT
0.046
0.908
2.321 2.302 2.288 2.269 2.234 2.217 2.200 2.183 2.166
3.494
5.983 5.965 5.956 5.943 5.938 5.924 5.917 5.907 5.897 5.879 5.123 5.097 5.082
7.267
ACCEPTED MANUSCRIPT
1 ppm
0
C NMR spectrum of compound 4d
S11
ppm
AC C EP
180
TE D
170
160
150
140 7
1 6
H NMR spectrum of compound 3d
130 120 13
110
100
90
80
70
60
50
40
30
20
10
6.269
9.562
2
-5.561
18.215
3
25.801
2.120 3.131
2.138
4
40.705 39.938
58.254
4.204
5
65.831
80.970 77.321 77.003 76.686
88.863
1.013
2.086
M AN U
1.016 1.027
8
110.283 107.649
117.917
1.000
9
134.402
10
142.900
153.558
SC
RI PT
0.043
0.904
2.346 2.327 2.312 2.293 2.260 2.242 2.225 2.208
3.510
7.409 7.408 7.267 6.451 6.443 6.356 6.351 6.349 6.344 5.975 5.957 5.937 5.932 5.918 5.910 5.890 5.872 5.467 5.449 5.125 5.096 5.085
ACCEPTED MANUSCRIPT
1 ppm
0
C NMR spectrum of compound 3d
S12
ppm
AC C
200
EP TE D
190 8
180
170 7
1
160
150 6
H NMR spectrum of compound 6d
140 13
130
120
110
100
90
80
70
60
50
3
40
28.176
4.067
2.034 2.046
4
2.000
3.039
2.047
4.135
5
51.638 44.238 41.999 40.426 37.810
78.523 77.317 76.999 76.681
98.352
119.005
M AN U 3.022
9
133.099
176.637 173.633
197.227
SC
RI PT
3.954 3.666 2.985 2.981 2.733 2.716 2.699 2.585 2.569 2.552 2.163 2.144
5.778 5.752 5.741 5.734 5.717 5.711 5.699 5.692 5.673 5.117 5.108 5.093 5.066
7.267
ACCEPTED MANUSCRIPT
2 1
30
20
ppm
10
C NMR spectrum of compound 6d
S13
ppm
AC C EP TE D
180
170
160
150
140 7 6
1
H NMR spectrum of compound 4e
130
13
120
110
100
90
80
70
60
50
40
30
20
6.275
9.628
2
-5.485
18.260
1.000
3
25.981
43.125 41.714
4
2.109 2.131
5
64.542
M AN U 2.109
8
86.131 77.321 77.003 76.686 74.172
4.139 6.542
9
130.876 127.607 126.389
137.504
SC
RI PT
0.084
1.029
2.209
3.336 2.967 2.935 2.799 2.767
7.375 7.357 7.309 7.292 7.274 7.264 7.247 7.229
ACCEPTED MANUSCRIPT
1 0
10
0
C NMR spectrum of compound 4e
S14
ppm
ppm
AC C EP TE D
180
170
160
150 1
140
130 13
120 6
H NMR spectrum of compound 3e
110
100
90
80
70
60
50
40
30
20
6.271
9.522
2
-5.503
18.202
3
25.933
0.983
2.085 2.073
2.048
4
43.304 41.666
58.151
5
64.339
88.295 83.605 77.318 76.999 76.682
M AN U 1.000
7
110.214 107.491
8 0.998 1.013
9
137.482 130.825 127.611 126.381 126.358
1.003 4.134 6.413
10
142.691
153.212
SC
RI PT
0.142
1.087
2.288
3.404 3.046 3.013 2.862 2.830
5.431 5.414
6.376 6.372 6.269
7.449 7.383 7.369 7.305 7.287
ACCEPTED MANUSCRIPT
1 ppm
10
0
C NMR spectrum of compound 3e
S15
ppm
AC C
200
EP TE D
190 8
180
170
160 7
1 6
H NMR spectrum of compound 6e
150 140 13
130
120
110
100
90
80
4
70
3
60
50
40
28.210
2.035 4.074 2.105 2.101
3.000
2.002
5
51.693 46.442 42.189 40.491 37.800
77.319 77.002 76.684 76.467
98.573
M AN U 1.000
6.607 4.160
9
136.766 130.456 128.341 126.723
176.165 173.648
197.118
SC
RI PT
3.075 2.750 2.692 2.676 2.660 2.598 2.582 2.565
3.695
4.026
5.606
7.311 7.294 7.276 7.264 7.246 7.119 7.101
ACCEPTED MANUSCRIPT
2 1
30
20
ppm
10 ppm
C NMR spectrum of compound 6e
S16
AC C EP
TBSO
MeO
190
180
OMe
170
160
150
TE D 1
140 7 6
H NMR spectrum of compound 4f
130 13
120
110
100
90
80
70
60
50
40
30
20
6.400
9.351
2
-5.465
18.246
3
25.973
1.000
4
2.071 2.183
2.079
SC
RI PT
OMe
43.319 40.733
55.136
5
64.468
86.490 77.317 77.000 76.682 73.941
M AN U 6.367
8
113.005
9 4.233
4.306
MeO
131.744 129.627
158.192
0.080
1.018
2.192
3.315 2.884 2.851 2.720 2.687
3.808
7.279 7.267 7.257 6.839 6.818
ACCEPTED MANUSCRIPT
TBSO
1 ppm
10
0
C NMR spectrum of compound 4f
S17
ppm
AC C EP
190
180
170
160
150
140
TE D
130 13
120 1.000
7 6
H NMR spectrum of compound 3f
110
100
90
80
70
60
50
40
30
20
6.191
9.431
2
-5.450
18.234
3
25.959
0.981
2.082 2.067
2.054
4
43.570 40.728
58.253 55.156
6.240
5
64.346
88.775 83.430 77.317 77.000 76.682
M AN U
113.049 110.250 107.538
1 1.005 1.005
4.131
8
131.747 131.734 129.654
1.005 4.403
9
142.753
158.215 158.197 153.305
SC
RI PT
0.084
1.017
3.796 3.326 2.912 2.905 2.879 2.872 2.732 2.700 2.184 2.167
7.428 7.267 7.250 7.233 7.229 7.213 6.811 6.801 6.795 6.790 6.780 6.352 6.348 6.345 6.340 6.250 6.242 5.399 5.382
ACCEPTED MANUSCRIPT
1 ppm
10
0
C NMR spectrum of compound 3f
S18
ppm
AC C
200
EP
190
180
MeO
MeO
O
170
160 1
150
140 13 1.000
8 7 6
H NMR spectrum of compound 6f
130
120
110
100
RI PT
O
4
90
3
80
70
60
50
40
28.248
SC
OMe
6.129 2.418
5
2.093
2.112 6.605 3.323
O
55.217 51.674 46.622 41.261 40.411 37.812
77.316 76.999 76.681 76.589
98.494
113.746
M AN U
131.406 128.842
4.537 4.694
9
O
OMe
TE D
158.419
176.418 173.648
197.112
3.035 2.692 2.674 2.660 2.598 2.582 2.565
3.997 3.797 3.694
5.608
7.267 7.028 7.007 6.837 6.816
ACCEPTED MANUSCRIPT
MeO
MeO O
2 1
30
ppm
O
20
10 ppm
C NMR spectrum of compound 6f
S19
AC C EP TE D 88.735
2.287
9 8
180
170 7
160
150 6
1
140
H NMR spectrum of compound 4g
130 13
120
110
100
90
80
70
60
50
40
30
20
6.979
1.147 12.555
2.232
7.961
2
-5.404
33.398 26.013 25.907 22.657 18.365
3
39.241
4
1.000
5
77.318 77.001 76.683 71.239 70.272
M AN U
SC
RI PT
2.108 1.682 1.644 1.639 1.627 1.618 1.610 1.588 1.397 1.385 1.364 1.354 1.332 1.319 1.119 1.109 1.088 0.903 0.053
3.482
7.265
ACCEPTED MANUSCRIPT
1 0
10 ppm
0
C NMR spectrum of compound 4g
S20
ppm
AC C EP
180
170
TE D
160
150
140 6
1
130
13
120
110
100
90
80
70
60
50
40
30
20
-5.428
6.480
2 10.370
2.973
7.438
3
33.428 26.012 25.873 22.825 18.330
0.984
4
39.425
1.996
5
58.338
79.922 77.316 76.999 76.681 71.150
90.682
1.006
7
H NMR spectrum of compound 3g
M AN U
110.235 107.605
8 0.948 1.020
1.000
9
142.835
153.900
SC
RI PT
2.258 1.682 1.648 1.633 1.623 1.616 1.401 1.391 1.372 1.362 1.348 1.333 0.900 0.051
3.500
5.474 5.458
6.476 6.469 6.345 6.343
7.402
ACCEPTED MANUSCRIPT
1 ppm
10
0
C NMR spectrum of compound 3g
S21
ppm
AC C EP
O
200
190
O
180
170 98.396
9 8 7
1
160 6
H NMR spectrum of compound 6g
150 13
140
130
120
110
100
90
80
70
60
12.901
3
50
41.831 37.836 34.734 28.223 25.610 23.267
4
2.023 2.142 2.161
1.000
3.125
2.051
5
51.673
77.315 76.998 76.680
M AN U 1.036
SC
RI PT
O
OMe
O
TE D
10
177.089 173.728
197.278
1.661 1.513 1.450
3.938 3.678 3.328 2.951 2.742 2.725 2.708 2.595 2.578 2.561
5.758
7.265
ACCEPTED MANUSCRIPT
O
O OMe
2 1
40
30
ppm
20
10 ppm
C NMR spectrum of compound 6g
S22
180
TE D
170
160 7
150
140 6
1
H NMR spectrum of compound 4h
130 13
120
110
100
90
80
70
60
50
40
30
20
-5.398
6.017
2 9.301
2.622
6.170 5.707
3
36.196 29.053 25.972 25.885 25.163 18.339
4
44.203
5
1.128
M AN U 2.000
8
77.317 77.000 76.683 68.310 68.095
EP
9
91.169
AC C
SC
RI PT
10
0.063
2.084 1.767 1.629 1.619 1.306 1.269 1.240 1.229 0.904
3.546
7.265
ACCEPTED MANUSCRIPT
1 0 ppm
0
C NMR spectrum of compound 4h
S23
ppm
AC C EP
180
TE D
170
160
150 6
1
140
130 120 13
110
100
90
80
70
60
50
40
30
20
-5.426
6.490
10.089
2
18.305
25.850 25.153
6.465 3.150
0.966
3
36.142
44.389
4
58.339
2.179
5
77.563 77.316 76.999 76.681 68.271
92.985
1.001
7
H NMR spectrum of compound 3h
M AN U
110.214 107.588
8 1.012 1.035
1.000
9
142.824
153.821
SC
RI PT
0.055
0.897
2.251 2.235 1.777 1.673 1.637 1.627
3.557
5.442 5.429
6.445 6.437 6.341 6.337 6.334 6.329
7.396 7.265
ACCEPTED MANUSCRIPT
1 0
10 ppm
0
C NMR spectrum of compound 3h
S24
ppm
AC C
200
EP TE D
190 8
180
170 7
1
160
H NMR spectrum of compound 6h
150 13
140
130
120
110
100
90
80
70
60
50
40
28.214 24.382
9.194
3
37.854 36.145
51.649 48.842 44.000
2.094 2.291
4
2.053
5
3.220
2.055
6
80.978 77.316 76.998 76.680
M AN U 1.000
9
98.303
177.104 173.689
197.315
SC
RI PT
3.984 3.671 3.023 3.020 2.742 2.725 2.708 2.588 2.571 2.555 1.688 1.679 1.664 1.657 1.650 1.635 1.628 1.608 1.602 1.597
5.766
7.265
ACCEPTED MANUSCRIPT
2 1
30
20
ppm
10 ppm
C NMR spectrum of compound 6h
S25
AC C EP TE D
190
180
170
160
150
140 7 6
1
H NMR spectrum of compound 3i
130 13
120
110
100
90
80
70
60
50
40
2
30
20
6.252
9.874
3
-5.317
25.857 23.145 18.305
4
2.114 0.973
2.133
5
61.631 58.306
83.811 78.572 77.321 77.004 76.686
1.000
M AN U 110.309 107.540
8 1.011 1.076
1.065
9
142.856
153.389
SC
RI PT
10
0.075
0.900
2.514 2.509 2.496 2.492 2.479 2.474 2.300 2.286
3.779 3.761 3.743
5.449 5.435
6.440 6.433 6.352 6.348 6.340
7.406 7.267
ACCEPTED MANUSCRIPT
1 ppm
0
C NMR spectrum of compound 3i
S26
ppm
AC C
210
200
EP TE D
9
190 8
180
170 7
1
160
H NMR spectrum of compound 6i
150 13
140
130
120
110
100
90
80
70
60
50
40
30.911 28.114 23.550
2.692
3
37.692
51.540
4
2.487 2.536
2.012
5
3.779
2.000
6
77.232 76.914 76.596 71.527
M AN U 0.966
10
97.529
176.886 173.586
197.142
SC
RI PT
4.226 4.209 4.191 3.660 3.110 3.090 3.071 2.729 2.713 2.696 2.589 2.572 2.556 2.105 2.087 2.068 2.050 2.032
5.784
7.267
ACCEPTED MANUSCRIPT
2 1
30
20
ppm
10
C NMR spectrum of compound 6i
S27
ppm
180
170
160
150
140
TE D 2.106
4.177 7 6
1
H NMR spectrum of compound 4j
130
13
120
110
100
90
80
70
60
50
40
30
20
6.312
9.451
2
-5.370
18.308
3
25.832
1.000
4
44.224 42.465
5
4.190
M AN U
126.451 124.516
8
77.316 76.999 76.681 68.442 67.870
EP 141.381
9
89.832
AC C
SC
RI PT
0.075
0.899
2.123
3.634 3.234 3.195 3.172 3.133
7.267 7.215 7.205 7.193 7.188 7.179 7.168 7.157
ACCEPTED MANUSCRIPT
1 0
10
0
C NMR spectrum of compound 4j
S28
ppm
ppm
AC C EP
180
170
TE D
160
150
140 6
1
H NMR spectrum of compound 3j
130 13
120
110
100
90
80
70
60
50
40
30
20
-5.411
6.332
10.147
2
18.279
3
25.800
1.201
4
44.331 42.453
4.182
2.178
5
58.302
77.788 77.320 77.002 76.685 67.870
91.792
M AN U 1.000
7
110.229 107.689
8
126.477 124.535
1.078 4.182
9
142.857 141.328
153.520
SC
RI PT
0.042
0.871
2.255 2.232 2.226
3.623 3.225 3.184 3.178 3.138
7.392 7.267 7.200 7.189 7.177 7.168 7.156 7.145 6.389 6.381 6.328 6.324 6.316 5.442 5.425
ACCEPTED MANUSCRIPT
1 ppm
10
0 ppm
C NMR spectrum of compound 3j
S29
AC C
200
EP TE D
190
180
170
160 7
1 6
H NMR spectrum of compound 6j
150
13
140
130
120
110
100
90
80
4
70
3
60
50
40
28.152
2.113 4.461 2.069 2.191
3.202
2.118
5
51.680 49.589 43.639 42.667 37.895
81.039 77.321 77.003 76.685
98.796
M AN U 1.000
8
126.732 124.612
4.425
9
141.283
176.221 173.678
197.346
SC
RI PT
0.003
3.680 3.211 3.208 2.986 2.774 2.757 2.740 2.597 2.581 2.564
4.113
5.848
7.267 7.195 7.184 7.172 7.165 7.154 7.142
ACCEPTED MANUSCRIPT
2 1
30
20
ppm
10 ppm
C NMR spectrum of compound 6j
S30
AC C EP TE D
180
9
170
8
1
160
150
140
130 13
7 6
H NMR spectrum of compound 4k
120
110
100
90
80
70
60
50
40
19.465
2.989
3 1.037
0.980
4
2.071 2.120
5
49.566 44.063 42.844
77.320 77.002 76.685 72.657 70.325
87.967
M AN U 1.000
4.297
10
126.690 126.603 124.575 124.355
141.205 140.989
SC
RI PT
1.339 1.323
2.171 1.919 1.900
3.809 3.793 3.777 3.761 3.745 3.284 3.160 3.121 3.080 3.040
7.268 7.224 7.213 7.188 7.166
ACCEPTED MANUSCRIPT
2 1
30
ppm
C NMR spectrum of compound 4k
20
ppm
S31
AC C EP TE D
190
180
170 8
1
160
150 7
140 130 13 6
H NMR spectrum of compound 3k
120
110
100
90
80
70
60
50
40
19.522
3.141
3 0.831
0.939
4
49.711 44.151 42.819 42.757
2.710 2.249
1.015
1.000
5
58.030
89.959 89.904 79.562 77.318 77.000 76.683 72.968 72.867
110.295 107.594 107.530
M AN U
2.015
9
126.680 126.587 124.592 124.363
1.021 4.090
10
142.804 141.276 141.041
153.390 153.333
SC
RI PT
3.789 3.775 3.330 3.289 3.277 3.235 3.154 3.143 3.115 3.104 3.067 3.057 3.027 3.017 2.558 1.861 1.335 1.320
5.413 5.403
6.309 6.279
7.371 7.268 7.176
ACCEPTED MANUSCRIPT
2 1
30
ppm
C NMR spectrum of compound 3k
20
10 ppm
S32
AC C
200
EP TE D
190
8
1
180
170
160
7
150 140 13
6
H NMR spectrum of compound 6j
130
120
110
100
90
80
70
60
3 2
50
40
30
15.714
3.471
4
28.157
2.163 2.477 2.481 2.744 2.166
2.983
1.125
5
52.026 51.664 44.462 42.784 38.289 37.875
85.648 77.316 76.999 76.681
98.587
M AN U 1.000
9
126.722 126.643 124.532 124.480
5.199
10
141.325 140.898
175.069 173.709
197.397
SC
RI PT
4.428 4.413 4.397 4.381 3.672 3.334 3.307 3.261 3.107 3.061 3.021 2.930 2.757 2.741 2.724 2.580 2.564 2.547 1.241 1.225
5.803
7.267 7.160
ACCEPTED MANUSCRIPT
1 ppm
20
ppm
C NMR spectrum of compound 6j
S33
AC C EP
180
170
160
150
TE D
140 1
130 13
120 1.002
7 6
H NMR spectrum of compound 3l
110
100
90
80
70
60
50
40
30
20
10
-5.495
6.346
2 9.628
3
3.631 4.207 1.108 3.148
1.005 2.080
4
37.328 37.207 25.817 25.681 23.656 23.630 18.264 17.593
2.155
1.039
5
58.268
79.019 77.317 76.999 76.681 69.259
91.072
M AN U
110.232 107.572
1.012 1.012
8
124.355
131.525
1.000
9
142.847
153.653
SC
RI PT
3.567 3.559 3.543 3.536 3.485 3.462 2.241 2.224 2.121 2.101 2.082 1.682 1.605 1.577 1.566 1.524 1.425 1.396 1.350 1.197 0.894 0.049
5.453 5.436 5.148 5.131 5.114
6.441 6.434 6.337
7.395 7.263
ACCEPTED MANUSCRIPT
1 ppm
0
C NMR spectrum of compound 3l
S34
ppm
AC C
200
EP
8
O
190
180 7
O
170
160 6
1
150
13
140 5
H NMR spectrum of compound 6l
130
120
110
100
90
80
70
2
60
50
40
3.189
3
2.215 3.255 3.256 2.210
1.066 1.128 2.167 2.256
2.066 3.301
1.027
4
51.673 44.499 41.195 38.709 37.831 28.200 25.621 23.657 23.045 17.596
81.348 77.316 76.998 76.680
98.454
123.664
M AN U
1.000
9
132.071
SC
RI PT
O
O
OMe
TE D
177.008 173.707
197.332
5.058 5.043 5.026 3.928 3.906 3.877 3.855 3.672 3.038 2.992 2.869 2.824 2.741 2.724 2.708 2.589 2.572 2.555 1.979 1.958 1.937 1.663 1.579 1.450 1.429 1.408 1.073
5.767
7.257
ACCEPTED MANUSCRIPT
O OMe
O
1 0
30
20
ppm
10
C NMR spectrum of compound 6l
S35
ppm
AC C EP TE D
190
180
170
160
150 8 7
1
140
13
130 6
H NMR spectrum of compound 11a
120
110
100
90
80
70
60
3.578
3
50
3.116
4
1.007
5
58.169
82.337 77.316 76.999 76.681 76.594
1.000
M AN U 110.262 107.330
9 0.992 1.007
0.992
10
142.746
153.455
SC
RI PT
1.899 1.895
2.556
5.421 5.410
6.418 6.410 6.337
7.394
ACCEPTED MANUSCRIPT
2
40
1
30
20
ppm
10
C NMR spectrum of compound 11a
S36
ppm
6
5
2.040 2.035 3
2
1
ppm
4.913
54.782
80.946 77.315 76.998 76.680 74.600
91.134
110.127
AC C
EP
TE D
131.431 128.834
H NMR spectrum of compound 12a (Major isomer)
164.297
1
4
3.824
7
4.207
8
1.000
9
1.175 2.211
10
M AN U
SC
RI PT
3.473
4.642 4.637
6.347 6.334 6.125
7.268
ACCEPTED MANUSCRIPT
180
170
160
150 13
140
130
120
110
100
90
80
70
60
50
40
30
20
10
C NMR spectrum of compound 12a (Major isomer)
S37
ppm
1.975
4
3
2
1
ppm
4.516
54.441
87.503 81.723 77.315 76.997 76.680 75.144
109.726
127.345
AC C
EP
TE D
131.958
H NMR spectrum of compound 12a (Minor Isomer)
166.107
1
5
3.433
6
3.380
7
1.000
8
1.104 1.077
9
1.081
10
M AN U
SC
RI PT
3.411
4.992
6.181 6.167 6.043
6.789 6.774
ACCEPTED MANUSCRIPT
180
170
160
150 13
140
130
120
110
100
90
80
70
60
50
40
30
20
10
C NMR spectrum of compound 12a (Minor Isomer)
S38
ppm
AC C EP
190
TE D
180
170 8
1
160
150
140 13 7
130 6
H NMR spectrum of compound 11b
120
110
100 4
90
80
70
1.005
1.000
5
58.571
86.136 85.700 77.319 77.001 76.683
110.383 107.825
M AN U
1.012 1.013
9
131.772 128.723 128.269 122.040
2.081 1.017 3.093
10
143.023
152.883
SC
RI PT
2.508 2.496
5.712 5.698
6.542 6.535 6.391
7.504 7.485 7.455 7.348 7.333
ACCEPTED MANUSCRIPT
3
60
2
50
40
1
30 ppm
20
10 ppm
C NMR spectrum of compound 11b
S39
AC C EP TE D
190
9
180
8
1
170
160 150 13
140
7
130
6
H NMR spectrum of compound 12b (Major isomer)
120
110
100
3.142
1.000
5
4
90
80
70
55.014
85.035 80.494 77.320 77.002 76.684
94.486
110.314
M AN U
1.033 1.019 1.029
2.059 3.228
10
132.452 131.311 128.831 128.143 127.715 123.870
165.012
SC
RI PT
3.521
4.910
7.490 7.472 7.328 7.313 7.295 7.280 6.423 6.409 6.226 6.212 6.172
ACCEPTED MANUSCRIPT
3 2
60
50
40
1
30
20
ppm
10 ppm
C NMR spectrum of compound 12b (Major isomer)
S40
AC C EP TE D
190
180
170 8
1
160
150 13
140
130 7 6
H NMR spectrum of compound 12b (Minor isomer)
120
110
100
90
3.253
1.000
5
4
80
70
60
54.664
85.861 81.413 77.314 76.996 76.678
91.597
110.073
M AN U
1.066 1.057
9 1.051
2.162 3.303
10
132.939 130.978 128.246 127.586 127.406 123.902
166.836
SC
RI PT
3.462
5.266
7.434 7.417 7.332 7.316 7.297 7.280 7.268 6.915 6.900 6.286 6.271 6.112
ACCEPTED MANUSCRIPT
3 2
50
40
1
30
20
ppm
10 ppm
C NMR spectrum of compound 12b (Minor isomer)
S41
AC C EP TE D
190
180
170 8
1
160
150
140 13 7
H NMR spectrum of compound 11c
130
120
110
100
90
80
70
60
50
40
30
3.181
2
20
13.423
21.823 20.639
3 2.079
4
1.030 2.082
5
58.234
6
86.670 77.560 77.317 76.999 76.681
1.000
M AN U 110.252 107.373
9 1.002 1.008
0.987
10
142.771
153.624
SC
RI PT
2.440 2.436 2.426 2.265 2.247 2.230 1.614 1.596 1.578 1.560 1.542 1.524 1.019 1.000 0.982
5.454 5.438
6.430 6.424 6.340
7.398 7.267
ACCEPTED MANUSCRIPT
1 ppm
10 ppm
C NMR spectrum of compound 11c
S42
AC C EP TE D
9
190
180 8
170 7
1
160
13
150
140
130 6
H NMR spectrum of compound 12c (Major isomer)
120
110
100
90
80
70
60
50
40
3.237
2
30
20
13.486
22.261 21.922
3
2.325
4
2.109
3.225
1.000
5
54.786
81.028 77.320 77.002 76.684 75.531
95.632
M AN U 110.046
1.064 2.032
10
131.351 128.837
164.254
SC
RI PT
2.390 2.386 2.373 2.369 2.355 1.629 1.611 1.593 1.575 1.557 1.026 1.007 0.989
3.469
4.662
6.345 6.332 6.128 6.114
7.268
ACCEPTED MANUSCRIPT
1 0 ppm
10 ppm
C NMR spectrum of compound 12c (Major isomer)
S43
AC C EP TE D
190
180
170 1
160
150 13 7
140
130 6
H NMR spectrum of compound 12c (Minor isomer)
120
110
100
90
80
70
60
50
40
30
3.335
2
13.524
22.371 21.665
3 2.490
4
2.235
3.189
0.918
5
54.420
81.828 77.316 76.998 76.680 76.140
92.123
M AN U 109.743
8 1.065 1.025
1.000
9
127.410
10
131.901
166.042
SC
RI PT
2.330 2.327 2.314 2.296 1.606 1.587 1.569 1.551 1.533 1.018 1.000 0.981
3.414
5.023
6.182 6.168 6.051
6.790 6.776
7.267
ACCEPTED MANUSCRIPT
1 ppm
20
ppm
C NMR spectrum of compound 12c (Minor isomer)
S44
AC C EP
190
TE D
180
170
160
150 7
140 130 13 6
H NMR spectrum of compound 11d
120
110
100
90
80
70
4
60
20.145
3.122
2.103
2.190
5
58.178
83.392 78.617 77.319 77.002 76.684 72.918 68.006
1.000
M AN U
0.991 1.056
8
110.295 107.544
1
128.391 127.699
1.075 5.519
9
137.870
10
142.819
153.313
SC
RI PT
2.613 2.597 2.580
3.645 3.628 3.611
4.565
5.452 5.436
7.406 7.360 7.349 7.320 7.311 7.299 6.436 6.429 6.343
ACCEPTED MANUSCRIPT
3 2
50
40
1
30
20
ppm
10
C NMR spectrum of compound 11d
S45
ppm
AC C EP TE D
190
9
180
170
8
1
160
150 13
140
7
130
6
H NMR spectrum of compound 12d (Major isomer)
120
110
100
90
80
70
60
21.315
4
2.088
2.096 3.127
1.000 2.071
5
54.751
80.617 77.318 76.999 76.682 76.497 72.864 68.470
91.800
110.096
M AN U
1.014 2.017
4.181 1.164
10
138.103 131.691 128.799 128.314 127.642 127.555
164.564
SC
RI PT
2.751 2.733 2.720
3.672 3.654 3.636 3.462
4.665 4.580
7.364 7.349 7.331 7.301 7.293 7.287 7.269 6.353 6.339 6.153 6.139 6.124
ACCEPTED MANUSCRIPT
3 2
50
40
1
30
20
ppm
10
C NMR spectrum of compound 12d (Major isomer)
S46
ppm
AC C EP TE D
190
180 8
1
170
160
150 13
140
130
7 6
H NMR spectrum of compound 12d (Minor isomer)
120
110
100
90
80
70
60 21.093
3
50
2.332
4
2.362
2.637 3.636
2.500
1.000
5
54.482
88.522 81.444 77.317 77.190 77.000 76.682 72.918 68.606
109.811
M AN U
1.101 1.091
9 0.990
6.255
10
138.092 132.175 128.376 127.673 127.637 127.436
166.464
SC
RI PT
2.680 2.666 2.662 2.649
3.638 3.621 3.603 3.421
4.573
5.013
7.363 7.352 7.314 7.305 7.294 7.268 6.777 6.763 6.185 6.171 6.055
ACCEPTED MANUSCRIPT
2
40
1
30
20
ppm
10 ppm
C NMR spectrum of compound 12d (Minor isomer)
S47
AC C EP TE D
180
170 1
160
150
140
130 13
7
120
110
100
90
80
70
60
50
1.000
4
42.453 42.071
5
58.418
6
77.318 77.001 76.683 73.768
3.035 2.012 2.043 2.226
8
85.952
9
H NMR spectrum of compound 4m
M AN U
10.359
10
130.798 127.717 126.443
137.299
SC
RI PT
2.245
3.374 3.067 3.018 2.985 2.850 2.818
7.366 7.349 7.322 7.303 7.289 7.271
ACCEPTED MANUSCRIPT
3 2
40
30
1 ppm
20
10 ppm
C NMR spectrum of compound 4m
S48
AC C EP
190
TE D
180
170
160 7
150
140 13
130 6
H NMR spectrum of compound 11e
120
110
100
90
80
70
60
0.981
4
42.354 42.272
3.044 2.046 2.092 2.062
5
58.359 58.119
88.026 83.267 77.319 77.001 76.684 73.576
1.000
M AN U 110.222 107.497
1
0.998 0.995
8
130.768 127.727 126.421
1.057 10.488
9
137.305
10
142.698
153.233
SC
RI PT
3.374 3.089 3.049 3.016 2.868 2.836 2.474
5.426 5.412
6.358 6.263
7.436 7.337 7.323 7.305 7.299 7.281
ACCEPTED MANUSCRIPT
3 2
50
40
1
30
20
ppm
10 ppm
C NMR spectrum of compound 11e
S49
AC C EP TE D
190
180
9
170
8
1
160
150 13
140
7
130
6
H NMR spectrum of compound 12e (Major isomer)
120
110
100
90
80
70
4
60
43.218 42.835 42.790
4.513 2.471
3.416 3.632
1.000
5
58.294 54.666
81.125 80.705 77.317 77.000 76.682 73.603
96.629
110.017
M AN U
1.003 1.953
4.059 6.208
10
137.773 131.652 130.906 128.980 127.591 126.195
164.812
SC
RI PT
3.543 3.531 3.355 3.056 3.044 3.025 2.900 2.868
4.649
7.465 7.447 7.335 7.317 7.299 7.272 7.254 6.369 6.355 6.183
ACCEPTED MANUSCRIPT
3 2
50
40
1
30
20
ppm
10
C NMR spectrum of compound 12e (Major isomer)
S50
ppm
AC C EP TE D
190
180 9
170 8
1
160
150 13
140 7
130 6
H NMR spectrum of compound 12e (Minor isomer)
120
110
100
90
80
70
4
60
43.204 42.833
4.752 2.628
3.428 3.923
1.000
1.109 1.070
5
58.354 54.689
81.917 81.446 77.314 76.997 76.679 73.861
93.323
109.849
M AN U
1.079
12.167
10
137.844 131.918 130.788 127.690 127.534 126.298
166.367
SC
RI PT
3.434 3.362 3.038 3.001 2.827 2.795
4.998
7.332 7.313 7.292 7.273 7.258 7.241 6.450 6.436 6.139 6.125 6.031
ACCEPTED MANUSCRIPT
3 2
50
40
1
30
20
ppm
10
C NMR spectrum of compound 12e (Minor isomer)
S51
ppm
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
ORTEP diagram of the compound 6j with displacement ellipsoids at 50% probability.
S52