Graded footshock stress elevates pituitary cyclic AMP and plasma β-endorphin, β-LPH, corticosterone and prolactin

Graded footshock stress elevates pituitary cyclic AMP and plasma β-endorphin, β-LPH, corticosterone and prolactin

Life Sciences, Vol. 33, pp. 2657-2663 Printed in the U.S.A. Pergamon Press G R A D E D FOOTSHOCK STRESS ELEVATES P I T U I T A R Y C Y C L I C AMP A...

348KB Sizes 0 Downloads 60 Views

Life Sciences, Vol. 33, pp. 2657-2663 Printed in the U.S.A.

Pergamon Press

G R A D E D FOOTSHOCK STRESS ELEVATES P I T U I T A R Y C Y C L I C AMP AND P L A S M A 13-ENDORPHIN, 13-LPH, CORTICOSTERONE AND P R O L A C T I N G. Jean Kant, Edward H. Mougey, Lee L. Pennington and James L. M e y e r h o f f N e u r o e n d o c r i n o l o g y and N e u r o c h e m i s t r y Br., Dept of Med Neurosciences, D i v o f N e u r o p s y c h i a t r y , Walter Reed A r m y I n s t i t u t e f o r Research l, Washington DC 20307.

(Received in final form October

12, 1983)

Summary Male rats w e r e subjected to 15 min o f various i n t e n s i t i e s of f o o t s h o c k c u r r e n t (0.0, 0.2, 0.4, 0.8, 1.6, 2.4, 3.2mA) on a v a r i a b l e i n t e r v a l schedule w i t h an average i n t e r s h o c k i n t e r v a l of 30 sec (30 shocks/15 min session). Each shock lasted 5 sec. Animals w e r e s a c r i f i c e d i m m e d i a t e l y a f t e r being r e m o v e d f r o m the shock box. Two s i m i l a r studies w e r e c o n d u c t e d . In the f i r s t e x p e r i m e n t , rats were s a c r i f i c e d by m i c r o w a v e i r r a d i a t i o n and p i t u i t a r y cyclic AMP levels were d e t e r m i n e d . In the second study, rats w e r e d e c a p i t a t e d and plasma hormones (prolactin, c o r t i c o s t e r o n e , 13endorphin, 8-LPH) were measured by r a d i o i m m u n o a s s a y . Although all b i o c h e m i c a l indices of stress measured increased as shock i n t e n s i t y increased, some d i f f e r e n c e s among t h e substances measured w e r e observed w i t h respect to t h r e s h o l d i n t e n s i t y , range of p r o p o r t i o n a l response and m a x i m a l response. We have previously r e p o r t e d t h a t a v a r i e t y of stressors including r e s t r a i n t , f o r c e d running, s.c. f o r m a l i n , c o n d i t i o n e d p s y c h o l o g i c a l stress, and f o o t s h o c k e l e v a t e d levels of p i t u i t a r y c y c l i c AMP as w e l l as plasma c o r t i c o s t e r o n e and plasma p r o l a c t i n (1-5). We have p o s t u l a t e d t h a t this p i t u i t a r y c y c l i c AMP increase may be i n v o l v e d in t h e r e g u l a t i o n of p i t u i t a r y h o r m o n a l o u t p u t in response t o stress. Although the e l e v a t i o n in p i t u i t a r y c y c l i c AMP in response to d i f f e r e n t stressors appeared to c o r r e l a t e w i t h the a p p a r e n t " s e v e r i t y ' of t h e stressor, t h e ranking of stressors was c l e a r l y s u b j e c t i v e . We t h e r e f o r e decided t o f u r t h e r c h a r a c t e r i z e the p i t u i t a r y c y c l i c AMP response t o stress using a stressor whose i n t e n s i t y could be m a n i p u l a t e d o b j e c t i v e l y and t o include 13endorphin and 13-LPH responses as w e l l as c o r t i c o s t e r o n e and p r o l a c t i n . An a d d i t i o n a l o b j e c t i v e was to c o m p a r e the response of these h o r m o n a l indices of stress f o l l o w i n g exposure t o the same graded stressor w i t h regard t o s e n s i t i v i t y , range of response and m a x i m a l response. Two p a r a l l e l studies w e r e p e r f o r m e d to p e r m i t s a c r i f i c e by e i t h e r m i c r o w a v e i r r a d i a t i o n (cyclic AMP e x p e r i m e n t ) or d e c a p i t a t i o n (plasma hormones). Methods Animals.

Male (250-350 g) S p r a g u e - D a w l e y rats w e r e purchased f r o m

Taconic

1The views of the author(s) do not p u r p o r t t o r e f l e c t t h e position of the D e p a r t m e n t of the A r m y or the D e p a r t m e n t of Defense, (para 4-3, AR 360-5).

2658

Biochemical Indices of Stress

Vol. 33, No. 26, 1983

Farms 2 Rats w e r e i n d i v i d u a l l y housed under c o n d i t i o n s of c o n t r o l l e d l i g h t (lights on f r o m 700 to 1900) and t e m p e r a t u r e w i t h f o o d and w a t e r f r e e l y a v a i l a b l e . Rats w e r e handled f o r 4 days p r i o r to the e x p e r i m e n t t o m i n i m i z e n o n - s p e c i f i c stress e f f e c t s . Rats t o be s a c r i f i c e d by m i c r o w a v e i r r a d i a t i o n were p r e v i o u s l y h a b i t u a t e d t o t r a v e r s i n g an o p e n ended p l a s t i c c y l i n d e r s i m i l a r t o t h e p l a s t i c m i c r o w a v e a p p l i c a t o r tube. Footshock. Constant c u r r e n t s c r a m b l e d shock was d e l i v e r e d t o t h e f l o o r bars of an o p e r a n t box on a v a r i a b l e schedule. Shock d u r a t i o n was 5 sec and t h e i n t e r s h o c k i n t e r v a l averaged 30 sec. Shock i n t e n s i t y was v a r i e d b e t w e e n 0.0 and 3.2 mA of c u r r e n t as s p e c i f i e d for each e x p e r i m e n t . Each rat r e c e i v e d only one shock i n t e n s i t y during the e n t i r e session and shock i n t e n s i t i e s were d i s t r i b u t e d t h r o u g h o u t the e x p e r i m e n t t o randomize circadian effects. One group of animals was s a c r i f i c e d in each e x p e r i m e n t i m m e d i a t e l y upon r e m o v a l f r o m t h e i r home cage w i t h o u t being exposed t o t h e shock box envi r o n m e n t ( c o n t r o l s ) . B e h a v i o r a l stress observer who did not i n d i c a t e d no response score of 2 i n d i c a t e d vocalizing. Behavioral

response. Rats w e r e observed during f o o t s h o c k and scored by an know which shock i n t e n s i t y was being d e l i v e r e d . A score of 0 during shock " o n ' , a score of 1 i n d i c a t e d n o t i c e a b l e flinching, a a c t i v e jumping and a score of 3 i n d i c a t e d a c t i v e jumping and ratings w e r e only made f o r e x p e r i m e n t 1.

Sacrifice. In the f i r s t study, rats were s a c r i f i c e d by m i c r o w a v e i r r a d i a t i o n t o p r e v e n t p o s t - m o r t e m d e g r a d a t i o n of c y c l i c AMP (6,7). Since m i c r o w a v e i r r a d i a t i o n hemolyzes blood which can i n t e r f e r e w i t h the assay f o r 6-LPH and 13-endorphin, we p e r f o r m e d a second e x p e r i m e n t using d e c a p i t a t i o n t o measure 13-endorphin and 13-LPH. Plasma c o r t i c o s t e r o n e and plasma p r o l a c t i n were measured in both e x p e r i m e n t s . The m i c r o w a v e m e t h o d e m p l o y e d 5 sec of high p o w e r i r r a d i a t i o n using a m o d i f i e d Varian PPS-2.5 power g e n e r a t o r w i t h an o u t p u t of 2.5. KW at a f r e q u e n c y of 2450 MHz. F o l l o w i n g i r r a d i a t i o n , the rats w e r e d e c a p i t a t e d and t r u n k blood was c o l l e c t e d for m e a s u r e m e n t of c o r t i c o s t e r o n e and p r o l a c t i n . The heads w e r e c o o l e d on d r y ice and t h e p i t u i t a r i e s w e r e dissected, w e i g h e d and s o n i c a t e d in 1 rnl of 50 mM sodium a c e t a t e buffer, pH 6.2. The sonicates were c e n t r i f u g e d at 12,000 g for 15 rnin and t h e supernatants s t o r e d at -70 ° u n t i l assayed f o r c y c l i c AMP. In the second e x p e r i m e n t , rats w e r e s a c r i f i c e d by d e c a p i t a t i o n and t h e t r u n k blood was c o l l e c t e d in h e p a r i n i z e d beakers. F o l l o w i n g c e n t r i f u g a t i o n , plasma was t r a n s f e r r e d t o tubes c o n t a i n i n g A p r o t i n i n (0.45 T I U / t u b e ) and stored at -35 ° u n t i l assayed for plasma 13-endorphin, 6-L PH, p r o l a c t i n and c o r t i c o s t e r o n e . Assay Procedures. C y c l i c AMP was d e t e r m i n e d by r a d i o i m m u n o a s s a y (8,9). A h i g h l y specific antisera was used at a f i n a l d i l u t i o n of 1:400,000. The a n t i s e r u m e x h i b i t e d c r o s s - r e a c t i v i t i e s f o r ATP and c y c l i c GMP of less than 0.00007% and 0.14% r e s p e c t i v e l y . she samples w e r e assayed in t r i p l i c a t e and assay d a t a w e r e a n a l y z e d by c o m p u t e r (10). Within assay v a r i a t i o n was 7% and b e t w e e n assay v a r i a t i o n was 18%. M a t e r i a l s f o r the p r o l a c t i n assay w e r e p r o v i d e d by the N a t i o n a l I n s t i t u t e of H e a l t h through the Rat P i t u i t a r y H o r m o n e D i s t r i b u t i o n Program. P r o l a c t i n was r a d i o i o d i n a t e d as p r e v i o u s l y described (8). C o r t i c o s t e r o n e was measured using an a n t i b o d y produced in our l a b o r a t o r y in rabbits (11).

2In c o n d u c t i n g the research described in this r e p o r t , the i n v e s t i g a t o r ( s ) adhere t o the 'Guide f o r the Care and Use of L a b o r a t o r y Animals', as p r o m u l g a t e d by the C o m m i t t e e on Care and Use of L a b o r a t o r y Animals of t h e I n s t i t u t e of L a b o r a t o r y A n i m a l Resources, N a t i o n a l Research Council.

Vol. 33, No. 26, 1983

Biochemical Indices of Stress

2659

For the assay of 13-endorphin and 6 - L P H , plasma samples w e r e t h a w e d and r e c e n t r i f u g e d at 12,000 g for 10 min. A 0.5 ml a l i q u o t was e x t r a c t e d w i t h 75 mg PrepPak 500/C18 (Waters Associates Inc.). The C18 absorbant was rinsed t h r e e t i m e s w i t h I ml o f d i s t i l l e d H 2 0 . A p o r t i o n of t h e 13-LPH f r a c t i o n was e l u t e d f r o m t h e absorbant w i t h t w o 1 ml rinses of a c e t o n e : w a t e r (1:1). These rinses w e r e c o m b i n e d , e v a p o r a t e d and assayed f o r i3-LPH c o n t e n t , using the 13-endorphin a n t i b o d y . R e c o v e r y studies of human 13-LPH and 13-endorphin added t o r a t plasma in v a r y i n g c o n c e n t r a t i o n s showed t h a t a p p r o x i m a t e l y 20% of t h e 13-LPH added was r e c o v e r e d in this f r a c t i o n w h i l e o n l y 5% of added 13-endorphin was e l u t e d at this step. The absorbant was then rinsed t w i c e w i t h 1 ml o f a c e t o n e : H 2 0 : T F A (80:19:1) which e l u t e d 60% of B-endorphin and 5% o f B-LPH. Similar r e c o v e r i e s of c a m e l 13-endorphin added t o rat plasma w e r e o b t a i n e d . E x t r a c t i o n of 0.4 t o 1.0 ml of r a t plasma produced l i n e a r results in the r a d i o i m m u n o a s s a y . The a n t i b o d y used f o r assay of 13-endorphin/13-L PH was produced in r a b b i t s a g a i n s t a c o n j u g a t e of human 13-endorphin and b o v i n e serum a l b u m i n . This a n t i b o d y , used at a f i n a l d i l u t i o n of 1:20,000, c r o s s - r e a c t e d 100~o (on a m o l a r basis) w i t h human 13-LPH and 95% (on a m o l a r basis) w i t h c a m e l B-endorphin but e x h i b i t e d no measurable cross r e a c t i o n w i t h ~e n d o r p h i n or t h e enkephalins. Although not s p e c i f i c a l l y tested, N - a c e t y l a t e d B-endorphin would be e x p e c t e d t o c r o s s - r e a c t w i t h this a n t i b o d y since t h e b i n d i n g d e t e r m i n a n t s a r e in the C - t e r m i n a l half of t h e m o l e c u l e . Human 13-endorphin was r a d i o i o d i n a t e d using c h l o r a m i n e - T and N a l ~ S l ( A m e r s h a m C o r p o r a t i o n ) . Sodium m e t a b i s u l f i t e was used t o s t o p t h e r e a c t i o n . T h e i o d i n a t e d p r o d u c t was p u r i f i e d on a 1.4 x 36 cm. c o l u m n of Sephadex G-2S, f i n e ( P h a r m a c i a Fine Chemicals) w i t h a solution of 0.25% bovine serum a l b u m i n in 0.5% a c e t i c acid as e l u e n t . Human IB-endorphin was used as standard. Free and bound antigen w e r e separated, f o l l o w i n g a four day, 4 ° C i n c u b a t i o n , w i t h d e x t r a n - c o a t e d c h a r c o a l and the bound f r a c t i o n was c o u n t e d in an LKB Rack G a m m a II. A l l values r e p o r t e d are c o r r e c t e d f o r r e c o v e r y using r e c o v e r y values o b t a i n e d on a separate plasma pool run in the same assay. The c o e f f i c e n t s of v a r i a t i o n f o r s e p a r a t e e x t r a c t i o n s f r o m the same rat plasma pool w e r e 20% for 13-LPH and 6% for 13-endorphin. The assay is s e n s i t i v e t o 3 pg of added 13-endorphin per tube (10 p g / m l plasma) and 9 pg of 13-L PH per t u b e (90 p g / m l plasma). Statistics: B i o c h e m i c a l d a t a w e r e f i r s t a n a l y z e d by one way analysis of v a r i a n c e . All measures d e m o n s t r a t e d s i g n i f i c a n t F scores. A d d i t i o n a l comparisons w e r e then made b e t w e e n the 0.0 c u r r e n t group and each o t h e r group. The b e h a v i o r a l ratings w e r e a n a l y z e d by a n o n - p a r a m e t r i c t e s t ( K r u s k a l - W a l l i s ) and a d d i t i o n a l comparisons w e r e t h e n made b e t w e e n t h e 0.0 c u r r e n t group and o t h e r groups by t h e M a n n - W h i t n e y t e s t . Results E x p e r i m e n t 1. Increasing c u r r e n t i n t e n s i t y increased t h e b e h a v i o r a l r a t i n g o f stress response, increased levels of p i t u i t a r y c y c l i c AMP, and increased levels of plasma p r o l a c t i n and c o r t i c o s t e r o n e as shown in Table I. A l t h o u g h all measures increased, t h e r e are clear d i f f e r e n c e s among these stress response m a r k e r s . Plasma c o r t i c o s t e r o n e increased t o near m a x i m a l levels a f t e r p l a c e m e n t of t h e r a t i n t o t h e u n f a m i l i a r shock box w i t h o u t any c u r r e n t being applied. The b e h a v i o r a l r a t i n g was s e n s i t i v e t o l o w levels o f shock but r e a c h e d its c e i l i n g at 1o6 m A . P r o l a c t i n was v e r y responsive o v e r most of t h e range t e s t e d (see also fig. 1). P i t u i t a r y cyclic AMP did n o t respond t o t h e l o w e r l e v e l s o f s t i m u l a t i o n , but was m a r k e d l y e l e v a t e d a f t e r t h e m o d e r a t e and high c u r r e n t i n t e n s i t i e s . As c o m p a r e d t o c o n t r o l s , t h e a p p a r e n t

2660

Biochemical

Indices of Stress

Vol. 33, No. 26, 1983

TABLE I .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Effects of Graded Footshock on P i t u i t a r y C y c l i c AMP, Plasma Prolactin, Plasma C o r t i c o s t e r o n e and Behavior. Current (n) (mA) .

.

.

.

.

.

.

.

.

.

Cyclic AMP (pmoles/mg wt) .

Controls(12) 0.0 (12) 0.2 (6) 0.4 (12) 0.8 (12) 1.6 (12) 2.4 (6) 3.2 (6)

.

.

.

.

.

.

.

.

.

.

.

1.17 1.49 1.64 1.18 3.14 9.83 6.66 16.52

.

.

.

-+ ± ± -+ ± -+ ± ±

.

.

.

.

0.10 0.15 0.18 0.12 0.19 3.31 1.74 6.14

.

Prolactin (ng/ml) .

.

.

.

.

.

.

.

40 28 71 101 313 270 421 409

.

.

.

.

.

.

Corticosterone (ug/100ml) .

-+ 9.4 ± 5.2 -+ 14 _+ 27 -+ 84 ± 62 ±160 ± 154

.

.

.

.

.

.

.

.

.

.

6.2 17.3 19.5 20.2 22.6 22.8 21.6 27.8

.

.

.

-+ ± -+ ± ± -+ ± ±

.

.

.

0,8 2.4 4.0 1.8 2.0 2.2 2.4 6.1

.

.

Behavior (rating) .

.

.

.

.

.

.

0.0 0.2 1.0 1.3 1.6 2.9 2.8 3.0

.

.

.

± ± -+ ± ± ± ± +

.

.

.

.

.

0.0 0,2 0.5 0.3 0.3 0.8 0.2 0.0

range of response in this e x p e r i m e n t was 14-fold for p i t u i t a r y cyclic AMP, 10-fold for prolactin, and 4.5 fold for c o r t i c o s t e r o n e . E x p e r i m e n t 2. The responses of plasma 13-endorphin, 13-LPH, c o r t i c o s t e r o n e , and p r o l a c t i n are shown in Fig. 1. C o r t i c o s t e r o n e was the only measured hormone t o increase s i g n i f i c a n t l y a f t e r p l a c e m e n t into the box w i t h o u t shock as compared t o controls. Most of the c o r t i c o s t e r o n e response had occurred at or below 0.8 mA current. In contrast, B-endorphin d e m o n s t r a t e d very l i t t l e response at less than 0°8 mA, w i t h the greatest changes ocurring between 0.8 mA and 1.6 mA. 13-LPH changed m a r k e d l y between 0.4 and 1.6 mA. Prolactin was sensitive to small amounts of current and d e m o n s t r a t e d a broad range of response between 0.2 mA and 1.6 mA current. All measures reached m a x i m a l levels at 1.6 mA. Discussion A c u t e stress e l i c i t s numerous neuroendocrine responses in rats. Increased p i t u i t a r y release of p r o l a c t i n , a d r e n o c o r t i c o t r o p i c hormone ( A C T H ) , 13-endorphin, and !3-LPH has been f r e q u e n t l y reported and the release of cor t icosterone,, epinephrine and norepinephrine from the adrenals is also increased f o l l o w i n g acute stress (12-18). We have observed that acute stressors markedly e l e v a t e p i t u i t a r y c y c l i c AMP and have been i n v e s t i g a t i n g the role of stress-induced p i t u i t a r y c y c l i c AMP elevations (1-5). In the p i t u i t a r y gland, c y c l i c AMP appears to be involved in the release and/or synthesis of p i t u i t a r y hormones. Incubation of p i t u i t a r i e s in v i t r o w i t h cyclic AMP analogues increases the release of hormones i n t o the medium (19,20). Releasing factors such as CRF have been r e p o r t e d t o increase levels of p i t u i t a r y c y c l i c AMP in v i t r o (21). Thus there is reason to believe t h a t stress-induced p i t u i t a r y cyclic AM P elevations might have f u n c t i o n a l s i g n i f i c a n c e w i t h regard to c o n t r o l of stress-sensitive p i t u i t a r y hormones. In the present study, we have examined the p i t u i t a r y c y c l i c AMP response to a graded stressor and we have compared the response c h a r a c t e r i s t i c s of c y c l i c AMP w i t h four commonly employed hormonal indices of stress response and a behavioral index. We found that while 'stress' did increase all indices measured, the response c h a r a c t e r i s t i c s and the useful range of response f o r these markers were d i f f e r e n t . C o r t i c o s t e r o n e was a very sensitive responder not only to an obvious stressor (footshock) but also to the change in the e n v i r o n m e n t accompanying the procedure. Simply placing the animal in the shock box w i t h o u t d e l i v e r y of any current e l i c i t e d a strong c o r t i c o s t e r o n e response, as has been previously reported (22,23). While

Vol. 33, No. 26, 1983

Biochemical

Indices of Stress

2661

600 560 520 480 4,40 4OO 360 320 280 240 2OO 160

PROLACTIN

120 8O 4O 0

t

7200 6800 6400 6000 5600

m

E

5200 4800 4400

w

4000 3600 3200 2800 2400

- LPH

2O00 I 600 1200 8OO 400

I

1600 m

E

1200 800 400

ENDORPHIN I

~E*

24

"--

~CORTICOSTERONE

I

0L

I

I

I

I

I

I

0.0

0.8

1.6

2.4

3.2

CONTROL

SHOCK CURRENT INTENSITY ( m Amp ) Fig 1. E f f e c t s o f G r a d e d F o o t s h o c k on Plasma H o r m o n e s . Values r e p r e s e n t t h e mean % SEM o f 6 a n i m a l s . C o n t r o l s w e r e s a c r i f i c e d upon r e m o v a l f r o m t h e i r h o m e c a g e . O t h e r g r o u p s w e r e e x p o s e d t o 15 m i n o r s h o c k (see m e t h o d s ) at t h e i n d i c a t e d c u r r e n t i n t e n s i t i e s .

2662

Biochemical

Indices of Stress

Vol. 33, No. 26, 1983

c o r t i c o s t e r o n e is a useful index of m i l d stress or arousal, the l i m i t e d range of response b e t w e e n mild and m o d e r a t e c u r r e n t i n t e n s i t i e s suggests t h a t i t is a poor i n d i c a t o r f o r distinguishing b e t w e e n more severe stressors. In f a c t , we have found t h a t c o r t i c o s t e r o n e response t o cold exposure, f o r m a l i n s.c., r e s t r a i n t , and f o o t s h o c k are s i m i l a r w h i l e o t h e r i n d i c a t o r s of stress are able t o d i f f e r e n t i a t e b e t w e e n these stressors (1). On the o t h e r hand, p i t u i t a r y c y c l i c AMP was not a sensitive responder t o l o w c u r r e n t intensities, but did d e m o n s t r a t e a range of response o v e r the m o d e r a t e t o high i n t e n s i t i e s . Plasma p r o l a c t i n , 13-endorphin and 8-LPH did n o t respond t o the n o v e l t y of the shock box, but did respond p r o p o r t i o n a t e l y over a range of c u r r e n t i n t e n s i t y b e f o r e reaching a m a x i m a l plateau. P r o l a c t i n and 13-LPH showed l a r g e r responses t o c u r r e n t than did 6-endorphin. These indices w o u l d appear t o be useful in d i f f e r e n t i a t i n g m o d e r a t e t o s e v e r e st ressors. A l t h o u g h ACTH and 13-endorphin have been r e p o r t e d to be released by s i m i l a r s t i m u l i (24,25), the response p r o f i l e s of c o r t i c o s t e r o n e and 8-endorphin in the present study are q u i t e d i f f e r e n t . However, the c o r t i c o s t e r o n e levels r e f l e c t not only the ACTH released but also the adrenal s e n s i t i v i t y t o ACTH. Since, the adrenals are most s e n s i t i v e t o basal c o n c e n t r a t i o n s of ACTH as c o m p a r e d t o stress-induced levels (14), the d i f f e r e n c e s in c o r t i c o s t e r o n e and 13-endorphin measurable threshhold response are not surprising. The o b s e r v a t i o n t h a t t h e measured hormones responded t o l o w e r c u r r e n t levels than p i t u i t a r y c y c l i c AMP suggests t h a t m a r k e d p i t u i t a r y c y c l i c AMP e l e v a t i o n s m i g h t not be necessary f o r t h e i n i t i a l release of p i t u i t a r y hormones. Possibly, t h e stress-induced rise in p i t u i t a r y c y c l i c AMP r e f l e c t s t h e f e e d b a c k e f f e c t s of p i t u i t a r y or adrenal hormones upon t h e p i t u i t a r y for the purpose of r e g u l a t i n g f u r t h e r release or synthesis of p i t u i t a r y hormones. Acknowledgements The authors wish t o a c k n o w l e d g e the e x c e l l e n t t e c h n i c a l assistance p r o v i d e d by David R. Collins, Clyde C. Kenion, Golden C. D r i v e r , Willie G a m b l e , C l i n t o n B. Wormley, SP5 Leigh Landman Roberts, SP4 Terry Eggleston, Bruce Waskowicz and Steve Shiue. We also wish t o t h a n k Pat Conners f o r her assistance in p r e p a r i n g the m a n u s c r i p t .

References 1. 2.

3. 4.

5. 6. 7. 8.

G.J. KANT, J.Lo M E Y E R H O F F , B.N. B U N N E L L and R.H. LENOX, Pharmacol. B i o c h e m . Behav. 17 1067-1072 (1982). I . L . M E Y E R H O F F , G.J. K A N T , G.R. SESSIONS, E.H. M O U G E Y , L . L . PENNINGTON and R.H. L E N O X , Perspectives in B e h a v i o r a l Medicine~ vol 2, R. WILLIAMS (ed), A c a d e m i c Press, New York (in press). G.J. K A N T , G.R. SESSIONS, R.H. LENOX and J.L. M E Y E R H O F F , L i f e Sciences 29 2491-2499 (1981). J.L. M E Y E R H O F F , G.J. KANT and R.H. L E N O X , M i c r o w a v e I r r a d i a t i o n as as Tool to Study Labile M e t a b o l i t e s in Tissue, W.B. STAVINOHA, Y . M A R U Y A M A and C.L. B L A N K (eds), Pergamon Press, O x f o r d (in press). B.N. B U N N E L L , G . ] . KANT, R.H. L E N O X , L.L. PENNINGTON, D.R. COLLINS, J.L. M E Y E R H O F F and E.H. M O U G E Y , Neurosci. Abs. 7 869 (1981). D.J. JONES and W.B. S T A V I N O H A , N e u r o p h a r m a c o l o g y of C y c l i c Nucleotides, G.C. P A L M E R (ed.), 253-281, Urban & Schwarzenberg, B a l t i m o r e (1979). R.H. L E N O X , G.J. KANT and J.L. M E Y E R H O F F , Handbook of N e u r o c h e m i s t r y , vol 2, A. L A J T H A ( e d . ) i n press. R.H. L E N O X , G.J. K A N T , G.R. SESSIONS, L.L. P E N N I N G T O N , E.H. MOUGEY and J.L. M EYE RHOFF, N e u r o e n d o c r i n o l o g y 3.~0300-308 (1980).

Vol. 33, No. 26, 1983

9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.

Biochemical Indices of Stress

2663

A.L. STEINER, A.W. PARKER and D.M. KIPNIS, J. Biol. Chem. 247 1106-1113 (1972). D. RODBARD, R.H. LENOX, W.L. WRAY and D. RAMSETH, Clin. Chem. 22 350-358 (1976)o E.H. MOUGEY, Analyt. Biochem. 91 566-582 (1978). L. KRULICH, E. HEFCO, P. ILLNER and C.B. READ, Neuroendocrinology 16 293-311 (1974). G.P. M U E L L E R , . L i f e Sciences 29 1669-1674 (1981). B. H. NATELSON, W.N. TAPP, J.E. ADAMUS, J.C. MITTLER and B.E. LEVIN, Pharmacol. Biochem. Behav.26 1049-1054 (1981). J. ROSSIER, E.D. FRENCH, C. RlVlER, N. LING, R. GUILLEMIN and F.E. BLOOM, Nature 270 618-620 (1977). J.L. M E Y E R H O F F , B.N. BUNNELL and E.H. MOUGEY, Neurosci. Abs. 7 166(1981). M.J. M I L L A N , R. PRZEWLOCKI, M. JERLICZ, C.H. GRAMSCH, V. HOLLT and A. HERZ, Brain Res. 208 325-338 (1981). R. M c C A R T Y , R. KVETNANSKY and I.J. KOPIN, Physiol. Behav. 26 27-31 (1981). G.T. PEAKE, Frontiers of Neuroendocrinology, vol 3, W.F. GANONG and L. MARTINI (ed) Oxford University Press, pp 173-208 (1973). G. PELLETIER, A. LEMAY, G. BERAUD and F. LABRIE, Endocrinology 91 1355-1370 (1972). F. LABRIE, R. VEILLEUX, G. LEFEVRE, D.H. COY, J. SUEIRAS-DIAZ and A.V. S C H A L L Y , Science 216 1007-1008 (1982). S.B. FRIEDMAN, R. ADER, L.J. GROTA and T. LARSON, Psychosom. Med. 29 323-328 (1967). M.B. HENNESSY and S. LEVINE, Physio. Behav. 21 295-297 (1978). J. ROSSIER, E. FRENCH, C. RIVIER, N. LING, R. GUlLLEMIN and F. BLOOM, N a t u r e 270 618-620 (1977). R. GUlLLEMIN, T. VARGO, J. ROSSIER, S. MINICK, N. LING, C. RIVIER, W. VALE and F. BLOOM, S c i e n c e 197 1 3 6 8 - 1 3 6 9 (1977).