Graphitic carbon content of aerosols, clouds and snow, and its climatic implications

Graphitic carbon content of aerosols, clouds and snow, and its climatic implications

The Science of the Total Environment, 36 (1984) 117--120 Elsevier Science Publishers B.V., A m s t e r d a m - Printed in The Netherlands 117 GRAPHI...

155KB Sizes 0 Downloads 28 Views

The Science of the Total Environment, 36 (1984) 117--120 Elsevier Science Publishers B.V., A m s t e r d a m - Printed in The Netherlands

117

GRAPHITIC CARBON CONTENTOF AEROSOLS, CLOUDS AND SNOW, AND ITS CLIMATIC IMPLICATIONS I

PETR CHYLEK, V. RAMASWAMYAND V. SRIVASTAVA National Center f o r Atmospheric Research, Boulder, Colorado 80307 and Atmospheric Sciences Research Center, State University of New York, Albany, New York 12222

ABSTRACT Effect of g r a p h i t i c carbon on r a d i a t i v e c h a r a c t e r i s t i c s of aerosols, clouds and snow is investigated using a random internal mixture model in which most p a r t i c l e s are randomly d i s t r i b u t e d throughout the volume of i n d i v i d u a l aerosols, cloud drops and snow grains. I t is found that the specific absorption of carbon in aerosols, drops and snow grains is increased several times over the s p e c i f i c absorption of carbon in a i r . This leads to a decrease in the albedo of aerosols, clouds and snow, suggesting that g r a p h i t i c carbon could exert a nonnegligible influence on regional and global climate. INTRODUCTION Graphitic carbon (soot), which enters the atmosphere c h i e f l y through combustion processes, has been detected at widespread locations, ranging in concentrations from lOpg/m 3 in urban areas to Ipg/m 3 in rural areas.

I t has been found

in remote atmospheres ( r e f . l ) as well as in snowpacks in sparsely populated areas (ref. 2).

In comparison with the other constituents of the atmosphere,

g r a p h i t i c carbon is unique because of i t s uniformly high absorption in the v i s i b l e and the near infrared spectrum.

In f a c t , studies on the r a d i a t i v e

properties of aerosols, clouds ( r e f . 3 , ~ and snow ( r e f . 5), have i n f e r r e d that the absorption occurring in the v i s i b l e part of solar spectrum is a t t r i b u t a b l e to g r a p h i t i c carbon.

This is because the commonly occurring aerosols ( s u l f a t e s ) ,

water and ice are nonabsorbers in the v i s i b l e spectrum and so would be expected to have an albedo close to unity.

The fact that t h e i r albedos are

less than unity necessitates a study into the role of g r a p h i t i c carbon in lowering cloud and snow albedos, enhancing the absorption of solar r a d i a t i o n and thus a f f e c t i n g the climate of the planet. ABSORPTION OF SOLAR RADIATION BY SNOW, CLOUDS AND AEROSOLS To i n v e s t i g a t e the influence of g r a p h i t i c carbon on the absorption of solar r a d i a t i o n by aerosols, clouds and snow, we use a random internal mixture model in which soot is assumed to be d i s t r i b u t e d randomly throughout s u lf a t e aerosols, water drops and snow grains. 0048-9697/84/$03.00

The o pt ic a l properties of the mixture

© 1984 Elsevier Science Publishers B.V.

118 are evaluated by using the mixing r u l e d e r i v e d by Ch~lek and Srivastava ( r e f .

6)

in the frame-work o f aggregate s t r u c t u r e model f o r absorbing p a r t i c l e s embedded in a nonabsorbing medium.

M u l t i p l e s c a t t e r i n g p r o p e r t i e s are evaluated using

the d e l t a - E d d i n g t o n a p p r o x i m a t i o n ( r e f .

7).

The i m p o r t a n t consequence emerging

is the increase in the imaginary p a r t o f the r e f r a c t i v e over t h a t o f pure d i e l e c t r i c fractions

index o f the m i x t u r e

by several orders o f magnitude f o r even small soot

( r e f . 8).

Soot p a r t i c l e s

are assumed to conform to a m o d i f i e d gamma d i s t r i b u t i o n ,

w i t h the mode radius equal to 0.03 um and the w i d t h equal to 3 ( r e f . refractive

i n d i c e s are o b t a i n e d from Ackerman and Toon ( r e f .

Wiscombe ( r e f .

5).

in the v i s i b l e

region.

it

8).

The

3) and Harren and

Fig. l shows the albedo o f pure and soot-contaminated snow Comparing w i t h the data of G r e n f e l l e t . a l .

(ref.

2),

is seen t h a t a soot volume o f 3.5 x lO -8 is r e q u i r e d to e x p l a i n the measured

albedos.

Fig. 2 shows the c a l c u l a t e d r e d u c t i o n in the r e f l e c t i v i t y

s t r a t u s cloud in the v i s i b l e

spectrum due to d i f f e r e n t

the presence o f soot in small f r a c t i o n s

soot amounts.

of an a l t o Again,

lowers the albedo c o n s i d e r a b l y .

For

the case of c l o u d l e s s skies laden w i t h soot p a r t i c l e s and s u l f a t e a e r o s o l s , Fig. 3 shows t h a t , w i t h increases in the soot volume amounts, the net r e f l e c t i v i t y o f the a e r o s o l - s u r f a c e systems over most surfaces would be reduced.

,.o

1.0 0 r~ W {:D .-.I

0.8 o E3 b.I

0.6

09-

I,..... ,.#r,., ~'~

0.80.7-

..... . ........

1:3 z

0 .J u

o.z I 0.30.4

I

I

i

0.6

I

0.8

(M.m)

,

1.0

..

06

_ ..y'""

0.5 0.4

I

I

I

i

I

0.4 0.6 0.8

I

1.0

(M, rn)

Fig. I . mental albedo Dashed

Snow albedo as a f u n c t i o n o f wavelength. Crosses r e p r e s e n t e x p e r i measurements o f G r e n f e l l et a l . ( r e f . 2). S o l i d curve gives c a l c u l a t e d of soot-contaminated snow w i t h carbon volume f r a c t i o n o f 3.5 x 10 -8 . curve gives c a l c u l a t e d pure snow albedo.

Fig. 2. A l t o s t r a t u s cloud albedo as a f u n c t i o n o f wavelength. S o l i d curve represents c a l c u l a t i o n s f o r pure water cloud. A l l o t h e r curves give albedo o f cloud w i t h d e f i n i t e soot c o n c e n t r a t i o n (dashed curve represents carbon volume f r a c t i o n V=IO-7; dash-dot curve V=IO -6. dash-double dot curve V=IO-5; d o t t e d curve V=IO-4).

119

80

~ 'V

.

.

.

.

.

.

I

AA

'C\ ,

-zo 0

1

i "~"~" ~i~'-T'---t---.--1-- --.4 O.~

0.4

0.6

0.8

A

Fig. 3. Percentage changes AA in albedo A due to 1 km t h i c k s u l f a t e aerosol l a y e r c o n t a i n i n g d e f i n i t e amounts of soot. S o l i d curve represents soot volume f r a c t i o n of 10-J; dashed curve I 0 - 2 ; dash-dot curve lO - I . Cosine of s o l a r z e n i t h angle is 0.5. Aerosols' log-normal size d i s t r i b u t i o n is given by rg=0.124 ~m and Og=2.0.

Table 1 S p e c i f i c absorption in m2 per gram of carbon of a spherical snow grain with radius of I00 um, cloud d r o p l e t with radius of 5 ~m and spherical s u l f a t e aerosol p a r t i c l e with radius of 0.2 um c o n t a i n i n g a given volume f r a c t i o n of graphi-t i c carbon in a form of monodispersed carbon spheres with radius of 0.08 ~m d i s t r i b u t e d randomly throughout the volume of the snow g r a i n , cloud drop or aerosol p a r t i c l e . For comparison the value of s p e c i f i c absorption of 0.08 um radius carbon sphere in a i r is about 10.6 m2/g. soot volume fraction l .E-08 5.E-08 l.E-07 5.E-07 l .E-06 5.E-06 l .E-05 5. E-05 l .E-04 5. E-04 I. E-03 5. E-03 l .E-02 5. E-02 l.E-Ol

snow grain r=100 ~m 23.2 18.3 17.7 17.2 17.1 17.0 16.9 16.0 15.0 9.7 6.4 l .4 0.7 O.l ,0.1

cloud drop r=5 ~m

s u l f a t e aerosol r=O.2 um

30.7 27.6 27.2 26.9 26.8 26.8 26.8 26.7 26.6 25.6 24.1 16.6 I I .9 3.03 l .51

40.9 36.1 32.3 31.8 31.4 31.3 31.3 31.2 30.9 30.6 27.8 24.6

120

To i l l u s t r a t e

the role of soot in the internal mixtures, Table 1 l i s t s the

s p e c i f i c absorption (absorption per u n i t mass of carbon) of r=lO0 um snow grain, a r=5 ~m cloud drop and r=O.2 um s u l f a t e aerosol for d i f f e r e n t soot volume f r a c t i o n s .

Each contains monodispersed soot p a r t i c l e s of radius 0.08 um

d i s t r i b u t e d randomly throughout i t s volume.

These values, reveal the e f f i c i e n c y

with which soot in an internal mixture behaves, as compared to i t s e f f i c i e n c y in a i r (10.6 m2/gm). CLIMATIC EFFECT According to r a d i a t i v e - c o n v e c t i v e models (ref. 9, lO, l l )

the global

average surface temperature is a s e n s i t i v e function of clouds albedo.

Global

average albedo decrease of about 3% can produce surface heating around IK. ACKNOWLEDGEMENTS Reported research was supported in part by the National Science Foundation grant ATM-8007443.

National Center for Atmospheric Research is sponsored by

the National Science Foundation. REFERENCES l

H. Rosen, T. Novakov and B. A. Bodhaine, Atmos. Environ., 15 (1981) 1371-1374. 2 T. C. G r e n f e l l , D. K. Perovich and T. A. Ogren, Cold Reg. Sci. Technol., 4 (1981) 121-127. 3 T. Ackerman and O. B. Toon, Appl. Opt., 20 (1981) 3661-3667. 4 R. E. Danielson, D. R. Moore and H. C. Van de Hulst, J. Atmos. S c i . , 26 (1969) I078-I087. 5 S. G. Warren and W. J. Wiscombe, J. Atmos. S c i . , 37 (1980) 2734-2745. 6 P. Ch~lek and V. Srivastava, Phys. Rev. B, 27 (1983) 5098-5106. 7 J. H. Joseph, W. J. Wiscombe and J. A. Weinman, J. Atmos. S c i . , 33 (1976) 2452-2459. 8 P. Ch~lek, V. Ramaswamy and V. Srivastava, J. Geophys. Res., submitted for publidation. 9 V. Ramanathan, J. Atmos. S c i . , 33 (1976) 1330-1346. lO V. Ramanathan and J. Coakley, Rev. Geophys. Space Phys., 16 (1978) 465-489. I I P . Ch~lek and J. Kiehl, J. Atmos. S c i . , 38 (1981) If05-1110.