Green cellulose-based nanocomposite catalyst: Design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines

Green cellulose-based nanocomposite catalyst: Design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines

Accepted Manuscript Title: Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and p...

1MB Sizes 123 Downloads 35 Views

Accepted Manuscript Title: Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines Authors: Ali Maleki, Abbas Ali Jafari, Somayeh Yousefi PII: DOI: Reference:

S0144-8617(17)30886-X http://dx.doi.org/doi:10.1016/j.carbpol.2017.08.019 CARP 12626

To appear in: Received date: Revised date: Accepted date:

1-4-2017 6-7-2017 4-8-2017

Please cite this article as: Maleki, Ali., Jafari, Abbas Ali., & Yousefi, Somayeh., Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines.Carbohydrate Polymers http://dx.doi.org/10.1016/j.carbpol.2017.08.019 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines Ali Maleki,1,* Abbas Ali Jafari2 and Somayeh Yousefi1,2 1

Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of

Science and Technology, Tehran 16846-13114, Iran 2

Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195.741, Iran

*Corresponding author. Tel.: +98 21 77240540; fax: +98 21 73021584. E-mail: [email protected] (A. Maleki)

Highlights     

A nanobiocomposite was prepared by using a natural carbohydrate polymer, cellulose. It was characterized by FT-IR, EDX, TEM, FE-SEM, TG/DTA, VSM and ICP-AES analyses. Average size distribution of Fe3O4 magnetic nanoparticles in cellulose matrix was 25 nm. Morphology of the biopolymer-based recoverable nanocatalyst was nearly uniform. Various heterocycles were synthesized by the nanocatalyst in H2O as a green solvent.

Abstract A cellulose-based nanobiocomposite decorated with Fe3O4 nanoparticles was prepared, characterized and applied as an easily recoverable and reusable green nanocatalyst in the synthesis of pyrano[2,3-d]pyrimidine derivatives in water at room temperature. The characterization was performed by using a variety of conventional analytical instruments such as Fourier transform infrared spectra (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), vibrating sample magnetometer (VSM), thermal analysis (TGA/DTA) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses. Two series of pyranopyrimidine and pyrazolopyranopyrimidines derivatives were synthesized by using the present cellulose-based nanocomposite. This protocol has valuable features like high yield of the products, short reaction

1

times, mild conditions and easy work-up procedure. In addition, the catalyst can be prepared easily with cheap and green starting materials. Keywords: Cellulose; Magnetic nanocomposite; Pyran; Pyrimidine; Multicomponent reaction.

2

1. Introduction Pyranopyrimidine and pyrazolopyranopyrimidine are the fused heterocyclic compounds that exhibit diverse biological properties. Compounds with such annulated uracils have antitumor, antidepressants, antibacterial, antihypertensive, vasodilator, hepatoprotective, bronchiodilators, cardiotonic and antiallergic activities. Furthermore, some of them exhibit antimalarial, antifungal, analgesics and herbicidal properties (Bararjanian, Balalaie, Movassagh, & Amani, 2009; Brahmachari & Banerjee, 2014; Dinakaran, Bomma, & Srinivasan, 2012; Heravi, Mousavizadeh, Ghobadi, & Tajbakhsh, 2014; McCoy et al., 2010; Deb, & Bhuyan, 2010; Yu & Wang, 2005; Yu, Yu, & Liu, 2014). They have received considerable attention as potential pharmaceutical compounds. Preparation of these molecules containing a uracil ring possesses significant synthetic challenges. A few published reports usually require harsh reaction conditions, long reaction times, operational complexity and involved organic solvents and wastes (Brahmachari et al., 2014; Deb, & Bhuyan, 2010; Yu et al., 2014; Ziarani et al., 2013). Therefore, design and development of new routes for the synthesis of these kinds of heterocyclic molecules have attracted much attention in the research to introduce rapid protocols for these compounds. Recently, one-pot multicomponent reactions of aromatic aldehyde, malononitrile and barbituric acid have produced pyrano[2,3-d]pyrimidines in the presence of a few catalysts (Abedini, Shirini, Mohammad-Alinejad Omran, Seddighi, & Goli-Jolodar, 2015; Ramesh & Lalitha, 2015). But, design of cheap, efficient, easily recoverable and reusable green catalysts for both economic and environmental points of view is of prime importance. Nowadays, functionalized magnetic metal nanoparticles and supported superparamagnetic materials are deeply under consideration in both academic and industrial research centers

3

because of their wide potential applications in chemistry, medicine, catalysis and materials science. They can be classified as powerful alternatives to classic materials of supported heterogeneous catalysts because of their diversity, availability and high specific surface area. Magnetically separable nanocatalysts provide an easy and efficient means for the isolation of the catalysts from the reaction mixture by simply using of an external magnet without any requirement for the other complex work-up procedures. Further important aspects of these kind of the nanocatalysts are their activity, stability, reusability and environmentally-benign which are of great importance in the field of green chemistry (Gawande, Branco, & Varma, 2013). Polymer-matrix nanocomposites cause the nanoparticles have better physicochemical properties and therefore exhibit better catalytic activities. Cellulose as a renewable carbohydrate polymer with molecular formula of (C6H10O5)n; n = 10,000 to 15,000, where n is depended on the cellulose source material, is one of the most common organic natural polymers that includes 1,4-anhydro-D-glucopyranose units. Cellulose deserves some important properties such as biocompatibility, biodegradability, environmentally-friendly and a broad range of chemical variability makes it a fantastic option as a green support of the catalysts (Klemm, Heublein, Fink, & Bohn, 2005; Vaddula, Saha, Varma, & Leazer, 2012; Chen, Huang, & Li, 2014; Corobea et al., 2016; Trache, Hussin, Mohamad Haafiz, & Thakur, 2017). Keeping these important facts in mind, design and performance of the green and sustainable nanocatalysts in chemical reactions have attracted our interests (Maleki & Kamalzare, 2014b; Maleki, Ghamari, & Kamalzare, 2014a, Maleki, Alirezvani, & Maleki, 2015a; Maleki, Jafari, Yousefi, & Eskandarpour, 2015b; Maleki, Movahed, & Paydar, 2016a; Maleki, A., Rahimi, R., & Maleki, 2016b). In connection with our previous research on the green reaction protocols, herein, we have developed a one-pot synthetic route for the three-component synthesis of fused

4

pyrano[2,3-d]pyrimidines 4 from condensation reaction of various aromatic aldehydes 1, active methylene compounds 2 and barbituric or thiobarbituric acid 3 in the presence of a catalytic amount of cellulose-based magnetic nanocomposite in water at room temperature. In addition, to investigate the effectiveness of the prepared nanocatalyst in similar multicomponent reactions, it was applied in another four-component reaction for the synthesis of pyrazolopyranopyrimidine derivatives. They were synthesized from the condensation reaction of various aromatic aldehydes 1, barbituric acid 3, hydrazine hydrate 5 and ethyl acetoacetate 6 in the presence of a catalytic amount of the present cellulose-based magnetic nanocomposite in water as a green reaction medium at room temperature. 2. Experimental 2.1. Materials and methods All solvents, chemicals and reagents were purchased from Merck, Fluka and Aldrich chemical companies. Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. IR spectra were recorded on a Shimadzu IR-470 spectrometer. 1H and 13C NMR spectra were recorded on a Bruker NMR spectrometer at 500 and 125 MHz, respectively. FESEM images were obtained on a ZEISS SIGMA VP instrument. TEM images were obtained on a Zeiss-EM10C-100KV instrument. EDX analysis was recorded on ZEISS SIGMA VP with Oxford EDS attachment. ICP-AES analysis was provided on a Shimadzu ICPS-7000. The magnetic property was measured on VSM-AGFM vibrating sample magnetometer. TGA and DTA were measured by an STA504. 2.2. Preparation of Fe3O4@cellulose nanocomposite First, cellulose was directly dissolved in NaOH/urea/H2O solution which was precooked to 8 °C to yield 4 wt% of cellulose solution. Then, it was centrifuged at 2000 rpm for 30 min for 5

degasification. The solution was immersed in a 250 mL of H2SO4 (5 wt%) for 12 h to regenerate the cellulosic film. The resulting film was washed with distilled water. The obtained wet film was put in a 250 mL mixture of aqueous FeCl3.6H2O and FeCl2.4H2O for 24 h. Then, it was washed with distilled water in order to remove the excess ions adsorbed on the surface of the film. After that, it was immersed in 250 mL of NaOH (4 M) for 30 min. Finally, it rinsed with distilled water several times to obtain the nanocomposite. 2.3 Synthesis of pyrano[2,3-d]pyrimidine derivatives (4a-o) A solution of an aldehyde 1 (1.0 mmol), malononitrile or ethyl cyanoacetate 2 (1.0 mmol), barbituric or thiobarbituric acid 3 (1.0 mmol) in 3 mL of tap water and in the presence of the nanocomposite (2 mg) was stirred at room temperature for appropriate time according to Table 1. After completion of the reaction, the catalyst was removed easily by an external magnet and the residual product was collected by filtration and washed with ethanol and recrystallized to yield pure products. 2.4 Synthesis of pyrazolopyranopyrimidine derivatives (7a-i) Ethyl acetoacetate (0.13 ml, 1 mmol) was added to a solution of hydrazine hydrate (96%, 0.05 ml, 1 mmol) in H2O (2 ml) over 15 min. Then, aromatic aldehyde (1 mmol), barbituric acid (0.128 g, 1 mmol), and Fe3O4@cellulose nanocomposite (5 mg) were added and the mixture was stirred at room temperature for the time indicated in Table 2. After completion of the reaction (as monitored by TLC), the mixture was cooled and filtered. The precipitate was recrystallized from EtOH to give pure compound. 2.5 Spectral data of the selected product 7-amino-6-cyano-5-(2-nitrophenyl)-4-oxo-2-thioxo-5Hpyrano[2,3-d]pyrimidine 4m

6

White solid: FT-IR (KBr, cm-1): 3425, 3371, 3193, 2898, 2198, 1674, 1573, 1396; 1H NMR (500 MHz, DMSO-d6) δ: 4.99 (1H, s, CH), 7.23 (2H, s, NH2), 7.42-7.77 (4H, m, ArH); 12.33 (1H, br s, NH), 13.52 (1H, br s, NH); 13C NMR (125 MHz, DMSO-d6) δ: 56.0, 123.3, 123.7, 125.3, 127.1, 130.5, 133.4, 135.1, 149.1, 161.4, 163.2, 173.0. 3 Results and discussion 3.1. Preparation of Fe3O4/cellulose There were a few methods in literatures for the preparation of Fe3O4/cellulose nanocomposite. As a known route, the nanocomposite of Fe3O4/cellulose was prepared via insitu synthesis of Fe3O4 in the presence of cellulosic film. In the next report, the nanocomposite was obtained by the addition of ammonium hydroxide to a mixture of cellulose, FeSO4 and Fe2(SO4)3 at 60 ºC (Edjlali, Hosseinzadeh, & Abolhasani, 2014). The nanocomposite was also synthesized by adding cellulose microspheres in a mixture of FeCl2.4H2O and FeCl3.6H2O solution followed by adding ammonia solution at 60 ºC (Luo, Liu, Zhou, & Zhang, 2009). In this work, the Fe3O4 nanoparticles were incorporated into the cellulose matrix/pores that had not enough catalytic activity. But, in our previously reported method, the nanocomposite was obtained via in-situ synthesis of Fe3O4 nanoparticles in a solution of FeCl3.6H2O and microcrystalline cellulose film at room temperature (Maleki et al., 2014b; Maleki et al., 2015b). The preparation of cellulosic film allows the nanoparticles to be diffused better in the cellulose texture. In this procedure, the Fe3O4/cellulose nanocomposite was prepared with high content of Fe3O4 nanoparticles. As a result, the nanocomposite had excellent catalytic activity in chemical reactions. 3.2. FT-IR spectra

7

FT-IR spectrum indicates the formation of Fe3O4/cellulose. As can be seen in Fig. 1a, the adsorptions marked with arrows at near 3346, 2889, 1610 and 1336 are ascribed to the stretching and bending vibrations of OH and CH2 groups of cellulose, respectively. The absorptions of FeO bond can be seen around 630 and 582 cm-1. Furthermore, Fig. 1b shows the catalyst stability after 5 times reusing in the organic reactions. As can be seen from the FT-IR spectrum of the nanocatalyst, it had good chemical stability and almost nothing was happened for its carbohydrate matrix, cellulose Fe3O4 or composite functionalities during the chemical reactions. 3.3. Elemental analysis An EDX analysis was provided to approve the presence of C, O and Fe elements in the nanocomposite structure (Fig. 2). In addition, ICP-AES analysis of the Fe3O4/cellulose nanocomposite showed that the Fe content in the nanocomposite was about 35.7%. This data about nanoparticle loading in carbohydrate matrix was also confirmed by the results obtained from thermal analysis. 3.4. Structure and morphology of the nanocomposite The structure, morphology and particle size were characterized by conventional nanomaterials analysis instruments. Fig. 3a shows the FE-SEM image of pristine cellulose film. By comparing this image with the FE-SEM of Fe3O4/cellulose nanocomposite in Fig. 3 (b,c), it confirmed that iron oxide has been successfully embedded in the cellulosic matrix. Furthermore, the prepared nanocomposite was studied by TEM technique (Fig. 4a, b). TEM images were used to understand the morphology of the nanocomposite, precisely. It can be concluded that Fe3O4 nanoparticles were effectively diffused in texture and also adsorbed into the cellulose film by electrostatic forces or chemical interactions. In other words, significant

8

core/shell preparation of the nanomaterials in the carbohydrate cellulose matrices can also be concluded. Finally, to determine the average size distribution of the nanoparticles, 90 particles were used randomly. According to the histogram, the sizes of most of the nanoparticles were about 20-25 nm (Fig. 4c).

b3.5. Magnetic properties The magnetic property of the nanocomposite was investigated at room temperature under 8 kOe applied field by using VSM technique. The obtained saturation magnetization from the hysteresis loop was about 8.15 emu g-1. As can be seen in Fig. 5a, the magnetization increased with an increase of the magnetic field. It exhibited a small hysteresis loop and low coercivity. This is characteristic of superparamagnetic particles. Therefore, the nanocomposite can be known as an excellent magnetically-recoverable and renewable nanocatalyst. 3.6. Thermal behavior of the Fe3O4/cellulose nanocomposite The thermal behavior of the prepared nanocomposite was investigated by TG/DTA analyses over the temperature range of 20-800 °C at air atmosphere (Fig. 5b,c). Thermal analysis identified three separate weight loss regions on the TG curve. The first weight loss up to 160 ºC is due to the removal of water from the nanocomposite. The second weight loss observed in the temperature domain 220–336 ºC is due to decomposition and elimination of some organic groups from the nanocomposite. Over 336 ºC the mass loss is great and can be associated with the elimination of the organic groups associated/linked to nanoparticles.

9

3.7. Application of Fe3O4/cellulose nanocomposite for the synthesis of pyranopyrimidine derivatives A model experiment was carried out by using 1.0 mmol of each of 3-nitrobenzaldehyde (0.151 g), malononitrile (0.066 g) and 2-thiobarbituric acid (0.144 g) for optimizing the reaction conditions. Higher yields of the products were obtained in H2O rather than other solvents such as EtOH, EtOH/H2O, CH3CN and CHCl3. Also, the best result was obtained with 2 mg of the nanocatalyst. There is a comparison between nano-Fe3O4/cellulose and two other catalysts DABCO (Bhat, Shalla, & Dongre, 2014) for obtaining 4e (83%) and choline chloride/ZnCl2 (Yadav & Quraishi, 2014) for obtaining 4j (67%) and 4o (42%). Based on the results, by using Fe3O4/cellulose nanocatalyst, the products were gathered in high yields [4e (90%), 4j (90%) and 4o (76%)]. This difference can be explained by the fact that nanocatalysts have considerable catalytic activity because of their nanometer dimensions which increase their specific surface area. Furthermore, the most important superiorities of the present catalyst are ease of separation, reusability and the green nature of the nanocatalyst. The ease of separation of the catalyst is another factor for obtaining products in high yields. For clarifying the need of the nano-Fe3O4/cellulose catalyst, a few tests were carried out in the presence of each of the nanocomposite components (Fe3O4 and cellulose) and also absence of the Fe3O4/cellulose. In these conditions, yields of the reactions were trace or very low after 3 h. As a result, the nanocatalyst had an important role in the reaction. The mechanism of the reaction can be explained by Lewis acid properties of the Fe3O4 and also synergistic effect of cellulose in conjunction with Fe3O4 nanoparticles. As is evident from Table 1, different kinds of aldehydes have employed in the reaction and pyranopyrimidines 4a-o were obtained as sole products in high yields. This confirms wide scope and applicability of the method for the synthesis of heterocyclic compounds. The products were

10

identified by spectral data IR and comparing with those reported literature authentic samples. Also, 4m was characterized by IR, 1H and 13C NMR spectral data analyses. The workup procedure of the products was easy as the nanocatalyst can be separated simply by an external magnet. Therefore, this process offers attractive advantages like operational simplicity and environmentally benign nature. Furthermore, one of the most important features of the present green protocol was its chemoselectivity and also chemospecificity. This reaction gave a single product and there was no need for controlling of the by-product(s) formation. This advantageous beside recoverability of the biodegradable and eco-friendly catalyst and using of water as a green reaction medium make this research highly favorable for large-scale synthesis.

11

A proposed mechanism for the formation of the product 4a-o was shown in Scheme 1. Initially, an intermediate (A) was produced from a Knoevenagel condensation between an aromatic aldehyde (1) and malononitrile (2) and another intermediate (B) was formed from a Michael addition with barbituric or thiobarbituric acid (3) in the presence of Fe3O4/cellulose nanocatalyst. After that, an intermolecular cyclization of C from the enol form of B produces compound D. Finally, a tautomerization affords the target products 4a-o. 3.8. Application of Fe3O4/cellulose nanocomposite for the synthesis of pyrazolopyranopyrimidine derivatives Due to success of the Fe3O4/cellulose nanocomposite in green synthesis of pyranopyrimidine derivatives, we decided to develop its catalytic activity investigation for the synthesis of pyrazolopyranopyrimidine derivatives, too. In this regard, a model experiment was performed by using 1.0 mmol of each of 4-methylbenzaldehyde, ethyl acetoacetate, hydrazine hydrate and barbituric acid for optimizing the reaction conditions. The best yields of the products were obtained in H2O rather than other solvents such as EtOH, EtOH/H2O, CH3CN and CHCl3. Also, the best result was obtained bu using 5 mg of the nanocatalyst. Subsequently, a series of differently pyrazolopyranopyrimidine derivatives were prepared successfully under optimal conditions. The results are listed in Table 2. a

Reaction conditions: aldehyde (1.0 mmol), ethyl cyanoacetate (1.0 mmol), barbituric acid (1.0 mmol), hydrazine hydrate (1 mmol), cellulose-based nanocomposite (5 mg), water (2 mL), room temperature. b

Isolated yields. Conclusions In summary, we have introduced an attractive cellulose-based nanobiocomposite catalyst for the one-pot three-component synthesis of pyrano[2,3-d]pyrimidine and pyrazolopyranopyrimidine derivatives. This efficient protocol let the synthesis biologically and pharmaceutically pyranopyrimidine derivatives in water with easier isolation and recovery of the catalyst in

12

comparison with literature reports. Easy workup procedure, reusability of the catalyst as well as high atom economy, excellent yields, mild and green reaction conditions and chemoselectivity are some important aspect of the present protocol. This reaction gave a single product and there was no need for controlling of the by-product(s) formation. This advantageous beside recoverability of the biodegradable and eco-friendly catalyst and using of water as a green reaction medium make this research highly favorable for chemical and biological large-scale synthesis. Acknowledgements The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology. We also would like to thank the anonymous reviewers for their time spent critically reviewing the manuscript and providing the valuable comments and constructive criticisms that have really improved our manuscript. References Abedini, M., Shirini, F., Mohammad-Alinejad Omran, J., Seddighi, M., & Goli-Jolodar, O. (2016). Succinimidinium N-sulfonic acid hydrogen sulfate as an efficient ionic liquid catalyst for the synthesis of 5-arylmethylene-pyrimidine-2,4,6-trione and pyrano[2,3-d]pyrimidinone derivatives. Research on Chemical Intermediates, 42, 4443–4458. Bahat, A. R., Shalla, A. H., & Dongre, R. S. (2014). Synthesis of new annulated pyrano[2,3d]pyrimidine derivatives using organo catalyst (DABCO) in aqueous media. Journal of Saudi Chemical Society, 21, S305-S310. Bararjanian, M., Balalaie, S., Movassagh, B., & Amani, A. M. (2009). One-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by L-proline in aqueous media. Journal of the Iranian Chemical Society, 6, 436-442.

13

Brahmachari, G., & Banerjee, B. (2014). Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustainable Chemistry, 2, 411-422. Chen, F., Huang, M., & Li, Y. (2014). Synthesis of a novel cellulose microencapsulated palladium nanoparticle and its catalytic activities in Suzuki-Miyaura and Mizoroki-Heck reactions. Industrial & Engineering Chemistry Research, 53, 8339-8345. Corobea, M. C., Muhulet, O., Miculescu, F., Antoniac, I. V., Vuluga, Z., Florea, D., Vuluga, D. M., Butnaru, M., Ivanov, D., Voicu, S. I., & Thakur, V. K., (2016). Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires, Polymer Advanced Technologies, 27, 1586-1595. Deb, M. L., & Bhuyan, P. J. (2010). Synthesis of some novel annulated pyrido[2,3-d] pyrimidines via stereoselective intramolecular hetero Diels–Alder reactions of 1-oxa-1,3butadienes. Beilstein Journal of Organic Chemistry, 6(11), doi:10.3762/bjoc.6.11. Dinakaran, V. S., Bomma, B., & Srinivasan, K. K. (2012. Fused pyrimidines: the heterocycle of diverse biological and pharmacological significance. Der Pharmaceutical Chemistry, 4, 255-256. Edjlali, L., Hosseinzadeh, R., & Abolhasani, J. (2014). Fe3O4 nano-particles supported on cellulose as an efficient catalyst for the synthesis of pyrimido[4,5-b]quinolines in water. Monatshefte fuer Chemie –Chemical Monthly 146, 1339-1342. Gawande, M. B., Branco, P. S., & Varma, R. S. (2013). Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chemical Society Reviews, 42, 3371-3393.

14

Heravi, M. M., Mousavizadeh, F., Ghobadi, N., & Tajbakhsh, M. (2014). A green and convenient protocol for the synthesis of novel pyrazolopyranopyrimidines via a one-pot, fourcomponent reaction in water. Tetraherdron Letters, 55, 1226-1228. Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358-3393. Li, X. T., Zhao, A. D., Mo, L. P., & Zhang, Z. H. (2014). Meglumine catalyzed expeditious fourcomponent domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Advances, 4, 51580-51588. Luo, X., Liu, Sh., Zhou, J., & Zhang, L. (2009). In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. Journal of Material Chemistry, 19, 35383545. Maleki, A., Alirezvani, Z., & Maleki, S. (2015a). Design, preparation and characterization of urea-functionalized Fe3O4/SiO2 magnetic nanocatalyst and application for the one-pot multicomponent synthesis of substituted imidazole derivatives. Catalysis Communication, 69, 29-33. Maleki, A., Ghamari, N., & Kamalzare, M. (2014a). Chitosan-supported Fe3O4 nanoparticles: a magnetically recyclable heterogeneous nanocatalyst for the syntheses of multifunctional benzimidazoles and benzodiazepines. RSC Advances, 4, 9416-9423. Maleki, A., Jafari, A. A., Yousefi, S., & Eskandarpour, V. (2015b). An efficient protocol for the one-pot multicomponent synthesis of polysubstituted pyridines by using a biopolymer-based magnetic nanocomposite. Comptes Rendus Chimie, 18, 1307-1312.

15

Maleki, A., & Kamalzare, M. (2014b). Fe3O4@cellulose composite nanocatalyst: preparation, characterization and application in the synthesis of benzodiazepines. Catalysis Communication, 53, 67-71. Maleki, A., Movahed, H., & Paydar, R. (2016a). Design and development of a novel cellulose/γFe2O3/Ag nanocomposite: a potential green catalyst and antibacterial agent. RSC Advances, 6, 13657-13665. Maleki, A., Rahimi, R., & Maleki, S. (2016b). Efficient oxidation and epoxidation using a chromium(VI)-based magnetic nanocomposite. Environmental Chemistry Letters, 14, 195–199. McCoy, J. G., Marugan, J. J., Liu, K., Zheng, W., Southall, N., Huang, W., Heilig, M., & Austin, C. P. (2010). Selective modulation of Gq/Gs pathways by naphtho pyrano pyrimidines as antagonists of the neuropeptide S receptor. ACS Chemical Neuroscience, 1, 559–574. Ramesh, R., & Lalitha, A. (2015). Synthesis of pyran annulated heterocyclic scaffolds: a highly convenient protocol using dimethylamine. Research on Chemical Intermediates, 41, 8009–8017. Trache, D., Hussin, M. H., Mohamad Haafiz, M. K., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 9, 1763-1786. Vaddula, B. R., Saha, A., Varma, R. S., & Leazer, J. (2012). Tsuji–Trost N-allylation with allylic acetates by using a cellulose–palladium catalyst. European Journal of Organic Chemistry, 34, 6707-6709. Yadav, D. K., & Quraishi, M. A. (2014). Choline chloride.ZnCl2: green, effective and reusable ionic liquid for synthesis of 7-amino-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-pyrano[2,3d]pyrimidine-6-carbonitrile derivative. Journal of Material and Environmental Science, 5, 10751078.

16

Yu, B., Yu, D. Q., & Liu, H. M. (2014). Spirooxindoles: promising scaffolds for anticancer agents. European Journal of Medicinal Chemistry, 97, 673-698. Yu, J., & Wang, H. (2005). Green synthesis of pyrano[2,3-d]pyrimidine derivatives in ionic liquids. Synthetic Communication, 35, 3133–3140. Ziarani, G. M., Faramarzi, S., Asadi, Sh., Badiei, A., Bazl, R., & Amanlou, M. (2013). Threecomponent synthesis of pyrano[2,3-d]pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H) and their docking and urease inhibitory activity. Journal of

Transmittance (%)

Pharmaceutical Sciences, 21, 3-16.

a

,, 412.738205, 1502.444213, 1500.51553, 1504.372896, 919.981886, 1498.586846, 1506.301579, 921.91057, 1188.068851, 918.053203, ,1539.089194, 1496.658163, 923.839253, 1186.140168, 1508.230262, 846.691925, 844.763242, 842.834558, 916.12452, 1494.72948, 848.620608, 850.549291, 840.905875, 925.767936, 1510.158946, 1189.997534, 852.477974, 838.977192, 410.809522, 927.696619, 1512.087629, 1492.800797, 929.625302, 914.195837, 854.406658, 837.048509, 1184.211485, 931.553986, 1514.016312, 856.335341, 835.119826, 1766.673811, ,1807.176158, 1770.531178, 1764.745128, 1490.872114, ,1816.819574, 1774.388544, 1772.459861, 1828.391674, 1824.534307, 1776.317227, 1762.816445, ,,1548.73261, 1515.944995, 933.482669, ,1874.68007, 1832.24904, 1820.676941, ,1865.036654, 1830.320357, 1822.605624, 858.264024, 912.267154, 1818.748258, 1789.81801, 1780.174594, 1834.177723, 1814.890891, 1782.103277, ,1836.106406, 1793.675376, 1791.746693, 1760.887762, ,1826.46299, 1805.247475, 1795.604059, 1784.03196, 1191.926218, ,1855.393238, 1812.962208, 1801.390109, 1785.960643, ,1845.749822, 1839.963773, 1838.03509, 1809.104842, 1803.318792, 1799.461426, 779.188013, 833.191142, 1811.033525, ,1884.323486, 1841.892456, 781.116696, 1517.873678, 935.411352, 1843.821139, 1757.030395, 777.25933, 860.192707, ,1797.532742, 1755.101712, ,1531.374461, 1488.94343, 1847.678506, 783.045379, 3838.079568, ,1893.966902, 1851.535872, 1849.607189, 1751.244346, 937.340035, 3978.873442, 1753.173029, 3971.158709, 3969.230026, 1853.464555, 1741.60093, 1739.672246, 862.12139, 3975.016075, 1743.529613, 3980.802125, 3973.087392, ,1787.889326, 1747.386979, 1745.458296, 831.262459, 1737.743563, 1863.107971, 1519.802362, ,1903.610318, 1861.179288, 1866.965338, 1859.250605, ,1778.24591, 1735.81488, 1857.321922, 775.330646, 3757.074874, 1868.894021, 784.974062, ,1913.253734, 1870.822704, 3982.730808, 1872.751387, 864.050074, 3949.943194, 1521.731045, 939.268718, 1733.886197, ,3797.577221, 3755.14619, 3946.085827, ,3882.439282, 3840.008251, ,,, 1215.070416, 3951.871877, 3760.93224, 3984.659491, 3782.147755, ,3986.588174, 3944.157144, ,3807.220637, 3764.789606, 1876.608754, 1523.659728, 3836.150885, 1878.537437, 1731.957514, 1213.141733, ,3828.436152, 3786.005122, ,3772.504339, 3730.073309, ,1922.89715, 1888.180853, 1886.25217, 1880.46612, 865.978757, 3780.219072, 1525.588411, ,3996.23159, 3953.80056, ,1932.540566, 1890.109536, 1882.394803, 3965.372659, ,3818.792736, 3784.076438, 3776.361706, ,,,1205.427, 910.33847, 3778.290389, ,3762.860923, 3720.429893, 1892.038219, 3841.936934, 3726.215942, 1487.014747, 1182.282802, 1730.02883, 786.902746, 867.90744, 1216.999099, 829.333776, 3728.144626, 3722.358576, 3992.374224, 3988.516858, 3942.228461, 1895.895586, 773.401963, 3834.222202, 3759.003557, 869.836123, 3955.729243, 3768.646973, 3774.433022, 3994.302907, 1897.824269, 1728.100147, 3990.445541, 3963.443976, 3770.575656, 3751.288824, ,,,,3998.160274, 3959.58661, 3687.642278, 3961.515293, 3766.71829, 871.764806, 941.197402, 1529.445778, 1899.752952, 3718.50121, 3716.572526, 3712.71516, 1193.854901, ,1768.602494, 1726.171464, 873.69349, 1211.21305, ,3743.574091, 3701.143061, 3699.214378, 3697.285694, 3695.357011, ,3733.930675, 3691.499645, 1724.242781, 3897.868747, 1901.681635, ,3753.217507, 3710.786477, ,3967.301342, 3940.299778, 3924.870312, 3832.293518, 3693.428328, ,3853.509034, 3811.078003, 3826.507469, 3791.791171, 3689.570962, 3732.001992, 3813.006686, 3789.862488, ,1946.041349, 771.47328, 3809.14932, 875.622173, 1905.539002, 1533.303144, 3922.941629, 3805.291954, 3708.857794, 1907.467685, 827.405093, 3749.360141, 1722.314098, ,3948.01451, 3905.58348, 3703.071744, 1218.927782, 3894.011381, 3685.713595, 3926.798995, 3865.081133, ,3938.371094, 3901.726114, 3895.940064, 3890.154014, 3845.794301, 1909.396368, 788.831429, 3892.082698, ,3872.795866, 3830.364835, 3903.654797, 1911.325051, 1535.231827, 943.126085, 3921.012946, 3747.431458, 3814.93537, 3737.788042, 3706.92911, 1720.385414, 3936.442411, 3824.578786, 3793.719854, 3795.648538, 3917.155579, 3911.36953, 3847.722984, 3816.864053, ,3863.15245, 3820.721419, 3803.36327, ,1955.684765, 1537.16051, 3932.585045, 3822.650102, 3930.656362, ,3843.865618, 3801.434587, ,3957.657926, 3915.226896, 3799.505904, 3735.859358, 1915.182418, 877.550856, 1718.456731, ,1527.517094, 1485.086064, 3913.298213, 1917.111101, ,3928.727678, 3886.296648, 3849.651667, 3861.223766, 769.544597, 3907.512163, 1919.039784, ,3976.944758, 3934.513728, 1209.284366, 1920.968467, ,1758.959078, 1716.528048, ,3909.440846, 3867.009816, 3888.225331, ,3787.933805, 3745.502774, 908.409787, ,1965.328181, 3884.367965, 3859.295083, 3739.716725, 3851.58035, ,3724.287259, 3681.856229, 1924.825834, 825.47641, 3741.645408, 3880.510598, ,,1562.233392, 1541.017877, 1926.754517, 3855.437717, 1928.6832, 1714.599365, 3870.867182, 3868.938499, 1934.46925, 3878.581915, ,1974.971597, 1930.611883, 1938.326616, 1936.397933, 1712.670682, 790.760112, 945.054768, 1940.255299, 1220.856466, ,3919.084262, ,3899.79743, 3876.653232, 3857.3664, ,1984.615013, 1942.183982, 767.615914, 1944.112666, 1195.783584, 3679.927546, 1542.94656, 879.479539, 3874.724549, 1947.970032, 1544.875243, 1949.898715, 823.547726, ,1994.258429, 1951.827398, 1710.741998, 1953.756082, 3677.998862, 3676.070179, 1957.613448, 1959.542131, ,2003.901845, 1961.470814, 1708.813315, 1207.355683, 1963.399498, 765.68723, 1967.256864, 3674.141496, ,1749.315662, 1706.884632, ,,,1247.85803, 946.983451, 1546.803926, 414.666888, 792.688795, 1969.185547, 821.619043, , 1971.11423, 1180.354118, 1222.785149, ,3714.643843, 3672.212813, 1973.042914, 1704.955949, 1483.157381, 881.408222, 3660.640714, 3664.49808, 1976.90028, 3670.28413, 1978.828963, 1197.712267, 3668.355446, 3666.426763, , 1980.757646, 1703.027266, 1982.68633, ,3705.000427, 3662.569397, , 1550.661293, , 1990.401062, 906.481104, 819.69036, 763.758547, 1988.472379, 1992.329746, 1986.543696, 1996.187112, 1998.115795, , 2000.044478, 2001.973162, 1701.098582, 1552.589976, 794.617478, 2007.759211, 2005.830528, 3658.71203, 1224.713832, , 2009.687894, 1203.498317, 817.761677, 948.912134, 1199.64095, 2011.616578, 1554.518659, 2013.545261, 2015.473944, 1699.169899, 2017.402627, 883.336906, 1201.569634, 1556.447342, 761.829864, , 2019.33131, 3656.783347, 2021.259994, 796.546162, 2023.188677, 2025.11736, 2027.046043, 815.832994, , 2028.974726, 1226.642515, 3654.854664, , 1697.241216, 1558.376026, 2032.832093, 2030.90341, 2034.760776, , 1481.228698, 2036.689459, , 1242.071981, 1244.000664, 1240.143298, , 1560.304709, , 2038.618142, 2040.546826, ,91.23981 813.90431, 1228.571198, 2042.475509, 1238.214614, 904.552421, 1695.312533, 2044.404192, 798.474845, 1245.929347, 2046.332875, , 4000.088957, 90 950.840818, , 2067.54839, 2063.691024, , 2065.619707, 2048.261558, , 2061.762341, 2059.833658, 2057.904974, 2052.118925, 2050.190242, ,,3683.784912, 3652.925981, b 2071.405757, 2069.477074, 2055.976291, 2054.047608, 759.901181, 2073.33444, 1230.499882, 2075.263123, 2082.977856, 2079.12049, , 2084.906539, 2081.049173, 2077.191806, 1236.285931, 811.975627, , 2086.835222, 2088.763906, 885.265589, 2090.692589, 1234.357248, 1232.428565, 800.403528, 2092.621272, 1564.162075, 1693.38385, 2094.549955, 810.046944, , , 2096.478638, 3650.997298, 1286.431694, 2098.407322, 1178.425435, 802.332211, 1288.360378, 808.118261, Series2, 2100.336005, 1284.503011, 804.260894, 806.189578, 2102.264688, 1566.090758, 2335.635355, 2104.193371, 2333.706672, , 2106.122054, 1282.574328, 2337.564038, 2331.777989, 2108.050738, , 2329.849306, , 1290.289061, 2109.979421, , 2133.123619, , 1691.455166, , 2339.492722, 2327.920622, 2131.194936, 3649.068614, 2136.980986, 2135.052302, 2129.266253, 2111.908104, 2140.838352, 2138.909669, 2113.836787, 2127.33757, , 2125.408886, 2115.76547, , 1280.645645, 757.972498, , 2142.767035, , 1568.019442, 2341.421405, 2123.480203, 952.769501, 2144.695718, 2117.694154, 2325.991939, 2121.55152, 2119.622837, 92.48566 2146.624402, 2322.134573, 2148.553085, 2324.063256, 2150.481768, , 902.623738, , 1479.300014, 2152.410451, , 2320.20589, 2360.708237, 2343.350088, 2154.339134, 92.269705 1249.786714, 92.262245 887.194272, , 2358.779554, , 2156.267818, 3647.139931, 2362.63692, 2318.277206, 1278.716962, 2345.278771, 1569.948125, 92.20252 2356.85087, 2158.196501, 1292.217744, 2316.348523, 2314.41984, 2162.053867, 2160.125184, 92.15003 2354.922187, 2163.98255, 92.112438 2270.060126, 2268.131443, 92.08356 92.085387 2266.20276, 1689.526483, 2264.274077, , 2165.911234, 2364.565603, 2352.993504, 2167.839917, , 2271.98881, 2347.207454, 91.985547 , 2262.345394, 2169.7686, 2312.491157, , 2310.562474, 2351.064821, 2308.63379, 2273.917493, 2229.557779, 2171.697283, 91.938154 91.939315 2260.41671, 2231.486462, 2227.629096, 3645.211248, , 2349.136138, , 2233.415146, 2173.625966, 2306.705107, 2258.488027, 1571.876808, 2235.343829, 2225.700413, 2189.055432, 2187.126749, 91.859932 2275.846176, 2256.559344, 2254.630661, , , 2185.198066, 2175.55465, 2304.776424, 2177.483333, 91.834998 2237.272512, 2183.269382, 2181.340699, 91.818738 2366.494286, , 2252.701978, , 2194.841482, 2190.984115, 2179.412016, 2277.774859, 2302.847741, 2196.770165, 2279.703542, 2239.201195, 2192.912798, 91.745134 , 2250.773294, 2241.129878, 2223.77173, 91.734255 2248.844611, 2246.915928, 2244.987245, 2198.698848, , 2243.058562, 91.707105 91.686632 91.67736 91.683749 , 2297.061691, 2281.632226, 91.666594 , 2300.919058, 2295.133008, 1276.788278, 91.649614 2298.990374, 2293.204325, , 2291.275642, 91.604592 2200.627531, 91.594541 2283.560909, 2221.843046, 91.584234 2289.346958, , 2368.42297, 2287.418275, 2285.489592, 3641.353882, 489.885533, 91.496278 91.479212 3643.282565, 91.452382 91.439328 2202.556214, 91.40995 , 1687.5978, 1294.146427, 954.698184, 2219.914363, 91.365206 491.814216, 91.366119 91.339876 , 2204.484898, 91.298474 756.043814, 91.265239 2370.351653, 493.742899, 1573.805491, 91.195881 2217.98568, 91.170891 900.695054, 2206.413581, 1251.715397, 889.122955, 91.106816 2208.342264, 408.880838, 2216.056997, 91.045877 2210.270947, 90.99987 91.00324 , 2214.128314, 90.968373 90.968176 90.970547 2212.19963, 90.960426 90.953924 , 1274.859595, , 3639.425198, 90.921556 90.932218 90.929816 90.933622 90.928664 90.928982 2372.280336, 90.906297 90.881658 90.888308 90.88661 90.869667 90.874968 90.874246 90.875567 90.857643 90.837783 90.847109 90.835045 90.83435 90.824267 90.830298 1575.734174, 90.819988 90.813264 90.819296 90.815524 90.80813 90.808949 90.803678 90.797736 90.79671 90.795402 90.783327 90.787672 90.787194 1685.669117, 90.774481 90.770074 90.767025 90.775368 90.775881 90.776029 90.777319 90.759318 90.751201 90.756063 90.739433 90.719215 90.702016 90.695295 90.687002 90.692151 90.680051 90.660518 90.655897 , 1477.371331, 90.611249 90.587607 90.594606 90.586687 90.557148 90.544325 90.546219 90.540369 90.526572 90.510583 2374.209019, 90.518912 90.506355 , 1296.07511, 90.471684 90.47374 90.480417 90.463407 3637.496515, 90.440875 90.428402 90.436658 90.43185 90.419626 90.419275 90.41683 90.421481 90.41237 90.414679 90.406809 90.390276 90.383751 90.395323 90.379259 90.365647 90.360282 90.358502 90.356886 90.364346 90.345491 , 90.344849 487.95685, , 2376.137702, 90.327434 90.331054 90.326313 90.318731 1176.496752, , 1577.662858, 90.272122 90.27428 90.273145 90.271829 90.257865 891.051638, 898.766371, 90.258498 90.25484 90.25373 , 956.626867, 90.231328 90.217674 90.225819 90.220023 90.205476 90.213135 90.201954 90.188656 90.196999 90.183563 2378.066386, 90.170107 90.164714 90.160388 90.149 90.153585 90.144442 90.154159 90.116125 90.114185 90.114902 90.117246 90.12256 90.119232 90.106488 90.108603 90.103597 90.089751 90.098828 90.096723 90.09233 90.081329 90.078396 90.077167 1272.930912, 90.072213 90.055338 90.047398 90.055373 90.04645 90.029226 90.040285 90.036903 90.041622 90.024645 90.025527 90.008061 90.010012 90.001759 89.994511 89.994087 89.987011 89.978985 89.978176 89.980669 89.963148 89.964137 89.965846 89.964943 89.963456 89.945283 89.956082 89.952193 , 1683.740434, 89.953256 89.935024 89.93566 89.928723 89.91143 89.913403 89.915055 89.914751 89.914264 754.115131, 89.892817 89.899956 2379.995069, 89.881228 89.879342 1579.591541, 89.865168 89.861367 89.869893 495.671582, 89.847387 89.85728 89.851045 89.849362 3635.567832, 89.820641 896.837688, 89.789496 89.797644 89.789734 89.790564 89.802677 89.783311 89.777618 , 1253.64408, 89.787904 89.776494 89.768153 89.75151 89.744177 89.741201 89.742117 89.732037 892.980322, 89.709141 2381.923752, 89.698639 89.700897 89.703285 89.671607 89.656362 89.659064 89.655201 89.647677 89.633111 89.641749 89.624248 89.623563 89.619959 2383.852435, 89.608998 1298.003794, 894.909005, 89.601647 89.591135 89.60214 89.593499 89.581132 89.575363 89.572073 89.568515 89.549361 89.539693 89.535102 89.53418 89.533914 89.530599 89.523842 89.520434 89.532646 89.509813 89.51214 89.515674 89.493016 89.496915 89.500044 2385.781118, 89.47939 89.484029 89.472227 89.470834 89.4637 , 2387.709802, 89.47528 89.466828 89.45813 89.462662 89.454489 89.454285 89.459081 89.4422 ,89.678725 3633.639149, 89.427778 89.428008 89.41336 2389.638485, 89.419975 89.405564 89.403773 89.404917 89.403833 89.389131 89.392139 89.383459 2393.495851, 89.3676 89.377234 89.37371 89.359812 89.358724 89.355134 89.361423 2391.567168, 1581.520224, 89.335745 89.339427 89.336859 89.341805 89.32779 89.324691 89.317013 89.308553 89.298623 2395.424534, 89.286028 89.284283 89.280799 89.280762 89.278093 89.270338 89.273001 89.242445 89.24465 89.250076 89.22996 89.220561 89.213822 89.208466 1681.81175, 89.199109 , 2397.353218, 89.197452 89.187049 2399.281901, 89.183713 89.186571 89.176976 89.170038 89.157922 89.152423 89.151471 89.141276 89.112235 , 1271.002229, 89.099832 89.094604 2401.210584, 416.595571, 89.085277 89.073633 89.061166 486.028166, 89.051628 89.045266 89.049781 89.028939 89.035604 89.029055 89.029264 , 958.55555, 89.006378 2403.139267, 88.994714 88.992392 88.99446 88.968374 88.96425 88.943646 2405.06795, 88.914602 88.898571 88.903244 88.90986 88.88653 88.890304 88.890182 88.869169 88.878347 88.869305 88.877586 88.879799 88.85746 1583.448907, , 1475.442648, 88.848878 497.600266, 88.815869 88.818719 88.817039 88.811703 88.809323 , 2406.996634, 88.792697 88.769725 3631.710466, 88.780338 88.782548 88.763796 88.767888 88.736367 88.736071 88.739842 , 1299.932477, 2408.925317, 88.691653 88.670519 88.662219 88.647882 2410.854, 88.624101 88.580757 88.567994 2412.782683, 88.548021 88.549023 88.541347 88.514811 88.522363 2414.711366, 88.497342 88.469927 1255.572763, , 2416.64005, 88.408439 88.408302 2418.568733, 88.351913 88.358506 , 1679.883067, 484.099483, 2420.497416, 88.33005 , 752.186448, 88.303409 88.293886 88.295428 88.292723 , 1585.37759, 88.256184 2422.426099, 88.215497 2424.354782, 88.193456 1269.073546, , 2426.283466, 88.168462 88.170606 ,89.449641 3629.781782, 88.129201 88.126551 88.114395 88.112569 88.110578 2428.212149, 88.104031 2430.140832, 88.071687 88.028721 87.999134 2432.069515, 87.998289 87.961808 2433.998198, 87.94446 87.921864 87.928365 87.923236 87.93393 87.892826 87.888181 499.528949, 87.868837 87.869564 87.853641 87.861268 87.861782 , 2435.926882, 87.848472 87.841304 87.843252 87.818941 1301.86116, 2437.855565, 87.803541 87.804985 87.783667 87.759269 960.484234, 87.727444 2439.784248, 1587.306274, 87.702394 2441.712931, 87.652638 2443.641614, 87.644051 87.64313 2445.570298, 87.635914 3627.853099, 2447.498981, 87.573235 2449.427664, 87.541116 87.550524 , 2451.356347, 87.511271 2453.28503, 1677.954384, 87.429428 87.428483 87.426036 , 1267.144862, 2455.213714, 87.37877 87.37022 480.242117, 87.34527 87.335547 2457.142397, 1257.501446, 87.306229 87.289618 87.273117 87.233057 87.233332 2459.07108, 87.217155 87.192113 , 1473.513965, 87.156398 482.1708, , 2460.999763, 1174.568069, 87.1293 2462.928446, 87.091002 87.072166 87.082714 3625.924416, 87.028814 2464.85713, 86.992635 , 1589.234957, 86.969493 86.970109 86.943852 86.940001 86.920233 2466.785813, 86.905295 86.893409 86.882696 86.875033 2468.714496, 1303.789843, 86.820843 1265.216179, , 2470.643179, 86.778678 472.527384, 86.722457 86.729646 86.723437 2472.571862, 86.711293 , 962.412917, 86.67974 86.668546 86.648611 86.636398 2474.500546, , 1676.025701, 474.456067, 86.585466 86.566349 2476.429229, 86.544332 86.542952 478.313434, 86.509453 , 1259.43013, ,,,87.520836 3623.995733, 86.490879 86.492595 86.486582 750.257765, 2478.357912, 86.420704 86.409961 86.394403 , 2480.286595, 86.377249 86.385504 86.366375 86.374067 1263.287496, 86.344375 86.340072 86.33778 86.34086 86.3435 86.325547 86.326843 86.332317 86.329277 , 86.325629 476.38475, 86.319627 86.3193 86.313583 86.299774 86.266218 86.270908 2482.215278, 86.252352 86.260901 86.261283 86.258264 86.251699 420.452938, 86.229843 1591.16364, 86.210235 , 1261.358813, 86.193897 2484.143962, 86.170362 86.149884 86.134076 86.085695 2486.072645, 86.042717 86.049353 , 2489.930011, 2488.001328, 86.003076 85.984157 85.989085 470.598701, 2491.858694, 3622.06705, 85.937106 85.918575 2493.787378, 85.869161 85.870881 2497.644744, 2495.716061, 85.857001 85.854956 85.85662 , 1305.718526, , 2499.573427, 85.827773 85.798832 418.524254, 2501.50211, 85.771954 1674.097018, 85.780225 ,, 85.026 964.3416, 2418.568733, 85.724452 85.715317 2503.430794, 85.701285 85.706728 501.457632, 85.664144 85.657965 , 1471.585282, 2505.359477, 85.650774 85.635729 85.616536 85.591842 2507.28816, 85.584323 85.571106 85.553284 85.553487 85.523624 , 2509.216843, 85.487782 85.48779 85.480318 85.472841 85.482678 , 1593.092323, 85.465547 85.469779 85.467695 2511.145526, 85.454741 85.444169 85.419644 85.426303 85.427054 85.389144 2513.07421, 85.348184 85.348272 85.347135 85.341408 85.34338 85.337568 2515.002893, 85.316314 85.317462 3620.138366, 85.305838 85.290209 85.293729 2516.931576, 85.284854 85.272299 85.263355 85.233084 2518.860259, 85.210693 85.214379 2520.788942, 85.191455 85.176298 85.176185 2522.717626, 85.16549 2524.646309, 85.117546 85.103994 , 2526.574992, 85.074801 85.081663 85.085296 85.04574 85.015843 84.991793 2528.503675, 84.992665 85.002083 85.003546 84.993893 2530.432358, 84.977228 84.977355 84.970339 84.971037 84.968365 84.951009 84.95424 84.938427 84.93801 966.270283, 2532.361042, 84.916786 84.906496 , 1672.168334, 1307.64721, 84.869602 84.866926 84.851736 84.860349 84.830881 84.832168 84.806654 84.81339 84.806688 2534.289725, 84.799731 84.765461 84.761635 84.74925 84.741936 , 2536.218408, 84.724246 1595.021006, 84.713858 84.710005 84.712926 84.708984 84.714848 84.700694 84.702042 84.687041 84.690988 84.691574 84.666976 84.668041 84.66256 84.653393 84.660865 468.670018, 84.641227 84.644551 84.637217 84.637483 2538.147091, 84.623171 84.631462 84.626069 3618.209683, 84.615403 84.621754 84.620998 84.610115 84.603969 84.594903 84.595961 84.587433 84.568897 84.567638 84.569322 84.571028 2540.075774, 84.553644 84.542405 84.542127 84.5304 84.530301 84.522265 84.516497 84.519692 84.516781 84.494505 84.495755 84.49741 84.5006 84.492584 , 1469.656598, 2542.004458, 84.446191 84.441746 , 1326.934042, 84.435903 84.434263 84.43603 84.413345 84.396825 84.391892 466.741334, 2543.933141, 84.372304 84.357801 84.358664 1325.005358, 84.345574 1328.862725, 748.329082, , 2545.861824, 2547.790507, 84.309423 84.305553 84.300011 84.281563 84.275789 84.251534 84.204973 2549.71919, 84.179159 84.174443 84.172821 84.15524 1330.791408, 84.146227 , 968.198966, 1670.239651, 2551.647874, 1309.575893, 84.073263 1323.076675, 2553.576557, 84.056356 84.034475 83.994304 , 2557.433923, 2555.50524, 83.97834 1596.94969, 83.950259 83.952889 83.936958 83.912037 406.952155, 83.91243 2559.362606, 1454.227133, 83.858365 83.860962 1332.720091, 2561.29129, 83.818132 3616.281, 83.796799 2563.219973, 1452.29845, 83.76716 1321.147992, 1456.155816, 83.743018 83.741154 , 2565.148656, 83.714895 83.676366 2567.077339, 503.386315, 1458.084499, , 1172.639386, 2569.006022, 83.611762 , 1450.369766, 1467.727915, 2570.934706, 83.569589 2572.863389, 1334.648774, 1311.504576, , 2574.792072, 83.421268 2576.720755, 1319.219309, , 1668.310968, , 1460.013182, , 1336.577458, 2578.649438, 1448.441083, , 970.12765, 83.301149 2580.578122, 83.28195 , 1598.878373, 1338.506141, 1344.29219, 1340.434824, 1342.363507, 3614.352317, 83.225535 2582.506805, , 1346.220874, 1313.433259, , 1317.290626, , 2584.435488, 83.121473 83.116367 464.812651, 1461.941866, 83.100433 83.091817 1465.799232, 1315.361942, 2586.364171, 83.045609 83.042837 83.024933 1446.5124, 1348.149557, 1400.224003, 1402.152686, 2588.292854, 82.953654 , 1404.08137, 2590.221538, 1463.870549, 82.857991 1398.29532, , 1394.437954, 1396.366637, 82.737371 426.238987, 1444.583717, 2592.150221, 1392.50927, 82.682934 82.67001 1666.382285, 82.656069 82.651723 1406.010053, 82.618464 1350.07824, 82.587722 2594.078904, 1600.807056, 82.555451 82.514207 82.490952 1390.580587, , 2596.007587, , 1442.655034, 82.400117 82.392374 82.388556 1407.938736, 462.883968, 82.275139 , 746.400398, 972.056333, 2597.93627, 82.248973 82.204131 82.186271 82.161211 1440.72635, 82.139354 82.140446 424.310304, 2599.864954, , 1664.453602, 1409.867419, 82.086515 1352.006923, 505.314998, ,,, 3612.423634, 81.991657 81.987358 1602.735739, 81.960366 2601.793637, 1438.797667, 1388.651904, 81.897595 81.872551 81.87003 81.836624 2603.72232, 81.800081 81.780327 1411.796102, 1436.868984, 81.690919 460.955285, , 2605.651003, 81.645342 81.645625 1434.940301, 81.633523 81.582171 81.561212 2607.579686, 428.16767, , 1413.724786, 81.504702 81.480842 , 1433.011618, 2609.50837, 81.419094 1662.524918, 1431.082934, 430.096354, 422.381621, 1604.664422, 2611.437053, 81.347523 1429.154251, 1415.653469, 81.279815 2613.365736, 1427.225568, , 1353.935606, 81.234087 81.22329 , 2615.294419, , 1386.723221, 81.167276 81.138305 81.133777 1425.296885, 1417.582152, 2617.223102, 81.099378 3610.49495, 81.084901 , 973.985016, 81.047127 , 1423.368202, 81.020072 2619.151786, 1419.510835, 80.980495 1421.439518, 80.973434 2621.080469, 80.949 80.929525 2623.009152, , 433.95372, 80.879309 , 1606.593106, 80.851885 , 2624.937835, 80.781093 , 1660.596235, 80.718919 80.66665 2626.866518, 80.626787 80.59533 80.585794 2628.795202, 80.521565 80.493577 80.4917 2630.723885, 80.442898 80.426886 80.413794 80.385077 1608.521789, 3608.566267, 2632.652568, 80.346629 80.320917 1355.86429, 507.243682, 80.293357 1384.794538, 80.251188 80.256336 2634.581251, 744.471715, 80.192116 80.164459 , 2636.509934, 80.134043 80.095363 80.096028 2638.438618, 2640.367301, 1658.667552, 432.025037, 79.997099 1610.450472, 79.937706 79.946878 79.931139 79.922939 2642.295984, 79.878906 , 1170.710702, 459.026602, 79.837634 2644.224667, 3606.637584, 79.803214 79.778082 , 2646.15335, 2648.082034, 79.691495 79.618545 79.618646 79.586298 79.554949 2650.010717, 79.522337 1612.379155, 79.493678 , 975.913699, 79.468895 2651.9394, 79.409148 79.410648 79.391434 , 1357.792973, 79.33111 , 1382.865854, 79.30368 79.285384 79.270908 79.26772 2653.868083, 79.243274 , 1656.738869, 3604.708901, , 2655.796766, 79.161605 79.135212 79.106465 457.097918, 1614.307838, 79.0398 79.020487 79.007006 78.991776 509.172365, 78.965773 2657.72545, 78.846432 78.799534 78.79132 2659.654133, 78.741166 78.724266 78.705103 78.669086 78.6463 78.633471 78.629508 78.612446 435.882403, 3602.780218, 2661.582816, 78.570614 78.556635 78.549705 82.16754 , 1616.236522, 78.548056 2663.511499, 78.48759 1654.810186, 78.451483 78.444518 437.811086, , 2665.440182, 78.432999 78.360376 1359.721656, 2667.368866, 78.29083 1380.937171, 78.25863 78.230985 2669.297549, 78.13562 742.543032, 78.100702 1618.165205, 78.09352 78.060113 2671.226232, 77.988758 77.973661 77.939751 2673.154915, 77.906129 77.8619 77.782398 2675.083598, 77.765505 ,,,,1652.881502, 455.169235, 77.703692 77.695993 77.684728 77.684898 1620.093888, 2677.012282, 2678.940965, 77.582048 511.101048, ,2723.300678, 2680.869648, 77.503523 77.514565 2682.798331, ,,76.89087 977.842382, 77.430731 ,,, 3600.851534, 3598.922851, 77.406147 1361.650339, 77.387877 2684.727014, 77.331482 1622.022571, ,76.537646 1379.008488, 2686.655698, 77.244662 77.230794 77.228037 453.240552, 2688.584381, ,2732.944094, 2690.513064, 2692.441747, 77.167219 77.149383 77.142837 77.116121 77.113976 77.101612 2694.37043, 77.079217 1650.952819, 2696.299114, 76.961999 76.926668 76.896999 76.89049 76.853628 76.845665 1623.951254, 2698.227797, 76.760183 76.759796 76.74582 ,2742.58751, 2700.15648, 76.687018 76.673091 76.653502 3596.994168, 76.622911 2702.085163, 76.595471 76.566761 76.562137 76.561645 ,75.88249 1363.579022, 1649.024136, 76.548072 1625.879938, 2704.013846, 76.499956 76.449453 76.445054 76.417955 76.421707 2705.94253, 76.394589 76.377782 513.029731, 76.353161 76.330141 1377.079805, 76.334348 76.298695 76.261042 2707.871213, 76.191264 1627.808621, 76.196407 76.176924 76.15144 76.143798 ,2752.230926, 2709.799896, 76.108867 76.112403 76.088986 76.068818 76.051994 76.052054 1647.095453, 76.03122 76.028462 76.024107 3595.065485, 76.001171 740.614349, ,75.39197 1168.782019, 75.976155 75.970261 75.969697 75.953741 2711.728579, 1629.737304, 75.922196 75.900202 75.846346 75.841527 2713.657262, 75.828175 75.775487 1365.507706, 75.767422 75.774378 1631.665987, 75.74792 2715.585946, 75.739424 75.663227 75.65861 75.655109 1645.16677, 75.612784 2717.514629, 1633.59467, 2719.443312, 75.546603 75.528413 75.514405 75.491542 75.488449 ,76.388151 75.474197 1375.151122, 2721.371995, 1635.523354, 75.433772 75.418736 1637.452037, 75.341257 75.347608 1643.238086, 3593.136802, 75.217311 75.204159 1641.309403, 75.197087 1639.38072, 2725.229362, 75.163895 1367.436389, 75.109077 ,2769.589075, 2727.158045, 75.056563 75.05323 75.042197 979.771066, 2729.086728, 74.945198 ,76.917616 439.73977, 74.901788 74.883056 2731.015411, 74.87196 74.877102 1373.222438, 74.835928 74.833146 74.770717 74.745507 74.706091 74.686828 74.682727 1369.365072, 2734.872778, 74.570731 74.563991 74.537618 3591.208118, ,2779.232491, 2736.801461, 1371.293755, 74.428974 74.415422 74.409316 2738.730144, 2740.658827, 74.328418 74.324952 74.310774 74.258752 74.212173 74.195522 2744.516194, 74.18604 74.18788 ,2781.161174, 2746.444877, 74.150343 74.143833 514.958414, 74.129438 74.087022 74.063226 2748.37356, 74.040845 74.020227 74.020546 451.311869, 2750.302243, 73.961217 73.947868 73.902276 73.898116 73.890448 73.842846 2754.15961, 73.815919 73.787749 73.786446 73.763373 73.745999 2756.088293, 73.669267 73.671951 73.659356 3589.279435, 73.581022 2758.016976, 73.521736 2759.945659, 73.429666 443.597136, 73.341547 2761.874342, 73.226971 2763.803026, 447.454502, 73.162339 73.145895 73.124435 73.111915 73.100099 2765.731709, 73.045428 449.383186, 73.023257 2767.660392, 72.984848 72.935322 72.868703 ,, 73.865829 3587.350752, 72.788213 72.78934 72.78709 72.782543 72.687827 72.636005 72.63841 72.624312 405.023472, 72.576797 ,,2794.661957, 2771.517758, 72.542857 445.525819, 72.467035 516.887098, 441.668453, 2773.446442, 72.317626 72.29045 ,, 1166.853336, 72.235939 2775.375125, 72.19036 72.136892 72.090978 ,,, 738.685666, 981.699749, 72.028006 72.022889 2777.303808, 71.950513 71.947126 71.842357 71.852789 71.768551 71.725923 736.756982, 71.545602 , 1141.780454, 71.391181 71.376961 71.383163 71.320955 71.270465 71.25037 71.225819 3583.493386, 2783.089858, 71.215317 71.134852 71.108273 1139.851771, 71.072423 1143.709138, 2785.018541, 70.946128 70.895809 70.876893 70.822895 70.809287 2786.947224, 70.679897 3581.564702, 70.544124 70.532657 70.519368 70.440803 2788.875907, 70.419597 518.815781, 70.37366 70.328063 70.322414 70.26695 70.264042 1137.923088, 2790.80459, 70.196354 70.176979 70.144061 70.101234 70.069839 70.036888 1145.637821, 69.989575 2792.733274, 69.971002 69.96449 69.952759 69.870007 69.827097 ,, 3585.422069, 3579.636019, 69.730497 734.828299, 69.622298 69.603241 69.500996 2796.59064, 69.402239 69.367129 69.334764 69.330311 69.316529 69.290423 69.181377 , 2798.519323, 69.136281 69.116432 69.033006 68.976891 3577.707336, 68.908587 2800.448006, 1135.994405, 68.813584 68.790617 , 1164.924653, 983.628432, 68.784734 68.76704 68.718217 68.723909 2802.37669, 68.609568 68.559544 68.534161 68.51719 1147.566504, 68.413073 68.380522 68.356627 2804.305373, 68.33225 68.254417 68.218362 68.201874 520.744464, 68.157076 68.108164 68.076837 3575.778653, 68.040211 2806.234056, 67.985629 67.963478 , 732.899616, 67.958441 67.896774 67.866951 2808.162739, 67.783805 67.759209 67.698625 67.650702 67.619058 2810.091422, 67.498484 67.398818 67.357582 2812.020106, 67.285158 67.288508 67.259708 67.156157 67.150365 3573.84997, 67.065819 2813.948789, , 1134.065722, 66.95903 66.931375 66.916075 66.837309 , 2815.877472, 66.808349 66.785381 66.702115 66.688444 66.597932 2817.806155, 66.487181 66.376703 66.353581 2819.734838, 730.970933, 66.210729 66.175144 ,, 3571.921286, 66.066911 66.001745 65.992163 2821.663522, 65.878463 ,,, 65.035739 1162.99597, 65.810167 65.757495 65.630035 65.58742 522.673147, 2823.592205, 65.379255 65.364047 985.557115, 65.322843 65.253191 65.239773 65.161655 2825.520888, 64.990868 ,,, 1149.495187, 1132.137038, 1336 64.785223 64.788704 2827.449571, 1151.42387, 3568.06392, 64.498822 ,64.836311 729.04225, 64.461701 64.224066 2829.378254, 64.187472 63.98436 ,,,,3028.032624, 63.995599 524.60183, 63.89671 3566.135237, 63.760099 2995.24501, 2993.316326, 2997.173693, 2831.306938, 2999.102376, 3001.031059, 2991.387643, 1161.067286, 63.461236 2989.45896, 3002.959742, 63.346596 2987.530277, 3004.888426, 3006.817109, 2985.601594, 63.213495 63.188683 ,,, 3569.992603, 3564.206554, 3008.745792, 2833.235621, 63.021772 2983.67291, 63.000042 1153.352554, 727.113566, ,3024.175258, 3010.674475, 3012.603158, 62.81793 62.750903 2979.815544, 1130.208355, 62.591294 62.511483 62.49072 2977.886861, 3016.460525, ,, 2840.950354, 2835.164304, 3562.27787, 62.226046 3018.389208, 2975.958178, 3020.317891, 526.530514, 61.91873 1155.281237, 2974.029494, 987.485798, 3022.246574, 61.682971 61.648337 61.64066 3560.349187, 2837.092987, , 63.772452 1157.20992, 61.564711 61.570778 725.184883, ,3014.531842, 2972.100811, 403.094789, 61.384652 3026.103941, 61.236228 2970.172128, 61.115452 3558.420504, 60.950767 ,3051.176822, 3029.961307, 2839.02167, 60.824647 60.801083 3031.88999, 60.745465 2968.243445, 60.578009 3033.818674, , 723.2562, ,, 1159.138603, 1128.279672, 3556.491821, 60.345121 3035.747357, 60.125728 ,,,2981.744227, 2966.314762, , 3037.67604, 59.820174 59.805294 3554.563138, , 3039.604723, 59.581337 3041.533406, 2964.386078, 528.459197, 59.367904 721.327517, 59.297242 3043.46209, 2842.879037, ,,, 59.838441 3552.634454, 3045.390773, 2962.457395, 59.004574 59.01159 58.922104 719.398834, 3047.319456, 58.661323 2960.528712, 58.643009 3550.705771, , 3049.248139, , 989.414482, 2844.80772, , 717.47015, 58.27177 2958.600029, 58.255095 1126.350989, 58.09377 58.033224 2956.671346, 3053.105506, 57.85263 715.541467, 3548.777088, 2954.742662, 3055.034189, 57.694236 , 2846.736403, 2952.813979, 3056.962872, 57.441506 57.40925 , 3058.891555, 713.612784, 57.3314 2950.885296, 57.273578 530.38788, 2948.956613, 3060.820238, 3546.848405, 56.988606 , 711.684101, 2848.665086, 3062.748922, 2947.02793, 56.758693 56.600571 3064.677605, 709.755418, 56.532808 56.532086 56.502717 56.473613 3544.919722, 56.436219 3066.606288, 56.391229 2945.099246, 56.357887 56.352782 2850.59377, 3068.534971, 56.216364 56.201953 707.826734, 56.100979 , 3070.463654, 56.084245 , 1124.422306, 56.007218 55.987927 3072.392338, 55.894285 , 2943.170563, 2852.522453, 55.835648 55.809698 55.799201 55.778483 55.735857 3542.991038, 3074.321021, 55.686056 , 991.343165, 55.645973 705.898051, 55.598018 , 2854.451136, 55.513093 3076.249704, 55.408521 55.379333 2856.379819, 2941.24188, 3078.178387, 55.230659 2858.308502, 55.202789 55.146965 ,, 55.032764 3541.062355, 2860.237186, , 3080.10707, 54.981002 54.992613 2862.165869, 54.929701 703.969368, , 2864.094552, 3082.035754, 54.779224 2866.023235, 54.714849 , 2939.313197, 54.694671 54.668932 2867.951918, 532.316563, 54.551637 54.522744 3083.964437, 2869.880602, 54.401904 3539.133672, 54.384024 54.366205 54.327183 54.316687 54.309081 54.204859 2871.809285, 2937.384514, 54.091583 , 1122.493622, 3085.89312, 53.958277 , 2873.737968, 702.040685, 53.893849 53.756028 53.686544 53.614657 2935.45583, 3087.821803, 2875.666651, , 993.271848, 53.526539 3537.204989, 53.395908 53.280926 3089.750486, 2877.595334, 53.179563 53.162327 53.150877 53.008619 700.112002, , 2933.527147, 52.814696 52.772793 , 3091.67917, , 2879.524018, 52.711154 3535.276306, 52.528201 52.50658 2931.598464, 3093.607853, 2881.452701, 1120.564939, 52.245856 52.178351 52.115678 698.183318, 2929.669781, 995.200531, 52.001324 51.967672 3095.536536, 2883.381384, 534.245246, 51.895324 2927.741098, ,,, 3533.347622, 51.795949 51.799949 ,,,,49.549958 2925.812414, 3097.465219, 2923.883731, 51.58513 2885.310067, 51.52026 2921.955048, 2920.026365, 3099.393902, 51.420477 2918.097682, 2914.240315, 2912.311632, 2910.382949, 2916.168998, 51.300595 ,52.215488 2887.23875, 51.287453 2908.454266, 696.254635, 3531.418939, 2906.525582, 2904.596899, 3101.322586, 51.080231 51.082959 51.035455 2889.167434, 997.129214, 2902.668216, 50.947304 2900.739533, 2891.096117, 3103.251269, 2898.81085, 2893.0248, 2896.882166, 2894.953483, 50.722576 3105.179952, ,,, 1118.636256, 50.653601 50.5748 50.552742 3107.108635, 50.495134 50.506258 694.325952, 3109.037318, ,,, 50.942815 999.057898, 50.354652 50.341697 50.312929 50.174431 3110.966002, 50.129777 50.114546 1000.986581, 692.397269, 49.924203 3112.894685, 49.885981 49.840196 3527.561573, 49.799078 1002.915264, 49.697132 49.653241 3114.823368, 49.584629 690.468586, 3116.752051, 49.349599 49.332626 1116.707573, 49.204938 1004.843947, 3525.63289, 49.174708 49.16731 ,51.271876 536.17393, 49.070831 49.028644 48.987475 ,,,3136.038883, 3118.680734, 688.539902, 48.875885 48.823291 401.166106, 48.753944 48.672823 48.660266 3523.704206, 3120.609418, 48.485687 48.472937 48.46601 48.411816 48.336851 1114.77889, 1006.77263, 48.242898 686.611219, 48.138656 3122.538101, 48.099245 48.005752 47.990604 47.87554 ,, 3529.490256, 3521.775523, 47.83608 47.774237 , 3124.466784, 47.741055 47.694999 47.641015 47.552619 47.545449 684.682536, 47.470152 , 1112.850206, 3126.395467, 47.420459 47.419396 47.236836 47.236318 47.168208 3519.84684, 3128.32415, 1008.701314, 538.102613, 46.959985 46.88275 46.842819 46.830287 3130.252834, 682.753853, 46.709995 1110.921523, 46.709748 3132.181517, 3517.918157, 46.365597 3134.1102, 46.346794 46.342172 46.324784 46.294152 , 1108.99284, 45.987511 45.970223 , 680.82517, 45.764846 45.759899 3137.967566, 3515.989474, 3139.89625, 45.545098 45.502939 , 1010.629997, , 3141.824933, 45.305806 45.258391 3143.753616, 45.109543 45.073287 3145.682299, 44.879654 ,, 3514.06079, 44.822479 44.822844 44.736955 44.689004 44.698176 540.031296, 44.641636 3147.610982, 44.600151 678.896486, 1105.135474, 44.513375 44.457483 44.37937 44.355292 3149.539666, 44.280828 44.227798 44.194078 44.146766 44.143821 44.127113 44.112347 44.100504 44.082601 3151.468349, 44.041467 43.976442 43.946593 43.927159 43.89886 43.892168 3153.397032, ,, 45.037126 1103.20679, 43.812802 43.795511 43.779098 43.737805 43.653565 43.639806 43.621517 3155.325715, 43.588021 1012.55868, 43.55949 43.529731 43.495553 43.484234 676.967803, 43.379732 3157.254398, 43.302999 43.267228 43.180655 ,3184.255963, 3159.183082, 3510.203424, ,, 1107.064157, 1101.278107, 42.936557 2889 42.833864 3161.111765, 42.811753 42.685305 42.590125 42.522202 3163.040448, 42.419076 3508.274741, 42.234636 3164.969131, 42.161766 42.085089 ,43.168685 675.03912, 3166.897814, 41.988761 41.94237 41.920608 541.959979, 3168.826498, 41.755237 41.755891 3170.755181, ,,, 3512.132107, 3506.346058, 1014.487363, 41.568802 3172.683864, 1097.420741, 41.355371 41.324843 3174.612547, 41.088216 3176.54123, 673.110437, 3504.417374, 40.972141 40.894216 ,,3205.471478, 3178.469914, 3180.398597, 40.620038 1095.492058, 40.517539 3182.32728, 543.888662, 3502.488691, 40.291261 40.233129 40.210521 3186.184646, 671.181754, 39.880326 3188.11333, 39.831523 ,, 1099.349424, 1093.563374, 39.788683 3500.560008, 1016.416046, 39.58119 39.568054 3190.042013, 39.483519 39.367681 ,3226.686994, 3191.970696, 39.207173 39.135858 3193.899379, 1091.634691, 3498.631325, 38.874922 ,41.116119 669.25307, 3195.828062, 38.777596 38.60911 3197.756746, 38.521747 , 545.817346, 3496.702642, 3199.685429, 1089.706008, 38.396303 38.332174 , 3201.614112, 38.235888 667.324387, 38.149297 3203.542795, 38.084997 1018.34473, 37.972755 3494.773958, 1087.777325, 3207.400162, 3209.328845, 37.689964 , 3211.257528, 37.614115 665.395704, 3213.186211, 37.461976 37.396897 37.369704 37.348563 3215.114894, ,,,39.916562 3492.845275, 1085.848642, 3217.043578, 663.467021, 37.080452 3218.972261, 36.841186 , 3220.900944, 36.796283 1020.273413, 3222.829627, 547.746029, 36.637463 36.628986 3490.916592, , 661.538338, 3224.75831, , 1083.919958, 36.378389 36.377231 3228.615677, 36.245436 36.144329 3488.987909, , 3230.54436, 35.892463 3232.473043, 35.869399 1022.202096, 35.823214 3234.401726, 1081.991275, 659.609654, 3487.059226, 35.595501 3236.33041, 1037.631562, 1039.560245, 3238.259093, 1035.702878, 1041.488928, 3485.130542, 1024.130779, 35.224345 1033.774195, 549.674712, 3240.187776, 1031.845512, 1043.417611, 1080.062592, 35.030148 35.013265 657.680971, 34.96398 1029.916829, 1026.059462, 1027.988146, 34.872692 34.814318 , 3242.116459, 3483.201859, 1045.346294, 34.675048 34.607758 3244.045142, 34.420369 3481.273176, 34.382109 34.366909 , 655.752288, , 1078.133909, 1047.274978, 3245.973826, 34.222502 34.207621 551.603395, 3479.344493, 3247.902509, 34.070349 3249.831192, 3477.41581, 3475.487126, 1049.203661, 33.855669 33.852334 33.745712 , 3251.759875, 3473.558443, 1076.205226, , 399.237422, 30 33.610664 3253.688558, 653.823605, ,,, 3471.62976, 33.405939 3255.617242, 33.375878 1051.132344, 33.250874 3265.260658, 3469.701077, , 3267.189341, 3263.331974, 33.208736 3259.474608, 3257.545925, 3261.403291, 33.162758 33.103942 3269.118024, , 1074.276542, 3467.772394, 3271.046707, 32.889444 553.532078, 32.720388 , 3272.97539, 32.610437 1053.061027, 3465.84371, 32.578315 651.894922, 1072.347859, 32.435306 3274.904074, 32.439158 32.309899 3463.915027, 3276.832757, 32.086679 , 1054.98971, 3278.76144, 1070.419176, 31.866811 3461.986344, 31.834261 31.791319 3280.690123, 649.966238, 555.460762, 31.633565 31.584383 , 3282.618806, 1056.918394, , 1068.490493, 3284.54749, 3286.476173, 31.355543 3290.333539, 3460.057661, 3288.404856, 31.284905 557.389445, , 3292.262222, 31.231282 31.202342 3294.190906, 31.18724 1058.847077, 3296.119589, 3298.048272, 31.075767 1066.56181, 3299.976955, 30.995144 3301.905638, 30.884291 1060.77576, 1064.633126, 30.815993 1062.704443, ,3346.265352, 3303.834322, ,, 30.616818 648.037555, 30.682037 3458.128978, 30.627544 3305.763005, 30.583866 30.507091 559.318128, 30.413287 3307.691688, 30.353591 30.268095 3309.620371, 30.0569 29.966591 3456.200294, 29.952221 29.92078 29.899902 561.246811, 3311.549054, ,3355.908768, 3313.477738, 29.748612 563.175494, 29.595115 3315.406421, 29.507598 646.108872, 3317.335104, 29.437115 29.432889 ,,,,26.715686 3454.271611, 29.345315 29.352185 29.333089 3319.263787, 29.243264 29.216761 565.104178, 3321.19247, 29.07667 ,3365.552184, 3323.121154, 3452.342928, 28.828628 28.819212 567.032861, 3325.049837, 28.657531 3326.97852, 28.614471 28.511069 28.51671 28.508856 3328.907203, 644.180189, 3450.414245, 28.401167 3330.835886, 568.961544, ,3384.839016, ,3375.1956, 3342.407986, 3332.76457, 28.318332 605.606525, 3340.479302, 3344.336669, 611.392574, 570.890227, 609.463891, 3338.550619, 3334.693253, 28.128953 28.127176 613.321258, 28.095691 28.066795 3448.485562, 28.034667 28.026254 3336.621936, 28.016449 3433.056096, 607.535208, 3434.984779, 3429.19873, 27.953071 27.930565 3431.127413, 3427.270046, 3398.339798, 3348.194035, 3396.411115, 3392.553749, 27.859313 3436.913462, 27.839981 27.83268 27.812209 ,25.992331 3390.625066, 615.249941, 27.765914 ,3442.699512, 3425.341363, 3400.268482, 27.733557 3402.197165, 3407.983214, 3446.556878, 3438.842146, 3406.054531, 3404.125848, 3350.122718, 27.686725 603.677842, 617.178624, ,25.378242 3417.62663, 3409.911898, 27.647824 3423.41268, 3415.697947, 3367.480867, 3411.840581, 3413.769264, 27.563521 27.559221 ,3394.482432, 3352.051402, 601.749158, ,26.245364 3419.555314, 3369.40955, 3444.628195, 3440.770829, 3363.623501, 27.527105 3357.837451, 572.81891, 3388.696382, ,25.055693 3421.483997, 3371.338234, 3353.980085, 597.891792, 599.820475, 3359.766134, , 642.251506, 595.963109, 27.364699 ,24.61713 3361.694818, , 621.03599, 594.034426, 619.107307, 3373.266917, 3386.767699, 27.173193 27.128901 27.111155 27.083768 27.054769 622.964674, 574.747594, 3382.910333, 3377.124283, 3379.052966, 640.322822, 26.92815 ,25.711552 3380.98165, 26.8847 26.881603 592.105742, 590.177059, 26.725101 26.697048 624.893357, 26.644433 26.518072 588.248376, 26.511244 576.676277, 26.484508 638.394139, 584.39101, 578.60496, 586.319693, 626.82204, 26.318638 26.296499 26.154306 580.533643, 582.462326, 628.750723, 636.465456, 26.039084 26.012005 25.998575 25.989037 25.983707 25.982184 25.950932 ,24.803641 632.60809, 630.679406, 25.841358 25.699923 , 25.809068 634.536773, 25.531212 25.412605 25.389198 25.340068 25.242813 25.217926 24.926839 24.718121 24.699604 24.509705 24.502613 24.440951 24.344187 24.328707 24.223548 24.186121 24.155236 24.109757 24.105209 24.085608 24.051215 24.039153 23.974938 23.891583 23.89421 23.873631 23.843027 23.772672 23.694499 23.625921 23.612648 23.552976 23.509455 23.484846 23.421353 23.359912 23.218927 23.155567 22.848517 22.720658 22.633841 22.598593 22.553127 22.408093 22.34578 22.291608 22.24507 22.157576 22.059488 21.922457 21.859245 21.66206 21.624293 21.572382 21.493422 21.417161 21.259578 21.215232 21.201485 21.175527 21.167453 21.095845 21.094937 21.083486 21.07368 21.056387 21.013656 20.967772 20.96805 20.938309 20.917584 20.902365 20.812982 20.817377 20.795348 20.776363 20.754931 20.722627 20.722883 20.701819 20.694182 20.682209 20.693462 20.683302 20.673931 20.655571 20.633461 20.574937 20.545322 20.535049 20.534569 20.509452 20.484506 20.474704 20.471308 20.479667 20.477528 20.460127 20.452606 20.450226 20.427453 20.436942 20.390703 20.390651 20.392665 20.367501 20.363914 20.351476 20.336953 20.328201 20.3156 20.311204 20.304748 20.312144 20.30566 20.288589 20.294688 20.27065 20.262412 20.265292 20.258026 20.262447 20.248582 20.252165 20.224783 20.214079 20.211586 20.18617 20.138728 20.141014 20.121364 20.092156 20.032249 20.021608 19.932664 19.868543 19.824737 19.808582 19.800611 19.743529 19.719354 19.690182 19.703812 19.669031 19.57022 19.442604 19.302111 19.269245 19.24168 19.185393 19.165287 19.138898 19.120155 18.933052 18.935598 18.839491 18.83878 18.710634 18.635474 18.479338 630 3346 582 Wave number (cm-1)

Fig. 1. FT-IR spectra of: (a) fresh Fe3O4/cellulose nanocomposite and (b) recovered Fe3O4/cellulose nanocomposite after 5 times reusing in the reactions.

17

Fig. 2. EDX pattern of Fe3O4/cellulose nanocomposite.

a

18

b

c

Fig. 3. FE-SEM images of: a) the pristine cellulose film and b,c) Fe3O4/cellulose nanocomposite in different magnifications.

Count

Frequency, 2025, 38 Frequency, 2530, 23 Frequency, 1520, 11

Frequency, Frequency, ,0 ,0

Frequency, Frequency, 303535, 9 40, 9

Particle diameter (nm)

19

Frequency, , 0

Fig. 4. a,b) TEM images of Fe3O4/cellulose nanocomposite in different magnifications and c) particle size distribution diagram of the magnetic Fe3O4/cellulose nanocomposite.

b

Fig. 5. a) Magnetization curve of Fe3O4/cellulose nanocomposite at room temperature (Insert: a magnified view of the -200 to 200 Oe regions); b) TGA and c) DTA curves of the Fe3O4/cellulose nanocomposite.

20

Scheme 1. Proposed mechanism for the formation of 4a-o.

21

Table 1. Synthesis of pyrano[2,3-d]pyrimidine derivatives in the presence of the nanocatalyst.a

Entry Produc t

R

X

Y Time Yieldb (min) (%)

Mp (°C) Observed

Reported

1

4a

H

CO2E O t

40

92

208-210

206-210 (Bhat et al., 2014)

2

4b

4-Me

CO2E O t

20

95

297-300

296-298 (Bhat et al., 2014)

3

4c

4OMe

CO2E O t

20

96

296-298

290-293 (Bhat et al., 2014)

4

4d

4-Cl

CO2E O t

40

98

297-300

295-300 (Bhat et al., 2014)

5

4e

4-NO2

CO2E O t

40

90

292-294

289-293 (Bhat et al., 2014)

6

4f

H

CN

O

35

90

206-207

205-207 (Yadav et al., 2014)

7

4g

4-Br

CN

O

20

96

228-230

230-231 (Bararjanian et al., 2009)

8

4h

2-NO2

CN

O

30

90

254-255 253-256 (Abedini et al., 2015)

9

4i

3-NO2

CN

O

30

98

266-268

268-270 (Bararjanian et al., 2009)

10

4j

4-NO2

CN

O

30

90

244-245

239-240 (Bararjanian et al., 2009)

11

4k

4MeO

CN

S

20

93

115-118

116-118 (Yadav et al., 2014)

12

4l

4-Br

CN

S

40

95

234

236 (Bararjanian et al., 2009)

13

4m

2-NO2

CN

S

30

96

248

This work

14

4n

3-NO2

CN

S

30

96

237238c

230-233 (Yadav et al., 2014)

22

15

4o

4-NO2

CN

S

30

76

235

235-236 (Bararjanian et al., 2009)

a

Reaction conditions: aldehyde (1.0 mmol), malononitrile or ethyl cyanoacetate (1.0 mmol), barbituric or thiobarbituric acid (1.0 mmol), cellulose-based nanocomposite (2 mg), water (3 mL), room temperature. b

Isolated yields. Yields of the five subsequent runs by using the same recovered catalyst were 96, 95, 94, 92 and 91%, respectively. c

Table 2. Synthesis of pyrazolopyranopyrimidines in the presence of the nanocatalyst.a

Entry Product

R

Time (min)

Yieldb (%)

Mp (°C) Observed

Reported

1

7a

H

20

90

217-219

218-219 (Li, Zhao, Mo, & Zhang, 2014)

2

7b

4-Me

15

95

200-201

200-201 (Li et al., 2014)

3

7c

2-Cl

35

86

223

223-225 (Li et al., 2014)

4

7d

4-Cl

30

89

222-224

222-223 (Li et al., 2014)

5

7e

2-NO2

40

87

208-209

208-209 (Li et al., 2014)

6

7f

3-NO2

35

92

267

266-267 (Li et al., 2014)

7

7g

4-NO2

30

95

235

233-234 (Li et al., 2014)

8

7h

4-Br

30

82

210-212

211-212 (Li et al., 2014)

9

7i

2-thienyl

25

85

176-177

176-177 (Li et al., 2014)

23