Green’s function for torsional waves in a cylindrically monoclinic material

Green’s function for torsional waves in a cylindrically monoclinic material

International Journal of Engineering Science 43 (2005) 1283–1291 www.elsevier.com/locate/ijengsci Greens function for torsional waves in a cylindric...

297KB Sizes 0 Downloads 30 Views

International Journal of Engineering Science 43 (2005) 1283–1291 www.elsevier.com/locate/ijengsci

Greens function for torsional waves in a cylindrically monoclinic material Kazumi Watanabe a b

a,*

, Robert G. Payton

b

Department of Mechanical Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan Department of Mathematics and Computer Science, Adelphi University, Garden City, NY 11530, USA Received 16 December 2004; received in revised form 6 May 2005; accepted 6 May 2005

Abstract Two exact Greens functions for impulsive and time-harmonic torsional waves in a monoclinic material are presented. The impulsive Greens function is expressed in the closed form of simple algebraic functions and its wave front shape is a torus with inclined elliptic cross section. The time-harmonic Greens function is also obtained exactly, but in the form of definite integral. Time development of the wave front for the impulsive wave and amplitude contours for the timeharmonic wave are illustrated. Ó 2005 Elsevier Ltd. All rights reserved. Keywords: Waves; Monoclinic material; Wave front; Exact solution; Greens function

1. Introduction Wave propagation in cylindrically anisotropic media has been attracting some attention, however, less information is drawn. As for the in-plane wave, such as quasi-P and SV-waves in polar coordinate systems, the time development of wave front shape is obtained by Payton and co-workers [1–4] by applying the method of characteristics, but no Greens function for these in-plane waves is obtained so far, since the exact solution for the coupled governing equations is not known. This situation is also same as that in the axisymmetric waves in the cylindrically orthotropic materials. Martin [5,6] and Shuvalov [7] have considered its approximate solution. Existing solution for the in-plane wave is only in the case of radially symmetric one-dimensional wave [8]. It is only recent years that the Greens function for SH-wave in the cylindrically orthotropic media has been obtained by Watanabe and co-workers [9–11]. They also obtained the Greens function for the monoclinic material [12]. As a simple extension of academic interests, this paper considers the Greens function for axially symmetric torsional waves in a cylindrically monoclinic material. Two Greens functions for the impulsive and time-harmonic waves are obtained and wave propagation phenomena are also discussed in some details. *

Corresponding author. Tel.: +81 238 26 3210; fax: +81 238 26 3205. E-mail address: [email protected] (K. Watanabe).

0020-7225/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijengsci.2005.05.005

1284

K. Watanabe, R.G. Payton / International Journal of Engineering Science 43 (2005) 1283–1291

2. Governing equations Let us consider an elastic solid under the axially symmetric pure torsion and assume that the medium is monoclinic and no warping takes place. Hookes law for the monoclinic material for the pure torsion is given by      rzh c44 c45 ezh ¼ ð1Þ rrh c45 c55 erh and equation of motion is 1 oðr2 rrh Þ orzh o2 uh dðr  aÞ þ dðzÞdðtÞ; ¼ q  qH0 r2 or r oz ot2

ð2Þ

where d(Æ) is Diracs delta function and the second term in the right hand side represents an impulsive ring source with magnitude H0 and radius a. The strain components are defined by   1 ouh 1 ouh uh ezh ¼ ; erh ¼  . ð3Þ 2 oz 2 or r Substituting Eq. (1) with Eq. (3) into the equation of motion (2), we have the simple equation for the torsional displacement, 2 o2 uh 1 ouh uh o2 uh b ouh 1 o2 uh H0 dðr  aÞ 2 o uh dðzÞdðtÞ;  þ þ a þ þ 2b  ¼ 2 2 2 2 2 2 r or c ot r or r or oz r oz oz c

ð4Þ

where c ¼ ðc55 =2qÞ

1=2

;

a ¼ ðc44 =c55 Þ

1=2

;

b ¼ c45 =c55

ð5Þ

and a > b [13, p. 70]. In order to obtain the Greens function, which is a particular solution corresponding to the nonhomogeneous source term in Eq. (4), a mathematical procedure is developed in the next section. 3. Solution procedure Let us apply the Laplace transform, Z 1 f  ðsÞ ¼ f ðtÞ expðstÞ dt

ð6Þ

0

and Fourier transform, Z 1 ~ f ðnÞ ¼ f ðzÞ expðinzÞ dz

ð7Þ

0

to Eq. (4). It yields to the ordinary differential equation,      d2 ~ 1 d~ uh 1 ibn H0 dðr  aÞ uh 2 2  2ibn þ fðanÞ þ ðs=cÞ g ~uh ¼  2 .  2þ þ r r r r dr2 dr c This is one of Bessel equations and its particular solution is given by   I 1 ðprÞK 1 ðpaÞ; r < a H0 ~ uh ¼ 2 expfibnðr  aÞg ; c I 1 ðpaÞK 1 ðprÞ; r > a

ð8Þ

ð9Þ

where p¼

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ða2  b2 Þn2 þ ðs=cÞ .

ð10Þ

K. Watanabe, R.G. Payton / International Journal of Engineering Science 43 (2005) 1283–1291

In order to have a more convenient form for inversion, we apply the formula [14] qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Z 1 p a2 þ b2  2ab cos u cos u du; I 1 ðaÞK 1 ðbÞ ¼ K0 p 0 to the product of the Bessel functions in Eq. (9). Then, Z p H0  ~ K 0 ðpRÞ cos u du; uh ¼ 2 expfibnðr  aÞg pc 0 where

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a2 þ r2  2ar cos u.



1285

ð11Þ

ð12Þ

ð13Þ

The formal inversion integral of Fourier transform is applied to Eq. (12) and the order of integration is exchanged. Z p Z 1  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi H0 2  uh ¼ cos u du K 0 cR n2 þ ðs=ccÞ cos½fz  bðr  aÞgn dn; ð14Þ 2 ðpcÞ 0 0 where c¼

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a 2  b2 .

ð15Þ

The inner integral in Eq. (14) can be evaluated exactly by the formula [15] Z 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi p K 0 a x2 þ b2 cosðxyÞ dx ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi exp b a2 þ y 2 ; 2 a2 þ y 2 0 we have uh ¼

H0 2pcc2

Z

p

0

 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cos u qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi exp ðs=cÞ R2 þ ðZ=cÞ2 du; 2 R2 þ ðZ=cÞ

ð16Þ

ð17Þ

where Z ¼ z  bðr  aÞ.

ð18Þ

The Laplace transformed displacement, Eq. (17), has the transform parameter s in the argument of the exponential function and thus we can apply the simple inversion formula, L1 fexpðasÞg ¼ dðt  aÞ. That is uh ¼

H0 2pcc

Z 0

p

ð19Þ

 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cos u qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi d ct  R2 þ ðZ=cÞ2 du. 2 R2 þ ðZ=cÞ

ð20Þ

Fortunately, we can evaluate this integral exactly, since the Diracs delta function is included. Introducing the variable transform, qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð21Þ u ¼ R2 þ ðZ=cÞ2 ¼ a2 þ r2  2ar cos u þ ðZ=cÞ2 ; Eq. (20) is rewritten as Z R2 2 H0 1 ðR2  u2 Þ  ðu2  R21 Þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dðct  uÞ du; uh ¼ 4pcc ar R1 ðR22  u2 Þðu2  R21 Þ

ð22Þ

where R1 ¼

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 ðr  aÞ þ ðZ=cÞ ;

R2 ¼

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 ðr þ aÞ þ ðZ=cÞ

ð23Þ

1286

K. Watanabe, R.G. Payton / International Journal of Engineering Science 43 (2005) 1283–1291

and a very simple integration formula for the delta function,  Z b f ðcÞ; a < c < b; f ðxÞdðx  cÞ dx ¼ 0; c < a or b < c a is applied to Eq. (22). We have the closed form for the Greens function, (sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi) 2 2 4pc 1 R22  ðctÞ ðctÞ  R21 H ðR2  ctÞH ðct  R1 Þ  ; uh ðr; z; tÞ ¼ 2 H0 car ðctÞ  R21 R22  ðctÞ2 where H(Æ) is Heavisides unit step function and qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 2 2 R2 ¼ ðr þ aÞ þ fz  bðr  aÞg =c2 . R1 ¼ ðr  aÞ þ fz  bðr  aÞg =c2 ;

ð24Þ

ð25Þ

ð26Þ

4. Wave front and ray The Greens function of Eq. (25) has two wave fronts. They are derived from the argument in the step function. The first one is W1 : ct = R1. This has the explicit expression as ðctÞ2 ¼ ðr  aÞ2 þ fz  bðr  aÞg2 =c2 .

ð27Þ

The above equation shows an ellipse centered at (r = a, z = 0), but with inclined axis. When we introduce the inclined axis (P, Q) as r  a ¼ P cos /  Q sin /;

z ¼ P sin / þ Q cos /;

where the angle of the axis inclination is given by   1 2b 1 / ¼ tan ; 2 1  a2

ð28Þ

ð29Þ

Eq. (27) is converted to the simple ellipse in (P, Q) plane, (

P2 Q2 þ ) ( )2 ¼ 1. 2 pffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffi 2ða2 b2 ÞðctÞ 2ða2 b2 ÞðctÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1þa2 

ð1a2 Þ2 þ4b2

1þa2 þ

ð30Þ

ð1a2 Þ2 þ4b2

Thus, the wave front W1 is emanating from the source and forms a torus with the inclined elliptic cross section. If we decompose Eq. (27) with introducing a new angle parameter /, the parametric expression for the wave front and ray is given by r  a ¼ ðctÞ cos u;

z ¼ ðctÞðc sin u þ b cos uÞ.

ð31Þ

We can draw wave front and ray curves simultaneously by using this equation. Diminishing the time, we learn that the ray is a straight line defined by z = (c tan u + b)(r  a), and its radiation angle (ray angle) w is defined by w = tan1 (c tan u + b). In other words, the parameter u is the ray angle defined by u = tan1 [(tan w  b)/ c]. The second wave front is also derived. That is W2 : ct = R2 and its explicit form is 2

2

2

ðctÞ ¼ ðr þ aÞ þ fz  bðr  aÞg =c2 .

ð32Þ

Eq. (32) gives the same ellipse as that for the first wave, but its center is displaced at (r = a, z = 2ab). 5. Special case Case A: isotropic (a = 1, b = 0). When the material is isotropic, the Greens function is reduced to the simple form,

K. Watanabe, R.G. Payton / International Journal of Engineering Science 43 (2005) 1283–1291

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4pc 1 2 2 2 ða þ rÞ þ z  ct H ct  ða  rÞ þ z2 uh ðr; z; tÞ ¼ H H0 ar (sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi) 2 2 2 2 ða þ rÞ þ z2  ðctÞ ðctÞ  ða  rÞ  z2

 . 2 2 2 2 ðctÞ  ða  rÞ  z2 ða þ rÞ þ z2  ðctÞ

1287

ð33Þ

Case B: c = 0 (a = b). When elastic constants have the relation, c44 c55 ¼ c245 (a = b), we have to return to Eq. (14), uh ¼

H0 ðpcÞ2

Z

p

K 0 ðsR=cÞ cos u du 0

Z

1

cos½fz  bðr  aÞgn dn

ð34Þ

0

and apply the integration formula, 1 p

Z

1

cosðxyÞ dx ¼ dðyÞ

ð35Þ

0

to Eq. (34). uh

H0 ¼ 2 dðz  bðr  aÞÞ pc

Z

p

K 0 ðsR=cÞ cos u du.

ð36Þ

0

Then, as the Laplace transform parameter s is included in the argument of the modified Bessel function, the inversion formula [15], H ðt  aÞ L1 fK 0 ðasÞg ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi t 2  a2 is applied. The Greens function is given by Z p pc H ðct  RÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cos u du uh ðr; z; tÞ ¼ dðz  bðr  aÞÞ H0 2 0 ðctÞ  R2 8 > Z u < H ðct  RÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cos u du ¼ dðz  bðr  aÞÞ H ðr þ a  ctÞH ðct  jr  ajÞ > 2 0 : ðctÞ  R2 9 > Z p = H ðct  RÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cos u du ; þH ðct  ðr þ aÞÞ > 0 ; ðctÞ2  R2

ð37Þ

ð38Þ

where sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðctÞ2  ðr  aÞ2 . u ¼ 2sin1 4ar

ð39Þ

The definite integrals in Eq. (38) can be reduced to the standard form of elliptic integrals. The final form of the Greens function is given by  2c dðz  bðr  aÞÞ pffiffiffiffiffi uh ðr; z; tÞ ¼ H ðct  ja  rjÞH ða þ r  ctÞf2EðkÞ  KðkÞg H0 ar   1  2k 2 Kð1=kÞ þ 2kEð1=kÞ ; ð40Þ þH ðct  ða þ rÞÞ k where the complete elliptic integral of the first and second kinds and their argument are defined by

1288

K. Watanabe, R.G. Payton / International Journal of Engineering Science 43 (2005) 1283–1291

Z ffi 2 p=2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1  k 2 sin2 h dh; p 0 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðctÞ2  ða  rÞ2 . k¼ 4ar

EðkÞ ¼

KðkÞ ¼

2 p

Z

p=2 0

dh pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; 1  k 2 sin2 h

ð41Þ

ð42Þ

The Greens function of Eq. (40) is multiplied by the delta function. This means that the disturbed region is limited on a plane with the line cross section, z = b(r  a). The similar line (plane) disturbance in the limiting case of the monoclinic material has also been found in the case of SH-wave [12]. 6. Time-harmonic Green’s function The time-harmonic Greens function can be derived by performing the convolution integral, Z t0 ðGÞ uh ðr; z; tÞ ¼ expðixtÞ lim uh ðr; z; t0 Þ expðixt0 Þ dt0 ; 0 t !1

ð43Þ

0

where uðGÞ is the impulsive Greens function given by Eq. (25). That is z sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi! Z 4pc2 expðixtÞ R2 R22  s2 s2  R21  expðixs=cÞ ds. uh ðr; z; tÞ ¼ 2 2 car H0 s  R1 R22  s2 R1

ð44Þ

This integral can be reduced to the more convenient form for the numerical computation by introducing the variable transform, sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi R22 þ R21 R22  R21 s¼  sin /. ð45Þ 2 2 The final form of the time-harmonic Greens function for the torsional wave is given by 0 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 Z p=2 2 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pc2 expðixtÞ sin / ix R þ R 2 1 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi exp @ 1  e sin /A d/; uh ðr; z; tÞ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi c H0 2 2 2 1  e sin / p=2 c 2ðR þ R Þ 2

ð46Þ

1

where R1 and R2 are given by Eq. (26) and the parameter e is defined by 0
R22  R21 < 1. R22 þ R21

ð47Þ

The integral in Eq. (46) is singular when e = 1. Extracting its singular part, we have the logarithmic singularity on the ring source,  2    pc expðixtÞ 1 log lim uh ðr; z; tÞ  . ð48Þ e!1 4ca 1  e2 H0 ðr!a;z!0Þ

7. Numerical examples Shutilov [16] mentioned that an example of the monoclinic materials is Gypsum, but its elastic moduli are not shown in his book. The moduli for some other crystals are listed in it. So, we show the numerical examples Table 1 Material parameters for typical monoclinic crystals [16] Crystal

a = (c44/c55)1/2

b = c45/c55

c = (a2b2)1/2

Dibenzyl Sodium-thiosulfate

1.09 0.97

+0.31 0.45

1.04 0.86

K. Watanabe, R.G. Payton / International Journal of Engineering Science 43 (2005) 1283–1291

ct/a=2

2

2

ct/a=2 1.25

z/a

1

1

1

1.25 1

0.5 0

0

0.5

-1

-1

-2

-2

r/a 0

0.5

1

1.5

2

r/a

2.5

0

3

0.5

(a) Dibenzyl

1

1.5

2

(b) Sodium-thiosulfate

Fig. 1. Time development of wave front.

30

4ρac uθ Θ0

20 (0.5, 0 .5)

10 0 (1.5, 0.5)

-10 (r / a, z / a )

-20

= (0.5, / 0.5)

ct/a

-30 0.5

1

1.5

2

2.5

(a) Dibenzyl 30 20

4ρac uθ Θ0

(r / a, z / a ) = (0.5, / 0.5)

10 0 -10 (0.5, 0.5)

(1.5, 0.5)

-20 -30 0.5

ct/a

1

2.5

1.5

2

2.5

3

(b) Sodium-thiosulfate Fig. 2. Time response of Greens function for torsional wave.

3

1289

1290

K. Watanabe, R.G. Payton / International Journal of Engineering Science 43 (2005) 1283–1291 3

0.05

0.25

0.1

2

0.5 1

3

1

2

0 z/a -1 -2

r/a 0

0.5

1

1.5

2

2.5

-3 3

(a) Dibenzyl 3

0.05

0.1

0.25

2

0.5

1

1 3

0 z/a

2

-1 -2

r/a 0

0.5

1

1.5

2

2.5

-3 3

(b) Sodium-thiosulfate Fig. 3. Contours of displacement amplitude for time-harmonic Greens function,

pc2 H0

juh ðr; z; tÞj.

for two typical monoclinic crystals, positive and negative values of c45. They are dibenzyl and sodium-thiosulfate and their material parameters are listed in Table 1. Fig. 1 shows the time-development of wave fronts. At early time, its form is the inclined ellipse that is given by Eq. (27). After a unit time ct/a = 1, the second wave, W2, appears as if the reflection at the z-axis. But, it is penetrated from the opposite side due to the axisymmetric nature, not reflected wave. The inclination angle of the elliptic wave form is given by Eq. (29). The time response of the torsional displacement in Fig. 2 shows that there is no substantial difference in the response between positive and negative values of c45, since the response curves are similar to each other. Fig. 3 shows amplitude contours for the time-harmonic Greens function given by Eq. (46). Due to the torsional nature, the displacement vanishes on the center axis (r = 0). The contour at the higher amplitude region is a quasi-elliptic form and its form is gradually deformed at the lower amplitude region. 8. Conclusion Greens function for the impulsive and time-harmonic torsional waves is derived exactly for the monoclinic material. The Greens function for the transient wave is expressed in the closed form of simple algebraic functions. Due to the axially symmetric nature, the wave front shape is a torus, but its cross section is an inclined ellipse due to the monoclinic nature. At the wave front, the torsional displacement has the singularity of the inverse square root. This is the same as that in isotropic media. Time-harmonic Greens function is also derived and its amplitude contour is also quasi-elliptic form due to the monoclinic nature. Acknowledgement The authors would like to express their thanks to the referee for helpful comments in the revision of the paper.

K. Watanabe, R.G. Payton / International Journal of Engineering Science 43 (2005) 1283–1291

1291

References [1] R.G. Payton, K. Watanabe, Two-dimensional wave front shape for cylindrically anisotropic elastic media, Wave motion 33 (3) (2001) 211–224. [2] Y. Yokoyama, R.G. Payton, K. Watanabe, Wave front shapes in cylindrically anisotropic solids, J. Jpn. Soc. Non-Destruct. Inspect. 51 (5) (2002) 296–303 (in Japanese). [3] R.G. Payton, Wave fronts in wood, Q.J. Mech. Appl. Math. 56 (4) (2003) 527–546. [4] R.G. Payton, Wave front shape for a constrained cylindrically anisotropic solid, ZAMP 55 (2004) 658–677. [5] P.A. Martin, J. Berger, Waves in wood: free vibration of a wooden pole, J. Mech. Phys. Solids 49 (2001) 1155–1178. [6] P.A. Martin, Waves in wood: axisymmetric waves in slender solids of revolution, Wave Motion 40 (2004) 387–398. [7] A.L. Shuvalov, The Frobenius power series solution for cylindrically anisotropic radially inhomogeneous elastic materials, Q. Mech. Appl. Math. 56 (2003) 327–345. [8] K. Watanabe, Some exact closed form solutions for transient response of a cylindrically anisotropic elastic solid subjected to three types of a ring source, ZAMM 81 (11) (2001) 788–792. [9] K. Watanabe, K. Nishinari, SH wave in a cylindrically anisotropic solid, ZAMP 47 (6) (1996) 906–914. [10] K. Watanabe, R.G. Payton, SH wave in a cylindrically anisotropic elastic solid (A general solution for a point source), Wave Motion 25 (2) (1997) 197–212. [11] K. Watanabe, R.G. Payton, Time-harmonic SH-wave in cylindrically anisotropic elastic solid, Geophys. J. Int. 145 (2001) 709–713. [12] K. Watanabe, R.G. Payton, Greens function for SH-waves in a cylindrically monoclinic material, J. Mech. Phys. Solids 50 (2002) 2425–2439. [13] T.C.T. Ting, Anisotropic Elasticity, Oxford, 1996. [14] G.N. Watson, Theory of Bessel Functions, Cambridge, 1966. [15] A. Erdelyi (Ed.), Tables of Integral Transforms, vol. 1, McGraw-Hill, 1954. [16] V.A. Shutilov, Fundamental Physics of Ultrasound, Gordon & Breach Sci. Publ., 1988.