Ground state rotational parameters and fundamental vibration frequencies for isotopically substituted diboranes

Ground state rotational parameters and fundamental vibration frequencies for isotopically substituted diboranes

JOURNAL OF MOLECULAR SPECTROSCOPY 113, 63-76 (1985) Ground State Rotational Parameters and Fundamental Vibration Frequencies for Isotopically Subs...

801KB Sizes 0 Downloads 10 Views

JOURNAL

OF MOLECULAR

SPECTROSCOPY

113, 63-76 (1985)

Ground State Rotational Parameters and Fundamental Vibration Frequencies for Isotopically Substituted Diboranes J. L. DUNCAN Department sf Chemistry University of Aberdeen, Meston Walk. Old Aberdeen .4B9 2lJE. Scotland The present spectroscopic structural information on diborane derives from infrared studies of B2H6 and B2D6 species only. Due to the impossibility of selective isotopic substitution in diborane, and the consequent coexistence of a number of isotopic species in any partially deuterated sample, the most probable source of further structural information of quality will be from microwave studies of asymmetrically deuterated species. To assist in the assignment of the overlapping spectra that will occur, accurate rotation and quartic distortion constants are presented for the ground states of all isotopic diboranes in terms of existing zero-point average structural parameters and isotopic changes in these calculated through the harmonic potential function. Sets of fundamental anharmonic vibration frequencies are calculated in order that interference from low-lying vibrations with significant populations at ambient temperatures may be anticipated. 0 1985 Academic Press. Inc. 1. INTRODUCTION

Over the past few years we have made a concerted spectroscopic study of the diborane molecule through the isotopically pure “B2H6, “B2H6, “B2D6, and “B2D6 species. High-resolution rovibration assignment and analysis of a number of isolated bands in the spectrum of each species has enabled rather precise sets of ground state rotational and quartic centrifugal distortion constants to be determined from large basis sets of ground state rotational level combination differences (1-3). As a result of lengthy examination of the infrared and Raman spectra, fairly clear pictures of the major resonance perturbations have been constructed, and the positions of a number of previously uncertain fundamentals have been established, for each isotopic molecule (4). Sets of unperturbed fundamental vibration frequencies which obey closely the Teller-Redlich product rule have then been used to determine for the first time a physically realistic and accurately determined set of harmonic force constants (5), which are completely substantiated by the results of two independent ab initio calculations at the 4-31G level (6, 7). The harmonic potential function has then been used in conjunction with the 12 observed ground state inertial constants to determine the ground state average structure parameters, and their isotopic dependences, for the molecule (8). While this structure appears to be rather precisely defined, not all parameters could be allowed to refine independently, and one of two structural dependences on deuteration had to be constrained to the value predicted using the potential function. The apparent quality of the structure stemmed from the fact that, when either constraint was imposed, the other parameter refined to a value very close to that predicted. In essence, two almost identical sets

63

QO22-2852185$3.00 Copyright 0 1985 by Academic Press. Inc All rights of reproduction in any form reserved.

64

J. L. DUNCAN

of parameters resulted. Nevertheless, at the moment insufficient inertial constant data of quality are available to enable an unequivocal set of structure parameters to be determined for the diborane molecule. 2. FURTHER

PROGRESS

Due to the impossibility of selective deuteration of the molecule at the bridge and terminal positions, a mixture of isotopic species results on partial deuteration of the diborane molecule. This renders detailed spectroscopic studies from either infrared or Raman spectra extremely difficult, to say the least, due to the overlapping of rovibration bands from a minimum of two, and often more, major isotopic species present in the sample. It seems that the most fruitful studies would be those undertaken in the microwave region, where only asymmetrically deuterated species would give rise to absorptions through the small permanent dipole moment introduced by the isotopic substitution. Comparable studies on partially deuterated ethanes (9) and ethylenes (IO) have proven to be highly successful, as well as highly accurate. The problem of blending of absorptions arising from different isotopic species generally does not arise in the microwave experiment. However, assignment work is very much simplified in such cases (and sometimes only possible) when the approximate relative positions of rotational transitions for different isotopic species are known, and when the relative populations of low-lying fundamental vibrations, and hence interference from “hot” transitions, can be predicted. These require, respectively, a prior knowledge with reasonable assurance of (a) the ground state rotational (or inertial) constants and centrifugal distortion constants, and (b) the fundamental vibration frequencies of the isotopic modifications concerned. We have at our disposal the means for predicting these spectroscopic phenomenological parameters to high accuracy for any isotopic modification of the diborane molecule. In this paper we list the appropriate data for all isotopic forms of diborane which contain either the i”B or “B nuclides. Calculations for “mixed” “B”B species have not been made because of their very large number, and because preparation prior to effective study would always be made in terms of an isotopically pure starting material. Calculations of this kind, carried out previously for isotopic species of ethylene (1 I) and ethane (12), have proven of great value to subsequent spectroscopic investigations on new isotopic species (9, 13-l@, ground state rotational constants being predicted to within 0.05% and centrifugal distortion constants generally being reliable to much better than 5%. Table I compares the ground state phenomenological parameters for isotopic ethylenes predicted in 1974 (II) with the experimental values which have been determined subsequently through infrared or microwave studies, to give some idea of the quality of prediction which is possible. 3. CALCULATIONAL

PROCEDURE

AND RESULTS

(a) Ground State Rotational Constants The harmonic potential function may be used to correct ground state rotational constants, B$, for the effects of averaging over the harmonic atomic displacements in the ground vibrational state, and for the very much smaller centrifugal distortion effects, to yield zero-point average constants, B; (19). No corrections for electronic

SPECTROSCOPIC

PARAMETERS

65

FOR DIBORANE

TABLE I Comparison of Ground State Phenomenological Parameters (in cm-‘) for Isotopic Ethylenes Predicted in 1974a with Experimental Values Determined Subsequently 13 ‘2”4 Pred.

Exp.(l8)

Pred.

IR

Exp. ( 16) IR

3.4860

3.48608

0.95067

0.91654

0.9163250

0.84798

0.8478267

0.83324

0.83297

0.79331

0.74406

0.7437726

0.67401

0.6737685

0.67091

0.67063

0.95068 0.79342

IO’ . A”R

Pred.

Mw 3.324541

Ro

A’,

Exp.(lO)

3.3256

Co

IO6 . AoJK

Pred.

ml 4.005888

4.86452

,06.

Exp.(lO)

4.0068

4.8656

A0

t~XWC2H2D2

cis-C2H2D4

‘ZH3’

1.31

I .332

1.27

1.3019

I. 16

1.20

1.05

1.089

9.94

9.659

6. I8

6.0174

3.82

3.90

3.04

2.85

48.66

54. I

55.21

82.1

82.05

66.8

70.595

45.6

I06 . 60J

0.234

0.2354

0.275

0.2803

0.280

0.2884

0.241

0.257

106 . 60K

8.97

8.97

7.60

8.132

6. I3

6.558

5.45

6.5

a Ref.

(II)

contributions to the moments of inertia, and hence rotational constants, are necessary for diborane, since there are neither lone pairs of electrons nor multiple bonds to give off-axis inertial contributions. The B; constants are compatible within any single isotopic molecular species (although isotopic dependences still remain), and enable one to calculate average structure parameters and the major isotopic dependences of these. Minor isotopic dependences, e.g., on substituting “B for “B, are small, but important to the overall quality and reliability of the determined parameters. These are estimated through the harmonic potential using a simple diatomic approximation to enable the anharmonic contribution to be calculated (20). Through the reverse calculation, starting with the average structure parameters and allowing for the particular isotopic dependences calculated through the potential function, a set of ground state rotational constants may be estimated for any isotopic modification desired. The set of harmonic force constants used are listed in Table V of Ref. (5) where the symmetry coordinates and molecular geometry to which they refer are also defined. The average structure parameters used are essentially those of Ref. (8) but are modified very slightly here due to a recent update of isotopic atomic masses (21). The recalculated average structure parameters for diborane are listed in Table II. Isotopic changes were calculated for these zero-point average distance parameters between bonded nuclei according to the relation (18) 6r, = s(Ar),

- X,,,

where (A$,, is the average displacement of the bonded distance, and 6Ko is a correction for the effect of nuclear displacements perpendicular to the bond. The subscript zero refers to 0 K, since the ground state is being considered. By treating

66

J. L. DUNCAN TABLE II Zero-Point Average Structural Parameters for the Diborane Molecule” Parameter

Value

rZ(“BHt)

1.1939’;1

0.001’3

+“BHb)

1.327238

0.00046

LZ(Ht’o~~t) LZ(Hb’O~Hb)

121.5Y”

0.19

96.42’

0.04

6rz(‘o~~t

- ‘OmJ

0.00’808

Gr=(“B”b

- “BDb)

0.003732

0.00038

0. ‘50

0.05

6LZ(Ht”BHt “8H

6’&(Hb 6r

z

(“BH

6rZ(loBHb

a See

Table

due

to

The

number

Constrained function, a(BHb)

t

-Dt”BDt)

b

-D

=

“BD,)

b

-“8H

t

-0.

)

- “BHb)

7 of

Ref.

a recent

consistency b

Uncertainty

of

(8).

update decimal

in

the

to

values

using 0-I 1.8A

6rL .

‘3O

0.04

0.000’2;1

constrainedb

0.00008;;

constrainedb

Individual of

isotopic

places

constrainedb

values atomic

quoted

are

are

slightly

masses.

required

See for

changed text.

internal

calculations. estimated = 3a&&2>0 See

through -

the

6Ko with

harmonic a(BHt)

potential 0-l = 2.5A and

text.

bonded distances in the diatomic approximation (equivalent to considering only the cubic stretching force constant for the bond in the light of its dominance over all others), the anharmonic contribution (Ar),, may be approximated to 3a(Az2)0/2. Here (Az2),-, is the mean square parallel amplitude of vibration, and a is the cubic anharmonicity constant for the bond in question, arising from the potential energy expansion for a diatomic molecule, I/ = $(Az2 - aAz3 + - - - ). On the basis of our structural calculations, supported by ab initio calculations, values of a(BH’) = 2.5 A-’ and a(BHb) = 1.8 A-’ were chosen for diborane (8) and are used here. The changes to the zero-point average BH distances may then be estimated for any isotopic substitution by calculation of the mean square parallel and perpendicular amplitudes through the harmonic potential function and application of the equation 6r, = 3a6(Az2j0/2 - 6K0. The zero-point average isotopic structural changes thus estimated for isotopic diboranes are collected in Table III. The numbering used for the atoms is given in Fig. 1.

SPECTROSCOPIC

PARAMETERS

67

FOR DIBORANE

TABLE III Calculated Zero-Point Average Structural Changes from “B2H6 for Isotopic Diboranes (negative and positive signs denote bond shortenings and lengthenings, respectively) Isotopic substitution

1lB 2 Dl DlDZ DlD8 D1D7 DlDZD7 DlD2D7D8 DqD5 DlD4D5 DlD2D4D5 DDDD 1458 DlD4D5D7 DDDDD 12457 DlD2D4D5D7D8 D4 DlD4 D1D2D4 DlD4D8 DlD4D7 DlD2D4D7 DlD2D4D7D8

5%

B"4

BHg

B"7

B%

10-4x

10-4x

10-4%

ld4R

10-4x

lO-48

-1.2

-1.2

-0.8

-0.8

-1.2

-1.2

-9

+2

-1

-1

-5

-6

-8

-8

-2

-2

-11

-11

-15

-2

-4

-4

-2

-15

-13

-4

-4

-4

-13

-4

-12

-13

-5

-5

-18

-7

-17

-17

-7

-7

-17

-17

-3

-3

-32

-32

-3

-3

-12

0

-33

-33

-7

-8

-11

-11

-34

-34

-11

-11

-16

-4

-36

-36

-4

-16

-15

-5

-36

-36

-15

-5

-14

-15

-36

-36

-20

-8

-18

-18

-38

-38

-18

-18

-2

-2

-27

-7

-2

-2

-11

+1

-28

-6

-6

-7

-10

-10

-33

-6

-11

-11

-16

-3

-32

-9

-3

-16

-14

-5

-32

-9

-14

-5

-13

-14

-33

-8

-19

-8

-17

-17

-36

-10

-17

-17

For interbond angles no comparable calculations can be made. Isotopic changes were assumed pro rata with respect to those experimentally determined on deuteration, and listed in Table II, with no changes on boron substitution. Some form of check on the validity of these last simplistic assumptions could be made by calculating the resulting nonbonded distance changes on partial deuteration and comparing these with values calculated using Eqn. (39) of Nakata et al. (22), derived for XY2 molecules as a development of the diatomic approximation. Using averages of their (approximately constant) estimates for the appropriate anharmonic constants, good agreement for H--H nonbonded distance changes on deuteration was observed. Consequently, our simple method for estimating isotopic angle changes was assumed to be a reasonable one.

68

J. L. DUNCAN c

I-

a

b

t

a

FIG. 1. Numbering of atoms and orientation of inertial axes for the diborane molecule.

Application of the structural data in Tables II and III enables the zero-point average inertial constants, Z;, to be calculated for any isotopic diborane, as listed in Table IV. Through application of the harmonic potential function and use of the relevant perturbation expressions (8, 23, 24), the zero-point harmonic vibrational (AZ&) and centrifugal distortion (AZ&,) contributions to the ground state I$ constants may be calculated, as listed in Table V. These enable zero-point average and ground state inertial constants to be interconverted for any isotopic diborane according to the relation

The data of Tables IV and V may finally be combined through this relation to predict the appropriate ground state rotational constants for any deuterated diborane, using the conversion B*/MHz = 505 379.0 pA2/Za. These constants are collected in Table VI. From our previous experiences, and from the quality of the empirical data used in their estimation, it is considered that these ground state rotational parameters should be reliable to considerably better than 1 part in 2000 in any predictive or comparative spectroscopic capacity. (b) Centrifusal Distortion Constants The quartic distortion constants are functions of the harmonic potential function and may be used to assist in its determination. Accordingly, values may be predicted for any isotopic modification through a reliably determined potential function. Strictly, these are hypothetical values at the equilibrium configuration rather than ground state values. Since the vibrational dependences of the constants are not known, the two are normally equated. It is our experience that differences are seldom greater than 5% in these small constants (see Table I), although in exceptional cases differences of 10% appear to be possible (25). Calculated quartic distortion constants consistent with a Z’A axis representation (A, B, C - z, x, y) are collected in Table VII for all deuterated diboranes.

SPECTROSCOPIC

PARAMETERS

69

FOR DIBORANE

TABLE IV Calculated Zero-Point Average Inertial Constants (in pA2) for Deuterated Diboranes from the Parameters of Tables II and III as-

BZ”6

'lB

"B

t

t

B2"5D

B2"4D2

"B

B2"4D2

t

t B2"3D3

B2H2D4t 10.68199

6.35090

7.30065

8.51935

8.12611

0.37229

I;

27.87255

30.05830

31.91115

32.58303

32.19284

34.38669

36.51320

I= z

30.27651

33.41236

36.48450

36.76433

36.62032

39.90739

43.25216

Ia z

6.35202

7.29261

a.52090

a.10100

8.36362

9.45706

10.68397

I;

26.31714

28.50471

30.33635

31.05608

30.63917

32.83599

34.96096

IC z

28.72175

31.85025

34.91077

35.21180

35.05751

38.34836

41.70143

trans-

cis-

B2D3"3

as-

t

B2D4"2t

B2D4"2

t B2D4"2

t B2D5"

B2D6

Ia z

a.30801

9.25960

10.47593

10.08152

10.33792

11.42318

12.63831

I;

29.66518

31.84024

33.70474

34.35900

33.96702

36.15995

38.27312

IC z

30.10694

33.23468

36.31669

36.57926

36.44372

39.72192

43.05280

8.30936

9.25205

10.47773

10.05663

10.33069

11.41595

12.64055

I;

28.12181

30.29950

32.14487

32.84372

32.42519

34.62131

36.73214

IC z

28.56448

31.68607

34.75829

35.03843

34.89395

38.17534

41.51317

trans-

cis-

b B2"5D

B H DbDt 24

B H DbD t 23 2

bt B2"3D D2

bt B2"3D D2

bt B2D4H H

b B2D5"

as-

"B

B*"4D*t

I:

B2D2"4t

"B

cis-

9.46493

t

1lB

trans-

1:

7.29374

a.24574

9.46287

9.32183

10.41173

11.62909

Ib z

28.72693

30.91701

32.76736

33.43457

33.04250

35.23985

37.35912

I= z

30.18489

33.32620

36.39447

36.66643

36.53048

39.81415

43.15099

Ia z

7.29250

8.23562

9.46233

9.04307

9.31168

10.40214

11.62927

I;

27.17653

29.36818

31.19732

31.91134

31.49239

33.69304

35.81061

c

28.63753

31.77139

34.82736

35.12163

34.97420

38.26119

41.60578

(c) Fundamental

9.07025

Vibration Frequencies

The determination of the molecular harmonic potential function requires that observed (anharmonic), unperturbed fundamental frequencies are “harmonized” so as to obey the product rule predictions as well as possible. In the absence of experimental anharmonicity constants, we have used a simple Dennison’s Rule approach with the original data on “B2H6, “B2H6, “BzD6, and “B2D6 (4). By

-0.14(-0.14)

0.23(0.23)

103.AI&

103.AIc;nt

-O.Ol(-0.01)

103.AIv;b

a cent

-71.00(-68.66)

-29.65(-27.66)

I03.AIvbib

103.AI

-3.85(-4.36)

B2H5D

b

0.17(0.16)

-O.ll(-0.10)

-O.Ol(-0.01)

-31.28(-29.27)

-67.73(-65.54)

-3.98(-4.57)

0.28(0.27)

-0.16(-O.

-O.Ol{-0.01) 15) 0.38(0.37)

-O.Zl(-0.20)

-O.OZ(-0.02)

-24.08(-22.41)

b

-82.75(-80.44)

-8.94(-9.51)

B2H3D

as-

-27.18(-25.42)

bc D

-76.89(-74.44)

-6.59(-7.08)

B2H4D

0.29(0.28)

-0.17(-O.

-0.13(-0.12)

0.21(0.20)

-O.OZ(-0.02)

-25.74(-24.16)

-O.Ol(-0.01)

-79.37(-77.14)

-7.99(-8.60)

-28.89(-27.15)

l7(-6.74)

B2D4H2

-73.46(-71.25)

-6.

B2D3H3

as-

B2D2H4t

t

-0.02(-0.02)

-O.Ol(-0.01)

0.33(0.32)

103.AIv\b

103.AI

=

= Cent

b. vrb

103.AIc;nf

103.AI

lo3.AI”~b

103.AI

103.AIv;b

103.AIr;nr

-20.24(-18.60)

-23.05(-21.31)

0.50(0.49)

18)

-86.52(-83.97)

-80.62(-78.98)

-0.26(-0.25)

-0.19(-O.

103.AIc;nt

t

t

16)

D2

t

-9.55(-10.10)

B2H4D2

0.38(0.37)

-O.Ol(-0.01)

V

t

13)

t

b

H

t

0.27(0.26)

-0.15(-O.

-O.Ol(-0.01)

0.30(0.29)

-0.16(-O.

-O.Ol(-0.01)

0.34(0.33)

-0.18(-O.

-0.02(-0.02) 17)

0.33(0.32)

-0.17(-O.

-O.OZ(-0.02)

-18.70(-17.38)

-10.69(-11.28)

B2D5H

-87.85(-85.73)

-9.90(-10.45)

B2D4H

-21.66(-20.26)

16)

D2

-85.35(-83.06)

b

-24.82(-23.26)

-8.89(-9.41)

B2H3D

-82.83(-80.64)

14)

D2

cis-

0.26(0.26)

-0.14(-O.

-24.76(-23.23)

b

0.26(0.25)

-0.02(-0.02)

-79.17(-76.82)

-7.83(-8.28)

B2H3D

trans-

0.20(0.20)

t

-0.13(-O.

-0.12(-O.

-0.15(-0.14)

-O.Ol(-0.01)

-O.Ol(-0.01)

0.23(0.22)

-O.Ol(-0.01)

-26.46(-24.91)

b

ll(-18.80)

-84.71(-82.65)

-26.42(-24.90)

-75.89(-73.68)

-20.

-79.43(-77.41)

B2D6 -9.16(-9.78)

-82.04(-79.89)

-8.68(-9.28)

B2D5Ht

-8.08(-8.67)

cis-

0.41(0.40)

-23.30(-21.87)

-7.04(-7.56)

B2D4H2

tra”S-

12)

-0.20(-O.

0.43(0.42)

-O.Zl(-0.21)

19)

-0.20(-O.

-0.19(-O. 0.40(0.39)

-O.OZ(-0.02)

-0.02(-0.02)

-O.Ol(-0.01)

0.3610.35)

-15.46(-14.17)

-l8.17(-16.69)

-21.12(-19.50)

-9l.l2(-88.83)

-O.Ol(-0.01)

-ll.97(-12.52)

B2H2D4

-20.79(-19.22)

18)

t

-88.81(-86.48)

-10.81(-11.32)

B2H3D3

-86.49(-84.12)

t

-82.84(-80.29)

B2H4D2

cis-

-9.30(-9.77)

t

-8.23(-8.63)

B2H4D2

tl-C%lS?

and Centrifugal Contributions (in rAZ) to Ground State Inertial “B Diboranes (values for ‘“B diboranes in parentheses)

-O.Zl(-0.20)

-25.32(-23.27)

‘. vlb

103.AI

-74.87(-72.32)

-6.53(-6.98)

-3.11(-3.58)

103. AIctnt

103.AIvbib

I03.Alv~.

BZH5D

t

Harmonic Vibrational Constants for Deuterated

B2"6

Calculated

TABLE

16)

13)

19)

t

71

SPECTROSCOPIC PARAMETERS FOR DIBORANE TABLE VI Predicted Ground State Rotational Constants (in MHz) for Deuterated Diboranes as-

11B

"B

trans-

cis-

B2H6=

t BZ"5D

t B2"4D2

B2H4D2t

B2H4D2t

t B2"3D3

t B2H2D4

A0

79 615

69 286

59 388

62 255

60 430

53 456

47 364

B 0

18 181

16 859

15 880

15 550

15 741

14 735

13 876

C 0

16 706

15 136

13 859

13 754

13 808

12 669

11 689

A

79 607

69 367

59 381

62 451

60 496

53 503

47 358

B.

19 256

17 778

16 705

16 315

16 540

15 432

14 481

Co

17 610

15 878

14 404

14 360

14 424

13 184

12 123

trans-

cis-

0

as-

t

"B

"B

B2D2H4t

B2D3"3t

B2D4H2

B2D4H2t

t B2D4H2

t B2D5"

B2D6a

A0

60 860

54 615

48 278

50 164

48 923

44 276

40 017

B 0

17 075

15 910

15 030

14 742

14 913

14 008

13 234

Co

16 805

15 219

13 926

13 826

13 878

12 730

11 744

A0

60 854

54 663

48 273

50 291

48 961

44 306

40 012

B0

18 013

16 719

15 760

15 422

15 623

14 631

13 790

Co

17 711

15 963

14 550

14 434

14 494

13 246

12 179

trans-

cis-

asb

B2H5D

"B

"B

a

bt B2H4D D

bt B2H3D D2

bt B2H3D D2

bt B2H3D D2

bt B2D4H H

b B2D5H

A0

69 326

61 339

53 457

55 766

54 266

48 586

43 498

B 0

17 635

16 387

15 462

15 151

15 333

14 376

13 559

Co

16 758

15 176

13 895

13 792

13 844

12 700

11 717

A0

69 343

61 418

53 463

55 937

54 328

48 633

43 500

B0

18 643

17 252

16 241

15 875

16 089

15 037

14 146

Co

17 644

15 919

14 520

14 399

14 460

13 216

12 152

me

fit (observed - calculated) to the spectroscopic rotational constants A,, Bo, C 0

in MHz for B2H6 and B2D6 species are: 11B2H6 (0,2,1), 1°B2H6 (O,-2,-2), "B2D6

(-3,-3,-l), 1°B2D6 (1.0,2).

using the same procedure in reverse, the predicted unperturbed anharmonic fundamental frequencies for any isotopic modification may be calculated through the potential function. The predicted values are considered to be reliable to within 10

72

J. L. DUNCAN TABLE VII Quartic Centrifugal Distortion Constants (in kHz) for Deuterated “B diboranes in the I’A Representation (z, x, y - A, B, C) (values for “B diboranes in parentheses)

B2H6 t B2”5D t

as-B2H4D2

t

tram-B2H4D2 t

cis-B2R4D2 t B2H3D3 t B2H2D4 t B2D2H4 t B2D3H3 t

as-B2D4H2

t

tram-B2D4H2

t B2D5H B2D6 b B2H5D b

B2H4D D

t

as-B2H3D

t D2 b

trans-B2H3D cis-B2H3D

b

D2

t D2 t

a

If

a IrS

molecules, values

2.28(2.66)

27.OC29.4)

42.9C42.6)

500(498)

2.82C3.27)

22.2C24.0)

74.7C77.6)

292(287)

2.82C3.23)

50.4(53.

21.7C23.4)

30.2C28.9)

411(411)

2.59C2.95)

31.3C32.2)

24.2(26.4)

12.2C8.8)

461(462)

3.4lC3.95)

42.OC44.2)

18.9C20.4)

37.7C37.5)

274(272)

2.82C3.20)

41.5C43.5)

15.8Cl6.9)

32.9C32.5)

190(189)

2.6OC2.92)

36.5C38.0)

27.4C29.6)

33.8C37.8)

297(292)

0.04(0.

23.2C25.0)

23.2C24.3)

279(277)

0.95(1.14)

-llV(-129)

lV.l(20.5)

43.2C45.5)

168(164)

l.30(1.50)

-38.9(-42.4)

relations

1.35(0.28) 31.4C32.5)

IO)

228(227)

l.lS(l.32)

-55.7(-61.1)

3.76C2.26)

270(271)

I .76(2.06)

-40.4(-43.9)

16.4(17.6)

22.OC22.4)

162(161)

1.56Cl.79)

-15.5(-17.3)

13.7C14.6)

20.5C20.7)

ll5(114)

l.57Cl.78)

29.6C32.0)

47.4C51.7)

395(388)

1.10(1.31)

-151(-165) -53.9(-58.8)

17.8(18.

I)

I)

32.8C33.5)

376(374)

I .86(2.17)

20.6C22.2)

57.6C60.3)

222(218)

2.03C2.33)

20.2C21.7)

24.2C24.0)

307(307)

I .84(2,

I)

-3.02(-3.70)

-6.71(-8.00) IO)

-24.6(-27.6) -10.7(-12.1)

354(356)

2.57(2.99)

17.6(19.0)

29.5C29.7)

21 l(2lO)

2.17(2.47)

3.62(3.

14.7Cl5.8)

26.5C26.6)

148(147)

2.07C2.33)

l0.1(10.1)

7.99C5.75)

representation

this in

is

preferred

corresponding table

Table

and I

of

constants the

Ref.

rotational

for

these DJ,

nearly

prolate

. . . . d2 may be

constants

in

Table

I)

-463(-504)

20.8(22.5)

the in

6K

503(497)

22.4(24.4)

B D HbHt 2 4 b B2D5H

J

61.5C65.4)

25.0(27. b

6

31.9C34.7)

18.8(20.

t

cis-B2D4H2

A K

A JK

AJ

asymetric

calculated VI,

using

18)

top from

the

the

(a).

cm-’ or 1% (whichever is smaller) at worst, but most should be reliable to within 5 cm-‘.’ It must be emphasized here that the values are free from all effects of Fermi resonance, which does not exist within the harmonic model. In B2H6 and BzD6 species, Fermi resonance perturbations of up to 50 cm-’ have been observed ’ The standard deviation of the overall fit for B2H6 is 4.2 cm-r on frequencies and 0.4 cm-’ on “‘B isotopic shifts; for B2D6, 4.5 cm-’ on frequencies and 0.4 cm-’ on “‘B isotopic shifts.

SPECTROSCOPIC

PARAMETERS

13

FOR DIBORANE

TABLE VIII Anharmonic Fundamental Frequencies (in cm-‘) for all Deuterated “B Diboranes (associated upward “B isotopic shift below each frequency) tran.s-

ast

t B2H6

t

t

t

B2H4D2

B2H4D2

B2H5D

cis-

t B2H4D2

B2H3D3

B2H2D4 D2h

D2h 2526

2521

2521

1898

1842

6.6

5.9

5.9

13.3

12.9

9.2

8.5

2096

2102

2105

2108

2109

2112

2114

1.8

0.8 a

a

g

u

1187

b2u

Ig

b l"

b3g A

b 3u

1.9 a~

II81

3.0

2.9 a

g 1086

al

1083

3.0 a

1080

3.1 ag

917

6.3

6.3

7.7

7.2

6.8

788

761

744

721

753

718

708

31.1

21.1

19.1

15.6

21.0

13.4

13.6

833

709

648

646

624

0.0

5.0

2.0

5.7

1.8

704 fa2

a

00

"

vt 1754

1752

1752

4.2

4.3

4.4

4.4

860

850

13.9

9.2

2613 15.0

a

1752

a

a

593 "

11 1750

0.0 1747

4.5

770

850

716

13.3

14.0

9.4

14.9

2606

2605

2570

2574

2568

1975

14.7

14.7

II.1

II.4

II.0

20.8

951

940

940

880

865

4.3

7.1

7.0

II.4

4.9

343

326

323

320

0.3

0.2

0.0

al

bl

b2

b

717

g

a2

20.0

4.4

367

b

II81

6.2

1756

b2g

a

1837

867

b u

5.0

al

a'

4.6 b2g

703 16.1

860

b 2u

3.6

306

291

0.1

0.1

0.0

0.0

2597

2566

1968

2564

2560

1968

1961

14.3

II.1

20.9

11.0

10.6

20.8

21.0

918

836

796

781

771

14.0

19.5

10.5

25.9

14.0

15.1

13.4

1924

1922

1920

1920

1920

1918

1916

10.7

10.6

10.5

10.5

10.5

10.4

924

834

974

a

88 942

bl

a g

a

924

u

bl

b Ig

738

10.3

b

11 839

I11 744

5.0

6.2

7.2

997

1012

985

0.9

0.8

0.9

a

4.7

4.2

1023

1015

0 0

0.4

2518

1899

1842

1905

1900

1899

5.3

13.7

9.2

14.2

14.6

13.9

10.0

1615

' 1612

1608

1609

1609

1 1605

1601

a

7.8

824

998 La2

=I

3.9 b g

00

4.5

4.2

1175

1080

901

6.4

6.7

16.8

3.5

b u

3.8

b2

bl

a

b A 3g

943 00 1847

b 3"

2.5

3.8

3.2

1073

1077

903

878

5.5

6.5

16.9

7.1

(4), the largest associated with the bridge deformation vibration, v13. It seems likely that this resonance will persist through many isotopic diboranes. Other identified resonance perturbations in B2H6 and BzD6 species were not greater than 20 cm-‘.

74

J. L. DUNCAN TABLE VIII-Continued

B2D2"4 D2h 2523

~-

a"

tra”St %D4"2

BzD4"2

BzD5"

B2D6

Cs(a,b)

C*"(a)

C2h(C)

C2"(b)

Cs(ab)

D

2520

2520

1906

1'112

1905

1858

5.7

5.8

15.7

15.4

15.0

II.8

1506

1506

1506

1504

1501

2.3

I.8

I.9

I.9

1.4

a

'

=I

g

1084

5.6

6.2

720

792

719

706

18.9

15.7

23.9

12.8

13.7

664

643

644

621

I.6

5.2

I.3

1291

4.7

794

741

30.5

24.0

833

682

0.0

3.8

no

="

6.6

6.6

6.6

860

a52

____~ 13.6

9.7

2605 15.0

a

0,

18.9

a

593 u

1288

0.0 1286

6.8

715

850

706

II.0

6.5

9.1

2604

2605

2572

2574

2568

1975

14.7

14.7

II.1

II.4

II.0

20.7

a25

726

715

704

707

4.9

10.6

7.0

8.0

7.7

a'

bl

297 b2

708

1968

10.6

20.8

918

881

878

--

14.0

12.8

II.3

1473

1467

1461

16.1

15.9

15.7

940

920

R32 0.0

2518

1904

5.2

14.7

II93

a'

7.8

1175

1065

4.7

6.3

a

904

u

bl

781

1461

1461

1456

15.7

15.7

15.5

902

887

a72

--

aIT

4.5

846

726

727

7.6

I.4

1.3

1850

1902

1897

1849

10.2

13.7

14.1

10.0

II89

II89

1189

1188

832

b g

7.6

b

"

6.9

b,

'g

782

13.7

b2

1961

a'

21.0

b

7.2

7.0

738 13.4

15.2

25.3

1.7

a2 00 -----A-

a'

822

1.7

6.5

II91

8.0

g

4.5 261

2560

bk

2u

0.0

10.9

a

703

b

272

2562

1968 20.9

a'

699 14.8

0.1

281

II.0

0 0

al

0.1

2565

830

5.3 283

14.3

6.4

733 u

7.1 b2g

11.4

0.2

2597

a'#

b

--

0.3

0.3

I.8

g

286

0.4

bl

b

a2

--

913

6.5

311

3u

I.1 =g

7.0

4.9

784

6.0

b

a'

1072

5.2

all

=I

1070

1179

a2 L

a

II79

1184

1290

b3e L-

211

1509

1291

bl"

t

%D4"2

1293

b2u

t

*2D3H3

6.3

1296

b2g

cist

1511 2.7 =g

as-

t

t

1450 15.3

b l"

722 4.7 728

Ab3g

0 0 1840 8.6 II86

b 3u

6.6

898

1062

1067

a97

a74

15.6

4.8

7.3

15.3

5.9

This does not preclude the possibility, however, that large Fermi resonance perturbations may occur in any isotopic diborane due to close coincidences between appropriate unperturbed vibration levels coupled by a large anharmonic resonance

SPECTROSCOPIC

PARAMETERS

FOR

75

DIBORANE

TABLE VIII-Continued

b

da2

b2

a2

al

bl

b2

t

b

D2

B2H3D

Cs(aC)

C,(C)

t D::

b B2H3D

t

B2D4"

D2

Cs(bd

b

bt H

B2D5H C2"(C)

Cl

2524

2521

2518

1894

1900

1843

6.4

5.8

5.9

13.5

13.1

9.5

9.5

2018

2022

2023

2027

2028

2028

2029 6.2

4.5

5.5

5.3

6.4

6.5

6.3

1180

1180

1085

1079

900

5.R

5.9

5.9

7.4

7.0

15.8

786

747

742

721

774

712

707

30.7

13.6

18.9

15.6

17.8

9.1

15.7

a

1

av~

a

a

v

1841

1185

=I

915 19.5

833

693

678

645

645

623

00

4.6

I.0

1.8

5.5

1.5

1695

1692

1689

1689

89 1689

1687

4.3

4.2

4.0

4.1

4.1

3.8

860

849

712

723

850

714

701

13.7

9.1

12.1

6.5

9.3

II.6

13.4

2613

2605

2605

2570

2572

2566

1975

15.0

14.7

14.7

11.1

11.4

II.0

20.8

826 bl

B2H3D

C1

C,“(C)

iil

b

B H DbDt 24

B2H5D

a'

b

78'3

a

593 a2

0.0 ,684

b2

3.5

798

752

3.1

19.3

5.7

II.0

6.7

10.6

338

319

306

303

301

288

275

0.1

0.2

0.3

0.1

0.0

0.1

0.0

2597

2565

1968

2562

2560

1968

1961

14.3

II.0

20.9

II.0

11 10.6

20.9

21.0

918

873

867

823

781

778

14.0

12.2

8.7

25.5

13.9

14.7

13.4

1486

1482

1478

1478

1479

1474

1470

10.8

10.5

t 10.1

10.2

10.2

9.8

956

930

914

912

844

839

3.1

4.3

8.1

2.7

10.0

6.2

a

a

a

(7

a

a'

a

a

t

711

a

722

989

977

968

946

963

941

I.5

2.0

2.6

2.4

2.2

2.3

2518

1899

1843

1904

1899

1899

at1

713 b'

a2

2.9

738

9.5 al

732 5.9 906

bl

I.2 1845

5.3

13.7

4.9

1234

1233

t 1231

6.6

6.7

6.6

6.8

6.8

6.7

6.7

1175

1078

899

1070

1076

1077

876

6.1

6.5

15.1

5.6

6.1

6.5

6.6

a

b

14.0

14.4

13.8

1231

all 1231

1228

9.5 b2

1227

parameter. The predicted unperturbed anharmonic fundamental vibration frequencies, and boron isotopic frequency shifts, for all deuterated diboranes are collected in Table VIII. In addition to being of assistance to any future infrared or Raman

76

J. L. DUNCAN

studies on these species, the data in Table VIII should be valuable for estimating the contributions to the microwave spectra from lower-lying vibrational levels which will be populated at ambient temperatures. RECEIVED:

February

26, 1985 REFERENCES

1. E. HAMILTONAND J. L. DUNCAN,J. Mol. Spectrosc. 90, 129-138 (1981). 2. E. HAMILTONANDJ. L. DUNCAN,J. Mol. Spectrosc. 90, 517-530 (1981). 3. J. HARPERANDJ. L. DUNCAN,J. Mol. Spectrosc. 100, 343-357 (1983). 4. J. L. DUNCAN, D. C. MCKEAN, I. TORTO, AND G. D. NIVELLINI,J. Mol. Spectrosc. 85, 16-39 (1981). 5. J. L. DUNCAN,J. HARPER,E. HAMILTON,AND G. D. NIVELLINI,J. Mol. Spectrosc. 102, 416-440 (1983). 6. C. E. BLOMAND A. MULLER,J. Chem. Phys. 69, 3397-3402 (1978). 7. D. G. LISTER,G. D. NIVELLINI,AND P. PALMIERI, J. Mol. Struct. 85, 279-283 (1981). 8. J. L. DUNCANANDJ. HARPER,Mol. Phys. 51, 371-380 (1984). 9. E. HIROTA,Y. ENDO, S. SAITO,ANDJ. L. DUNCAN,J. Mol. Spectrosc. 89, 285-295 (1981). JO. E. HIROTA,Y. ENDO, S. SAITO,K. YOSHIDA,I. YAMAGUCHI,AND K. MACHIDA,J. Mol. Spectrosc. 89,223-231 (1981). JJ. J. L. DUNCAN,Mol. Phys. 28, 1177-1191 (1974). J2. J. L. DUNCAN,D. C. MCI&AN, ANDA. J. BRUCE,J. Mol. Spectrosc. 74, 361-374 (1979). 13. F. HERLEMONT,M. LYSZYK, J. LEMAIRE,C. LAMBEAU,M. DE VLEESCHOUWER, AND A. FAYT, J. Mol. Spectrosc. 94, 309-3 15 ( 1982). 14. M. DE VLEESCHOUWER, C. LAMBEAU,D. VAN LERBERGHE, E. JANSSENS, AND A. FAYT, J. Mol. Spectrosc. 90, 273-286 (1981). IS. J. L. DUNCAN, E. HAMILTON,A. FAYT, D. VAN LERBERGHE, AND F. HEGELUND,Mol. Phys. 43, 737-752 (1981). 16. F. HEGELUNDAND F. M. NICOLAISEN, Mol. Phys.. in press. 17. Y. VERBIST-SUEUR, C. P. COURTOY,A. FAYT, AND D. VAN LERBERGHE, Ann. Sot. Sci. Bruxelles 90, 317-336 (1976). 18. M. DE VLEESCHOUWER AND A. FAYT, Privatecommunication. 19. T. OKA AND Y. MORINO,J. Mol. Spectrosc. 6, 472-482 (1961); Y. MORINO,K. KUCHITSU,AND T. OKA, J. Chem. Phys. 36, 1108-l 109 (1962); K. KUCHITSU,J. Chem. Phys. 49,4456-4462 (1968). 20. K, KUCHISTSUAND S. J. CYVIN, in “Molecular Structures and Vibrations” (S. J. Cyvin, Ed.), Ch.

12, Elsevier, Amsterdam, 1972. 21. H. S. PEISER,N. E. HOLDEN,P.

DE

BI~VRE,AND 1. L. BARNES,Pure Appl. Chem. 56, 695-768

( 1984). 22. M. NAKATA, S. YAMAMOTO, T. FUKUYAMA, AND K. KUCHITSU,J. Mol. Struct. 100, 143-159

(1983). 23. T. 0~ AND Y. MORINO,J. Mol. Spectrosc. 6,472-482 (1961). 24. 1. M. MILLS,in “Molecular Spectroscopy-Modem Research” (K. Narahari Rao and C. W. Mathews, Eds.), Vol. I, Ch. 3, Academic Press, New York, 1972. 25. J. L. DUNCANAND D. C. MCKEAN, J. Mol. Spectrosc. 107, 301-305 (1984). 26. J. K. G. WATSON,J. Mol. Spectrosc. 65, 123-133 (1977).