Proceedings of the Analysis Conference, Singapore 1986 S.T.L. Choy, J.P. Jesudason, P.Y. Lee (Editors) 0 Elsevier Science Publishers B.V. (North-Holland), 1988
69
HARMONIC ANALYSIS ON CLASSICAL GROUPS Gony Sheny The C h i n e s e hiv e r s i t y o f S c i e n c e and Techno1 o y y L i S h i X i o n g and Zheny Xue An D e p a r t m e n t o f M a t h e m a t i c s , Anhui U n i v e r s i t y , H e f e i , P e o p l e ' s R e p u b l i c o f China The p u r p o s e o f t h i s a r t i c l e i s t o i n t r o d u c e b r i e f l y t h e p r i n c i p a l r e s u l t s i n h a r m o n i c a n a l y s i s on c l a s s i c a l g r o u p s and i t s e x t e n s i o n on compact L i e g r o u p s i n China, and a l s o t o i n t r o d u c e b r i e f l y some i m p o r t a n t r e s u l t s i n t h i s d i r e c t i o n abroad.
P r o f . Hua Luo Geny h a v i ny accompl ished h i s famous work "Harmonic A n a l y s i s on C l a s s i c a l Domains i n t h e Theory o f F u n c t i o n s o f S e v e r a l Complex V a r i a b l e s " , a p p l i e d h i s t h e o r y t o t h e h a r m o n i c a n a l y s i s on u n i t a r y yroups,
deepened t h e
w e l l - k n o w n Peter-Weyl T h e o r m and i n i t i a t e d t h e r e s e a r c h on h a r m o n i c a n a l y s i s on c l a s s i c a l y r o u p s i n C h i n a [l]. I n t h e l a t e 1 9 5 0 ' s , based on H u a ' s work a s y s t e m a t i c r e s e a r c h on h a r m o n i c a n a l y s i s on u n i t a r y y r o u p s was c a r r i e d on w e l l [2]-[6].
A s e r i e s o f concepts,
d e f i n i t i o n s and methods were s e t up, w h i c h s u b s e q u e n t l y i n f l u e n c e d t h e r e s e a r c h f o r h a r m o n i c a n a l y s i s on c l a s s i c a l g r o u p s and compact L i e yroups. t h a t t h e r e s e a r c h was suspended f o r a l o n y t i m e .
It i s a p i t y
The r e a s o n i s now w e l l - k n o w n .
I n t h e l a t e 1970's, t h e research regained i t s s t r e n g t h i n China.
The b a s i c
i d e a i s t h a t u n i t a r y y r o u p s a r e t h e c h a r a c t e r i s t i c m a n i f o l d s f o r t h e complex c l a s s i c a l domains o f t h e f i r s t c l a s s and b o t h r o t a t i o n g r o u p s and u n i t a r y s y m p l e c t i c y r o u p s a r e c h a r a c t e r i s t i c m a n i f o l d s f o r r e a l c l a s s i c a l domains o f t h e f i r s t c l a s s and f o r t h e c l a s s i c a l domains o f t h e q u a t e r n i o n s r e s p e c t i v e l y . Chen Guany X i a o From t h i s p o i n t o f view, Wany Shi Kun, Dong Dao Zhen, He Zu Qi, and o t h e r s s y s t e m a t i c a l l y s t u d i e d t h e h a r m o n i c a n a l y s i s on r o t a t i o n y r o u p s and u n i t a r y s y m p l e c t i c yroups.
L a t e r L i S h i Xiony,
Zheny Xue An, Fan Da Shan, Chen
Shun Fu c o n t i n u e d t h i s r e s e a r c h and e x t e n d e d i t t o compact L i e g r o u p s .
A t p r e s e n t t h e r e s e a r c h i n t h i s d i r e c t i o n i s c a r r i e d on w e l l . S i n c e t h e l a t e 1 9 6 0 ' s , on t h e o t h e r hand, many r e s e a r c h e r s a b r o a d have s t u d i e d t h e h a r m o n i c a n a l y s i s on compact L i e y r o u p s such as E. M. S t e i n , R. Coifman and G. Weiss, J. L. C l e r c , R. J . S t a n t o n and P. A. Tomas, R.
S.
N. J . Weiss, D. L. R a y o z i n , 6. D r e s e l e r , R. A. Mayer, M. E. T a y l o r , M. S u y i u r a , S. G i u l i n , P. M. Soard, G. T r a v a y l i n , 6. George, H. Johuen and Strichartz, others.
S. Gong et al.
I0
The p u r p o s e o f t h i s a r t i c l e i s t o i n t r o d u c e b r i e f l y t h e p r i n c i p a l r e s u l t s i n harmonic a n a l y s i s on c l a s s i c a l y r o u p s and i t s e x t e n s i o n on compact L i e g r o u p s i n China, and a l s o t o i n t r o d u c e b r i e f l y some i m p o r t a n t r e s u l t s i n t h i s d i r e c t i o n abroad.
The r e l a t e d p r o o f s a r e o m i t t e d .
1. Poisson Kernels and Abel Sumnation The r e s e a r c h i n h a r m o n i c a n a l y s i s on u n i t a r y y r o u p s was i n i t i a t e d f r o m t h e P o i s s o n k e r n e l s on t h e c l a s s i c a l domains o f s e v e r a l complex v a r i a b l e s d e f i n e d by Hua Luo Geny. L e t RI b e t h e c l a s s i c a l domain c o n s i s t i n y o f a l l complex m a t r i c e s o f o r d e r n such t h a t
- Zll
I
> u.
It i s we1 -known t h a t t h e c h a r a c t e r i s t i c m a n i f o l d s o f RI
are t h e u n i t a r y yroups
Un o f o r d r n, and t h e e l e m e n t i n t h e a n a l y t i c automorphism g r o u p can be r e p r e -
s e n t e d by
W = (AZ + B)(CZ + U ) - l where W , Z E RI and 2nx2n m a t r i x
F = ( : satisfies the followiny three conditions :
or)
d e t F = 1. On Un,
(1.1) chanyes i n t o V = (AU + B)(CU + O)-'
(1.4)
w h i c h t r a n s f o r m s a u n i t a r y m a t r i x U i n t o a n o t h e r u n i t a r y m a t r i x V. Let
fi
and
\i
d e n o t e t h e r e s p e c t i v e volume e l e m e n t s o f U and V,
\j = ( d e t ( C U + D ) L e t a p o i n t Z o f RI become 0 u n d e r (1.1) become V.
then
I-2n fi. and, a c c o r d i n g l y ,
(1.5) a p o i n t U o f Un
Then Hua Luo Geng s t a r t i n y from t h e t h e o r y o f harmonic f u n c t i o n s i n
s e v e r a l complex v a r i a b l e s , d e f i n e d t h e P o i s s o n K e r n e l as f o l l o w s : P(Z,U)
=
det(1 ldet(Z
-
-
ZT')n U)lZn
Harmonic Analysis on Classical Groups
71
and p r o v e d t h e f o l l o w i n y L e t $ ( U ) be a c o n t i n u o u s f u n c t i o n on Un,
THEOREM 1.1.
The P o i s s o n k e r n e l P(r1,U)
on u n i t a r y g r o u p s i n (1.7)
then
has t h e f o l l o w i n y
expansion P(r1.U)
fz,
where N ( f ) = (fl,
..., f n )
=
1 pf(r)N(f)xf(U), f
i s the order of the sinyle-valued irreducible
u n i t a r y r e p r e s e n t a t i o n A f ( U ) o f Un w h i c h t a k e s f = ( f l , labels ( f l > f2 > characters,
... > f,
..., f n )
f2,
as i t s
a l l are i n t e y e r s ) , xf(U) are t h e correspondiny
and P f ( d
in
P(rI,lJ)xf(U)fi.
=
(1.8)
I f u(U) i s an i n t e g r a b l e f u n c t i o n on Un and i t s F o u r i e r s e r i e s i s u(U) where
-F
c f = w
N(f)tr(CfAf(U)),
I
u(U)Af(U')fi.
'n Then t h e Abel sum o f (1.9)
is (1.10)
pf(r)N(f)tr(CfAf(U)). The c o n c r e t e f o r m u l a f o r p f ( r ) i s i n c l u d e d i n t h e f o l l o w i n g theorem.
THEOREM 1.2.
el > e2 >
... >
pf(r) = r X
where Ns(a,b)
I f e l = fl+n-l,
[Z]
es
0 > E,+~
>
..., e k = f k + n - k , ..., en = ... > en ( n > s > 0 ) , we have
fn, when
fl+...+fs-fs+l-...-fn
N( f ,g)N( y , f ) N ( f ) N ( Y)
I:
s>gs+l>...'y,>o
= N(a1,
...,as,bs+l, ...,b n ) ,
g = (yl
,...,yn)
(1.11)
can a l s o be w r i t t e n as
a r e a p e r m u t a t i o n o f 0,1,2
s
X
n-l>vs+l>...>v
I:
r2(gs+1+"'+gn)
Y1+n-l and gZ+n-Z
,...,n - 1
,...,gn
and O>y1>gz>
(e.-vk)(v.-ek) J j = 1 k=l (v.-v ) ( e . - e ) >O J k J k n
n
(1.11)
I
n
n
in
...>ys,s-n.
Z(V~+~+...+V~) r
S.Gong et al.
12
The p r o o f o f Theorem 1.2 i s c o m p l i c a t e d and needs h i g h l y s k i l l f u l c a l c u l a tion.
Here a s k e t c h i s y i v e n and r e a d e r s a r e r e f e r r e d t o [ 2 ]
for details.
We i n t r o d u c e t h e f o l l o w i n g n o t a t i o n s
where q,t
a r e n o n - n e g a t i v e i n t e g e r s , and p i s an i n t e y e r .
I f q = U and p < 0 , t h e n we have
( s i n c e eipe(l-re-ie)-t powers.
"'st
)
= 0,
P < 0,
for
(1.13)
i s a F o u r i e r s e r i e s whose t e r m s have o n l y n e g a t i v e
Similarly,
( qu;
)
for
= 0,
p
> U.
(1.14)
I n virtue of e ipe
( l-rei e)q( l-re-i
lt
( l-re-i')t
( l-rei
,,i ( p + 1 )e
-
,ipe
( l-reie ) q ( l - r e - i ' ) t
'
we have
I n t h e same way, we have
(
q,t Again, f r o m
,e-,
I*
(1.16)
i t i s deduced t h a t
(1.15),
(1.16)
and (1.17) a r e t h r e e b a s i c r u l e s o f c a l c u l a t i o n .
a p p l i c a t i o n o f (1.15)
( q P, t
Repeated
leads t o =
=
-
( q - Pl , t
1
r(
P
( q-2,t
.....
$1 P+1 )
P+l
+
( q,t
r( q-1,t
I f p < 0 , t h e n i t i s easy t o see from (1.13)
that (1.18)
Harmonic Analysis on Classical Groups
13
r e p e a t e d l y , we can o b t a i n
By u s i n y (1.18)
I f p < 0, t h e n t h e r e e x i s t s
( Similarly,
q;t
(
of
(
1.
oyq ) P.4
r-p
q-'
1
k=U
(
i t can be deduced f r o m (1.16)
I n v i r t u e o f (1.1Y) of
1=
and (1.2U),
(
P$ 0
).
)(
0
q-k,t
1'
(1.1Y)
t h a t i f p > 0, we h a v e
t h e c a l c u l a t i o n o f (1.12)
F u r t h e r m o r e , by ( 1 . 1 7 ) , and
k-p-1 k
i s reduced t o t h a t
t h e c a l c u l a t i o n can be reduced t o t h a t
On t h e o t h e r hand, i t i s easy t o see t h a t
(
U p,u
=
(
u,q
) = 1 .
(1.21)
The f o r m u l a e m e n t i o n e d above b e i n y a p p l i e d t o (1.8),
a c o m p l i c a t e d and h i y h l y
s k i l l f u l c a l c u l a t i o n can y i e l d s t h a t
x e
i(k
e +...+ knen -iB1 1 1 D(e
..., e
,
-ien
)dol
... den
(1.22)
1 ................ n ,n By u s i n y ( 1 . 1 5 ) ,
(1.16)
and (1.17)
d e t e r m i n a n t can be c a l c u l a t e d o u t . I n v i r t u e o f Theorem 1.2,
1
n,n
1
repeatedly, t h e value of t h e preceding
Thus t h e c o n c l u s i o n o f t h e t h e o r e m f o l l o w s .
t h e F o u r i e r s e r i e s (1.10)
a b s o l u t e l y converyent, t h e r e f o r e
kn-( n-1)
..-(
of
'j
u(V)P(rU,V)
\j i s
"n (1.23)
S. Gong et al.
74
From Theorein 1.1, i t f o l l o w s t h a t U(U)
=
l i m J u(V)P(rU,V) r + l lln
= liin
3
1 pf(r)N(f)tr(CfAf(U)).
r+l f
Thus t h e F o u r i e r s e r i e s o f u(U) i s Abel-summable t o i t s e l f . E v i d e n t l y , as f a r as a p p l i c a t i o n i s concerned a c o n c r e t e t h e o r e m on c o n v e r yence i s s u p e r i o r t o an a b s t r a c t e x i s t e n c e theorem on a p p r o x i m a t i o n .
Thus
Theorem 1.1 sharpens t h e famous Peter-Weyl Theorem. Assuminy t h a t u ( U ) has s u f f i c i e n t smoothness, we can deduce t h e d i f f e r e n c e between SN =
1
N > f > f >...>f 1 2
n
>-N
pf( r)N(f)tr(CfAf
(u))
I n a d d i t i o n , t h i s p r o v e s , i n t h e meantime, t h a t t h e f u n c t i o n system
and u ( U ) .
{ a i J ( U ) } c o n s i s t i n y o f a l l elements o f t h e m a t r i c e s o f t h e s i n g l e - v a l u e d i r r e d u c i b l e u n i t a r y r e p r e s e n t a t i o n s A f ( U ) = ( a f. ( U ) ) f o r a u n i t a r y y r o u p i s complete.
1J
As a c o r o l l a r y , we can i m m e d i a t e l y deduce t h e a p p r o x i m a t i o n t h e o r e m
f o r any compact y r o u p and any compact homoyeneous space. L e t us c o n s i d e r t h e r e a l c l a s s i c a l domain Rn c o n s i s t i n y o f a l l r e a l m a t r i c e s o f o r d e r n such t h a t
I
-
XX' > 0,
t h e c h a r a c t e r i s t i c m a n i f o l d o f w h i c h i s o r t h o y o n a l y r o u p O(n) =
{r, rr'
= I}.
The a n a l y t i c autoinorphism
w o f Rn maps o n t o i t s e l f R,
= (AX
+ B)(cx+D)-~
O ( n ) and SO(n) o n t o Rn,
(1.24) O ( n ) and SO(n) r e s p e c t i v e l y .
Lu U i Keny w i t h t h e h e l p o f t h e t h e o r y o f h a r m o n i c f u n c t i o n s i n s e v e r a l r e a l v a r i a b l e s , d e f i n e d P o i s s o n k e r n e l s on Rn as f o l l o w s : (1.25)
As i n Theorem 1.1, we can p r o v e t h e f o l l o w i n y .
THEOREM 1.3.
[l] I f
u(r)
i s a c o n t i n u o u s f u n c t i o n on r o t a t i o n y r o u p SO(n),
then
I n t h e e a r l y 1 9 6 0 ' s , Zhony J i a (ling, u s i n g t h e method o f y e n e r a t i n y f u n c t i o n , p r o v e d t h e e x p a n s i o n o f P o i s s o n k e r n e l s on r o t a t i o n groups.
THEOREM 1.4.
[7] The P o i s s o n k e r n e l P ( r r , r ) o f r o t a t i o n g r o u p s has t h e
Harmonic Analvsis on Classical Groups
75
(1.26)
(1.27) or, e q u i v a l e n t t o
(n-2) ( r ) I
I n (1.27),
..., q,,-k-l
when n = 2 k + l , we t a k e (q1,q2,
1)
n - k - 1 > 41 >
2)
qi
... > q n - k - l
...
(n-2) ( r ) 5,-1
) from
6
which s a t i s f i e s
> 0,
+ q j # i+j-1, f o r a l l i # j ,
and
n-k-1
1
if
-1,
1
if
n-k-1
qi =
u,
qi,=
3, 4
(mod 4 ) ;
when n = 2k, i t i s t a k e n f r o m E w h i c h s a t i s f i e s
...
1)
n-k > q1 >
2)
qi
# i f o r a l l i,
3)
qi
+ qJ. # i+j f o r any i
and
E(qlS
Moreover, N(m1,
...,mk,
qn-k-1
. * . 9
91,
"3
#
j
qn-k-l ) = (-l)(ql+'"+qn-k-l)/'
...,q n - k - l )
i s t h e o r d e r of t h e i r r e d u c i b l e u n i t a r y
r e p r e s e n t a t i o n o f a u n i t a r y group o r o r d e r n-1 which takes (ml, qn-k-l)
ml
SentatiOn
ml
>
> m2 >
as i t s l a b e l s , inl
> m2 >
... > rnk = 0,
O f
... > mk
> 0.
...,mk,ql ,...,
I f n = 2 k + l o r n = 2k and
t h e n um(r) i s t h e c h a r a c t e r o f t h e i r r e d u c i b l e r e p r e -
so(n) which takes
... > m k >
(1.2Y)
(r) m
0, t h e n u
Ill
= (ml,...,mk)
as i t s l a b e l s .
1f
= 2k and
i s t h e sum o f t w o c h a r a c t e r s o f t h e i r r e d u c i b l e
r e p r e s e n t a t i o n s o f s o ( n ) w h i c h t a k e s (Inl,
...,*Ink)
as i t s l a b e l s .
S. Gong el al.
16
............ Sn-l(r) =
+
,2n-2k-3
for
n = 2k+l,
-
,2n-2k-4
for
n = 2k.
(1.30)
The p r o o f o f Theoren 1.4 i s c o m p l i c a t e d and needs h i g h l y s k i l l f u l c a l c u l a t i o n .
F o r d e t a i l s , see [7]. I-et us c o n s i d e r a domain c o n s i s t i n g o f q u a t e r n i o n m a t r i c e s X o f o r d e r n such
-
that I
Xx'
> U, t h e c h a r a c t e r i s t i c m a n i f o l d o f w h i c h i s t h e u n i t a r y syrnplec-
t i c y r o u p IJSP(2n).
As m e n t i o n e d above, c o n s i d e r i n y t h e a n a l y t i c automorphism
y r o u p on t h e domain I
- XX'
> 0, we can o b t a i n t h e c o r r e s p o n d i n g P o i s s o n
kernels (1.31) where 0 < r < 1 and U
B
USP(Zn), by u s i n y t h e t h e o r y o f harmonic f - u n c t i o n s on
t h e q u a t e r n i o n domain. E m p l o y i n g t h e y e n e r a t i n y t u n c t i o n inethods used by Zhong J i a Q i n g i n t h e p r o o f o f Theoren 1.4 l e a d s t o t h e f o l l o w i n y .
THEOREM 1.5.
(He Zu Qi and Chen Guang Xiao, see ( 1 1 ) .
I n t h e expansion o f
P o i s s o n k e r n e l s on u n i t a r y s y i n p l e c t i c g r o u p s P(rI,U)
=
$ pf(r)N(f)xf(U).
t h e c o e f f i c i e n t s have t h e e x p r e s s i o n
1
where
5 (r) 1
.
r
fl+2n
..... t n ( r )
.
r
S p )
f ,+n+l
,~
n n-1 n+l + r ~ + ~ =( rr ,) ~ , + ~ ( r =) r
Harmonic Analysis on Classical Groups
77
A s i n t h e case o f u n i t a r y y r o u p s , we a r e a b l e t o s t u d y t h e Abel summation o f F o u r i e r s e r i e s on r o t a t i o n o r u n i t a r y s y m p l e c t i c y r o u p s , and on t h e h a s i s o f Theorems 1.4 and 1.5 we o b t a i n t h e f o l l o w i n y c o r r e s p o n d i n y r e s u l t : The F o u r i e r s e r i e s o f any c o n t i n u o u s f u n c t i o n on t h e l a t t e r t w o c l a s s i c a l y r o u p s i s a l w a y s Abel-summable t o i t s e l f . 2. The Cessaro Sumnation The s e r i e s o f methods e s t a b l i s h e d i n t h e r e s e a r c h f o r t h e h a r m o n i c a n a l y s i s on u n i t a r y y r o u p s a r e w i d e l y a p p l i e d t o t h e r e s e a r c h f o r t h e h a r m o n i c a n a l y s i s on c l a s s i c a l y r o u p s and on compact L i e y r o u p s .
F o r example, t h e methods " f r o m
sums t o k e r n e l s " and " f r o m k e r n e l s t o sums" t o b e i n t r o d u c e d i n t h i s s e c t i o n j u s t come f r o m t h e i d e a s used i n t h e r e s e a r c h f o r t h e h a r m o n i c a n a l y s i s on u n i t a r y yroups.
By a p p l y i n g t h e s e t w o methods, t h o s e r e s u l t s o b t a i n e d by u n i t a r y
y r o u p s i n t h i s s e c t i o n and t h e subsequent ones can be e s t a b l i s h e d on c l a s s i c a l y r o u p s and on compact L i e y r o u p s .
I n f a c t , as f a r as we know, t h e s e t w o
methods a r e a l m o s t a p p l i c a b l e t o v a r i o u s t y p e s o f summation, c e n t r a l o p e r a t o r s and c e n t r a l m u l t i p l i e r s e s t a b l i s h e d on c l a s s i c a l y r o u p s and on compact L i e y r o u p s a t home and abroad. The summation c o e f f i c i e n t s o f t h o s e summations and c e n t r a l m u l t i p l i e r s e s t a b l i s h e d by t h e method " f r o m k e r n e l s t o sums",
such as A b e l - and Cesaro-
summation i n t h i s a r t i c l e and t h e c l a s s o f c e n t r a l m u l t i p l i e r s e s t a b l i s h e d t h r o u y h t h e F o u r i e r t r a n s f o r m a t i o n f o r L i e a l y e b r a s by R . S . S t r i c h a r t z [14], a r e u s u a l l y very complicated.
1.5,
1.4,
2.7
2.3,
and 2.9
H e r e o n l y t h o s e c o e f f i c i e n t s i n Theorems 1.2,
a r e c o n c r e t e l y y i v e n and t h e i r d e t e r m i n a t i o n depends
on t h e c o m p l i c a t e d c a l c u l a t i o n and s k i l l f u l methods m e n t i o n e d above. For studyiny t h e properties o f Fourier series, C e s a r o summations i n t h i s s e c t i o n , t a r y yroups.
L e t u(U)
such as t h e c o n v e r g e n c e o f
t h e f o l l o w i n y method i s e s t a b l i s h e d on u n i -
e L ( U n ) , and qJ,(V)
= c-1
J
u"
u(uwvw-l)fi.
The method i s t o s t u d y F o u r i e r s e r i e s o f u ( U ) t h r o u y h t h e c l a s s o f f u n c t i o n s {$,,(V),
U 6 Un}.
As qJU(V) i s a c l a s s f u n c t i o n ,
F o u r i e r s e r i e s of a c l a s s of f u n c t i o n s (qJu(e where JIU(e
iel
,
..., e
ien
iel
we o n l y need s t u d y m u l t i p l e
,
..., e
iBn
) , U E Un} on t o r u s ,
) a r e t h e v a l u e s o f $u(V) a t t h e maximum t o r u s , i . e .
diayonal u n i t a r y matrices.
at
L a t e r on, t h i s rnethod was a l s o used i n t h e r e s e a r c h
f o r t h e h a r m o n i c a n a l y s i s on c l a s s i c a l y r o u p s and on compact L i e y r o u p s . r e l a t e d examples can be f o u n d i n [ l O ] e x c l u d i n y t h o s e c o n d u c t e d a t home.
The
I n s p i r e d by t h e Abel-summation on u n i t a r y g r o u p s we have d e f i n e d C e s a r o means of F o u r i e r s e r i e s (1.9)
on u n i t a r y y r o u p s i n
[el.
N o t o n l y can t h e k e r -
n e l s be e x p l i c i t l y r e p r e s e n t e d by m a t r i c e s , b u t b o t h t h e summation c o e f f i c i e n t s
S. Gong et al.
78
and t h e r e l a t e d i n t e y r a l c o n s t a n t s can be c a l c u l a t e d o u t e x p l i c i t l y .
For
u n d e r s t a n d i n g o f t h e y e n e r a l Cesaro means, F e j e r means, w h i c h i s one o f t h e most t y p i c a l and most i m p o r t a n t example o f Cesaso means, was s t u d i e d c a r e fully.
T h i s example i n d i c a t e d t h a t t h e o t h e r c o e f f i c i e n t s and c o n s t a n t s
r e l a t e d t o t h e y e n e r a l Cesaro means can be o b t a i n e d i n t h e same way. L e t u ( U ) be an i n t e y r a b l e f u n c t i o n on Un and t h e Cesaro (C,a) F o u r i e r s e r i e s (1.9)
means o f i t s
be
where
H;(N)
=
xy 1 r~/ xf(V)K;(V)i
(2.2)
un and Ka(V) i n (2.2) N
i s Cesaro (C,a)
N
1 $1;
detn[
k=O
B;=c
1
VK(I
1
N
:A:;
/
k=O
un
(2A;)n Aa =
and
N
-
V'2kf1)j (2.3)
detn where
kernel which i s equal t o
b+a+)
Vk(I
2
detn(I
... ( a + l )
N!
- V'2kt1) -
v')
0,
,
moreover, a > -1 i s needed. F o r Cesaro means on u n i t a r y y r o u p s we have
THEOREM 2.1 C3l.
Cesaro (C,a)
means (2.1) o f F o u r i e r s e r i e s ( l . Y )
o f any
i n t e y r a b l e f u n c t i o n u(U) on u n i t a r y y r o u p s can be e x p r e s s e d as
1 C /
u(V'U)K;(V)t.
(2.5)
'n
PROOF.
From (2.2)
T h e r e f o r e (2.5)
and ( 2 . 3 ) ,
we have
can be w r i t t e n as
w h i c h i s j u s t t h e (2.1). I t can be i m m e d i a t e l y seen t h a t t h e r e l a t i o n between (C,a) k e r n e l s o f Cesaro
(C,a)
means d e f i n e d as above and P o i s s o n k e r n e l s o f Abel means d e f i n e d by Hua
Hurmoriic Anul-vsis or1 Classical Groups i s t h e same as i n t h e case o f F o u r i e r s e r i e s ,
i.e,
(C,a)
19
k e r n e l s become P o i s s o n
kernels i t a tends t o i n f i n i t y .
c31 L e t u ( U ) be c o n t i n u o u s on (In. Then, when
THEOREM 2.2. s e r i e s (1.9)
o f u ( U ) i s (C,a)
(O <
class L i p P
P < I),
lu(u)
-
~ : ( u ) I < A ~ N - ~ ,i f
2)
lu(u)
-
IF;(U)I
<
3)
lu(u)
-
I;(IJ)I
< A ~ N - ~ " + ~ - ~i f,
PROOF.
Fourier
satisfies
1)
where A1,
> (n-l)/n,
suinmable t o i t s e l f , and when u ( U ) b e l o n y s t o
I ~ ( u )( s e e ( 2 . 1 ) )
A
a
~
N
-
a n - n + l > P;
~ ri,~
Oi
f~ a n - n + l =
P;
an-n+l < P ;
A2 and A3 a r e a b s o l u t e c o n s t a n t s . Take
n
= max{s-(atl)(n-l),
Cesaro k e r n e l s K i ( B ) ,
O}.
1 k;(e) 1 ('-') I e I Take s = 2 ( n - 1 )
From an e s t i m a t e o f o n e - d i m e n s i o n a l
we can o b t a i n
i n the definition of
0,
< BNn-l-S
I NO 1'.
and
then
The d i r e c t e s t i m a t e o f ( 2 . 7 )
leads t o t h e conclusion.
Amony Cesaro k e r n e l s , t h e k e r n e l o f F e j e r means has t h e s i m p l e s t e x p r e s s i o n
BN( N+1) I'
where BN i s a number such t h a t t h e i n e y r a l o f (2.8) Bf(N)
=
1
Bf(N) =
1
on U,,
i s e q u a l t o 1 and
-7
N ( f ) c BN(N+l)
F e j e r means o f F o u r i e r s e r i e s (1.9
nN>fl>
1 ... >fn>-nN
o f u(U) reads
Bf(N)N(f)tr(CfAf(U))
The f o l l o w i n y t h e o r e m y i v e s t h e F e j e r means c o e f f i c i e n t s and t h e i n t e y r a l c o n s t a n t s o f F o u r i e r s e r i e s on u n i t a r y g r o u p s .
I n t h e p r o o f o f t h e theorem, a
c o m p l i c a t e d and i n g e n i o u s s k i l l f o r m a t r i x i n t e g r a t i o n i s used.
The same
S. Gong e t al,
80
lnethod can a l s o be a p p l i e d t o t h e c a l c u l a t i o n o f t h e c o e f f i c i e n t s and t h e i n t e y r a l c o n s t a n t s f o r g e n e r a l (C.a) THEOREM 2.3.
means.
[Sl The F e j e r means c o e f f i c i e n t s o f F o u r i e r s e r i e s on u n i t a r y
groups a r e Bf(N) =
2n x
1
sl=o kl>O
(-l)n(n-l)/2(lto(l/N))
2n n+k ntk, ...sn=o 1 Cgn Cn ... C f n Cn 1 n
N((N+l)sl-fl
,...,( N + l ) s n - f n ) ,
(2.10)
kn>O
where k . = f . + n - j t n N - ( N + l ) s j , J J equal t o
j = 1,2,
...,n,
and t h e i n t e y r a l c o n s t a n t s RN a r e
(2.11) From t h e d e f i n i t i o n o f N ( f ) and Theorem 2 . 3 , Bf = 1 Here we s k e t c h t h e p r o o f .
+
i t can be seen t h a t
0(1/N).
F o r d e t a i l s , see [3].
Let (2.12) Then i f p c 2n, we have
k+(N+l)s=q
-
-
(2n)!
c
(p+q-( N + l ) s - l ) ! (q-(N+l)s)!s!(Zn-s)!
2n s=o
(2.13)
q- ( N+1) s>O and tltnN
Bf(N)N(f) = (N+l)
-n2
(-1)
n(n-1)/2
-1 BN
a2"
t2+nN aZn
tn+nN
tl+nN '2n-1
t2+nN a2n-l ).***
,..., a2n
tn+nN a2n-l
.............. tltnN a
n+l
t2tnN a n+l
tn+nN
,..., an + l
(2.14)
Harmonic Analysis on Classical Groups
81
( 2n+kl-1 ) !
(2n+kn-1)!
""'
kl!s1!(2n-sl)!
n
kl >U
BN'( ( 2 n ) !)n( - 1 ) n ( n - 1 ) / 2 ( 2 n - 1 ) ! (2n-2)!
kn>O
2n
...n! (N+1 )n2
k1>0
(2n-l+kl)!
2n n kn>U
.....................
2n
sl=u 1
2n
(n+l+kl-l)! k l ! s p n - s p
.
.
kn>U
.... kn .an+nN-(N+l)sn;
'llfnN-(N+l)sl,
.... 1' ,
Ek = f k + n - k ,
f,.
S i m p l i f y i n y (2.15)
.
B
n
(0,O
.....0 ) .
2
(N+I)"
)n(n-l)!
....
fl+n-1,
2n ... 1 (-1) s =o s =o
1
Sl+.
n kn>U
where k . = n - j + n N - ( N + l ) s . J J
... 2 ! 1 !
... n !
(zn-l)!
2n
1 kl>U
.
f u r t h e r and a p p l y i n y i n g e n i o u s
Thus
= (-l)n('-')/'(n!
x
al
(2.15)
E s p e c i a l l y , we have H f ( N ) = 1 if
c a l c u l a t i o n e a s i l y l e a d t o (2.1U). f
(n+l+kn-l)!
k !s ! ( 2 n - s n ) ! sn=O n n
"*"
kl>U
where kl
(2n-l+kn-1)!
..+sn
.
'gn
n+kl
1
(N+l)(n-s.)-j, J
... n:C j
n
n+kn Cn N((N+l)sl
.l , Z , . . . , n sj .
. ....( n - 1 )
I t i s known f r o m t h e d e f i n i t i o n o f k j t h a t U,l, f o r k j > 0 i f N > n-1. The u s u a l method b e i n y used [lJ, (2.16)
.....( N + l ) s n ) (2.16)
i s necessary becomes
A s e r i e s of s k i l l f u l c a l c u l a t i o n r e l a t e d t o (2.17) h a v i n y been made [3], (2.11)
i s obtained.
Generally, series i s summation
l e t u(0) be an i n t e g r a b l e f u n c t i o n on 0 <
lm a p=-"
P
eipe.
e < 2n
and i t s F o u r i e r
Suppose t h a t T i s a summation and t h e k e r n e l s o f t h e
S. Gong et a1
82
are (2.18) N a t u r a l l y , t h e r e i s an a s s u m p t i o n o f t h e e x i s t e n c e o f t h e k e r n e l k m ( e ) , 7.e.
If
t h e converyence o f (2.18).
I;=a, eipe P
s f o r m tending t o a l i m i t , then
T,,, +
i s c a l l e d T-summable t o s.
L e t u ( U ) be an i n t e y r a b l e f u n c t i o n on \In arid i t s F o u r i e r s e r i e s be
1 N(f)tr(CtAf(U)).
(2.1Y)
f
Ayain l e t -1
= 6,
T,,,(V)
detn
(
umkVk)
-m
(2.20) Then t h e T-means o f (2.19)
is
F
(2.21)
Bf(m)N(f)tr(CfAf(U)),
where
(2.22)
B
and e
iel
,...,e i o n
m
.
i n (2.2U)
= c-l
j'
detn (
"n
(2.23)
pmkVk)v,
-m
a r e t h e c h a r a c t e r i s t i c r o o t s o f V.
Generally, replaciny km(81)
...kI,,(en)
i n (2.20)
by k e r n e l s kln(el,e2,,..,en)
o f m u l t i p l e F o u r i e r s e r i e s , we can y i v e a summation on u n i t a r y y r o u p s .
This i s
t h e method from k e r n e l t o sum.
THEOREM 2.4.
c11
L e t k e r n e l s k m ( e ) i n (2.20)
f o r any y i v e n 6 > 0 , where 6 c / e l c
1)
k N ( B ) = O(N-n)
2)
k N ( e ) = O(Nc) f o r any
3)
j'
(TN(V)(v c
satisfy
H, (m
e where 1 > 6 > 0 and
= 1,2,
...,n ) ,
where H,
TI,
> 6, a r e c o n s t a n t s dependent o n
"m
m only. Then t h e T-means (2.21)
o f F o u r i e r s e r i e s o f u(U) converges t o u ( U ) i f u(U)
i s c o n t i n u o u s on UnF o r t h e summation o f F o u r i e r s e r i e s on u n i t a r y y r o u p s s e t up by t h e method " f r o m sum t o k e r n e l " , we may b e y i n w i t h y i v i n y a c o r r e s p o n d i n y sum o f F o u r i e r s e r i e s on u n i t a r y y r o u p s by (2.18)
[l]
Harmonic Analysis on Classical Groups T,(u)
where e
f
,
( U 1)
(2.24)
..., e
(2.25)
ien
a r e t h e c h a r a c t e r i s t i c r o o t s o f V, D(x1,x2
Obviously,
1t r ( C f A
o f T-summation o f t y p e I 1 a r e
The k e r n e l s T;(V)
iel
Uman N ( f
2
T-summable t o s o f t y p e I 1 i f r m ( U ) + s when m t e n d s t o a
and c a l l (2.19)
limit.
1 lJmelUmk
=
83
, . . . I
Xn) =
n
l t i < jt n
(Xi
-
and
x.). J
i f we t a k e
... vmLn
as t h e summation k e r n e l s o f m u l t i p l e F o u r i e r s e r i e s and r e w r i t e i n (2.24)
,...,‘
, t h e n we d e f i n e a summation on u n i t a r y g r o u p s , t h e
as
1 n k e r n e l s o f w h i c h can be o b t a i n e d by c h a n y i n y km(el) km(e1,e2,..
.,en).
...k m ( e n )
i n (2.25)
into
and t h e n t h e Abel summation o f t y p e I 1 i n (2.1Y)
Take urp = 1-1’1,
i s g i v e n ( s e e C21). Choose uNk = A!(N) C e s a r o (C,a)
= A!
= r ( a + N - l k ( + l ) r ( N + l ) / ( r ( a + N + l ) r ( N - J k ( +and l)) then
summation o f t y p e 11 T,(U)
=
N>el>.
I:
..>en>-N
A’
‘1
... A:
n
N(f)tr(CfAf(U))
(2.27)
i s y i v e n [see C21). The k e r n e l (2.25)
c o r r e s p o n d i n g t o summations (2.26)
and (2.27)
t a k e s one-
d i m e n s i o n a l P o i s s o n k e r n e l and o n e - d i m e n s i o n a l Cesaro k e r n e l r e s p e c t i v e l y as k, ( 0 ) r e s p e c t iv e l y
.
F o r Abel and Cesaro summation o f t y p e 11, t h e f o l l o w i n y t h e o r e m i s v a l i d .
THEOREM 2.5.
[2]
L e t u(U) be a f u n c t i o n h a v i n g c o n t i n u o u s p a r t i a l d e r i v a t i v e s
up t o o r d e r n ( n - 1 ) / 2 , converges t o u ( U).
t h e n t h e A b e l - o r Cesaro-summation o f t y p e I 1 u n i f o r m l y
S. Gong et al.
84
Many Shi Kun and Dony Dao Zheny d e f i n e d Cesaro k e r n e l s on r o t a t i o n groups
SO(n) K:(r) where
r
8
N
+ 1
= (B:)-ldet((A:I
S O ( n ) and B:
j =1
(rJ+r'J)
N-j
1
r=U
A:-1)/A:)n(n-1)'2,
(2.28)
on S O ( n ) i s
i s a number such t h a t t h e i n t e y r a l o f K;(r)
equal t o 1.
If' u ( r ) i s i n t e y r a b l e on S O ( n ) , i t s F o u r i e r s e r i e s i s
u(r) where
h(r) a r e
m = (ml m
,...,mk)
> m2 > 1
- m1
N(m)tr(CmAm(r)),
(2.29)
t h e i r r e d u c i b l e r e p r e s e n t a t i o n s o f SU(n) w h i c h t a k e
...
> > mk > U a r e i n t e y e r s i f n = 2 k + l and > l m k ( > U a r e a l s o i n t e y e r s i f n = 2k, N(m) = N(ml
as i t s l a b e l s , ml
... > mk-l
,...,
m k ) i s t h e o r d e r o f A m ( r ) , and
where c i s t h e volume o f SO(n) and L e t Xm(r) = tr(A,(r))
?
i s t h e volume e l e m e n t .
and (2.31)
I t i s e a s i l y seen t h a t
i f n = 2 k , m1 > coefficients
... > mk
B i 1,. ..,m
Cesaro (C,a)
k
> 0. T h e r e f o r e , we o n l y need t o c a l c u l a t e t h e f o r ml > > mk > U.
...
means o f (2.29
are (2.32)
THEOREM 2.6.
(Wany Shi Kun and Dong Dao Zheny, see [ l ] )
t i n u o u s f u n c t i o n on SU(n), s e r i e s (2.29)
of
u(r)
r
6
i s (C,a)-summable
t o i t s e l f and, when
1)
JCi(r) -
u ( r ) J < A ~ N - P ; i f a(n-1)tz-n
2)
ll:(r)
u(r)(
3)
IC;(r) -
L e t u ( r ) be a con-
S o ( n ) , t h e n , when a > ( n - Z ) / ( n - l ) ,
< A ~ N - P ~ ON,Y
,
the Fourier L i p p,
> p;
i f =(n-1)+2-n
n-2-a( n-1) u(r)) < A ~ N
u(r) e
= p;
i f a ( n - l ) + Z - n < p.
When a = 1, t h e Cesaro summation i s j u s t t h e F e j e r summation and i t s k e r n e l s are
Harmonic Analysis on Classical Groups
KN ( r )
=-
1 BN
lihen n = Zk, (2.33)
I
N
. N-j+l
1 r-' N+l
det(1 + 2
j =1
85
I (n-1)/2
)
(2.33)
becomes
and
THEOREM 2.7.
(liany Shi Kun and nony Dao Zheny, see [ I ] )
On S 0 ( 2 k ) , t h e F e j e r
summation c o e f f i c i e n t s r e a d
n
((2k-1)!)k B ml..
.m k
N( i n ) ( 2 k - 1 ) !
...
Sk'0
4k-2
(-1)
sl+ ...+ s
1 el>l-k
3k-2+el
k '4k-2 s k
...
1=u
...( 4 k - 3 ) !BN(N+1) k ( 2 k - 1 )
4k-2
1
(s2-j2)
O
-
'2k-1
".
'4k-2 sk
3k-2+ek '2k-1
*"
ek>l-k
... N( ( n - l - s l
) ( N+l)-ml,
where e. J ( 2 k - l ) N - ( N + l ) s . - m . - k + j , 3 3 3 i n t e y r a l constants are ((2k-l)!)k B
=
(Zk-l)!(Zk+l)!
..., ( n - l - s k )
j = 1,2
,...,k
and m l >
O < jn< s < k - l ( s 2 - j 2 )
... ( 4 k - 3 ) ! ( N + l ) k ( 2 k - 1 )
where e j = ( P k - l ) N - ( N + l ) S j - k + j ,
j = 1,2
( N+1 )-mk),
,...,k.
On S 0 ( 2 k + l ) t h e F e j e r summation c o e f f i c i e n t s a r e
4k-2
1=o
1 el>l-k
... > mk > U and
...
its
86
S. Gong et al. ((2k)!)k
B,
=
;...
(k
- );
n
...
N(m) ( 2 k ) ! ( 2 k + 2 ) !
... Sk'04k1
4k x
1
sl=o el>l-k k
x
((2k)!)k N
=
-
4k
1
s 1=u
el>l-k
1
j = 1,2,..
J
J
-!j- ... ( k -
1
,...,( n - 1 - s k ) ( N + l ) - m k ) ,
-
1'
((s +
II
.,k
and t h e i n t e y r a l
( j +;
)2)
U
... ( 4 k - 2 ) ! ( N + l ) k ( 2 k - 1 )
... s I:=o (-1) 4k
Sl+.
..+s k C4k
4k
sl"'csk
3k-l+el '2k
3k-l+e
...Cilk
k
k ek>l-k
k
x
...C 4ksk '2k3k-l+el ...C2k3 k - l + e k
) - l N ( ( n-l-sl)(N+l)-ml
1 . = m.+k-j,
(2k)! (2k+2)!
x
C4k s1
-1)
ek>l-k
where e . = Z k N - ( N + l ) s . - k . , J J J constants are
B
.+S
i)2)
+
(4k-2) !BN(N+l) k ( 2 k
.
sl+. (-1)
((n-1-s. ) ( N+l)-L. J J
lI
j =1
( ( sj (-2)+- j !-
U
II ( ( n-1-s. ) ( N + l ) - k + j -
j =1
)-l N( ( n - l - s l ) (
J
where e j = P k N - ( N + l ) s j - k + j , The p r o o f o f Theorem 2.7
j = 1,2
N+1),
...,( n - l - s k ) (
N+l))
,
,...,k.
needs t h e method used i n Theorem 2.3
c o m p l i c a t e d and s k i l l f u l c a l c u l a t i o n .
For d e t a i l s ,
see
and needs a
El].
He Zhu Qi and Chen Guang X i a o d e f i n e d Ceasro k e r n e l s and Cesaro summation on u n i t a r y s y m p l e c t i c groups USP(2n), n = 1,2,
... .
L e t u ( U ) be i n t e g r a b l e on USP(2n) and i t s F o u r i e r s e r i e s i s u(U) where f = ( f l , f2
,...,f n ) ,
fl
- 1f
> f2 >
N(f)tr(CfAf(U
... > f n
u
1
(2.34)
a r e i n t e y e r s , Af(U) a r e t h e
u n i t a r y s i n y l e - v a l u e d i r r e d u c i b l e r e p r e s e n t a t i o n s o f USP(2n) w h i c h t a k e f as i t s l a b e l s , N ( f ) are t h e orders o f Af(U), x f ( U ) = t r ( A f ( U ) ) a r e t h e characters o f Af(U),
and
cf
= c-1
J
USP(2n)
where c i s t h e volume o f USP(2n) and So, Cesaro means o f (2.34)
is
6
u ( U)Af
(g')I?,
i s t h e volume element.
Harmonic Analysis on Classical Groups
87
(2.35)
where
(2.36)
i s t h e Ceasro (C,a)
kernel.
I
USP( 2 n )
f o r N = 1,2,3,
...
THEOREM 2.8.
(He Zu
B E a r e t h o s e numbers such t h a t
I n (2.37),
Ki(V);
= 1
C il and Chen Guany Xiao, see [ l ] )
on USP(2n), U 6 USP(Zn), t h e n when a > ( 2 n - 2 ) / ( 2 n + l ) , o f u ( U ) i s (C,a)-summmable
IT;(U)
t o i t s e l f , and when u ( U )
- U(IJ)( < I~;(u) - u ( u ) ( < l r ~ ( ~- ) u ( ~ )
1) 2) 3)
L e t u ( U ) be c o n t i n u o u s t h e F o u r i e r s e r i e s (2.34)
E
L i p p, t h e f o l l o w i n y h o l d
A ~ N - P , i f ( ~ n + l ) a - ~ n +>2 p;
A ~ N - P l o g N, i f ( 2 n + l ) a - ~ n + 2 = p; A ~ N ~ ~ - ~ - i(f ~( ~~n ++l ) a~- 2) n +~ 2 <, p.
I f a = 1, i t i s j u s t t h e F e j e r summation and i t s F e j e r k e r n e l s a r e 1
BN( N+1)n(2n+1) (
-
det(1 VN+l) )2n+l d e t ( 1 - V)
S i m i l a r t o t h e p r o o f o f Theorem 2.3 we can o b t a i n t h e F e j e r summation c o e f f i c i e n t s and i t s i n t e y r a l c o n s t a n t s .
THEOREM 2.9.
(He Z u Qi and Chen Guany Xiao, see 1 1 1 )
The F e j e r summation
c o e f f i c i e n t s o f F o u r i e r s e r i e s on t h e u n i t a r y s y m p l e c t i c y r o u p s a r e t h e followiny
x
4n+2
1
sl=o
... 4n+2 1 sn=o
kl>l-n 3n+kn 'kn+n-l
(-1)
S1+"'+Sn
C4n+2 s1
3n+kl ...c4n+2 Ck+n-l ... 'n
kn>l-n
N( (n+( 2 n + l ) N - ( N+l)sl-fl,.
where k . = (2n+l)N-(N+l)sj-(fj+n-j+l), J
.., Z n - l + ( 2 n + l
j = l,Z,.
..,n,
and
)N-(N+l )sn-fn),
S. Gong et al.
88
4n+2
4n+2
3n+kn
3n+kn
‘kl+n-l kl>l-n x
“ ’ ckn+n-l(-l)
n
Sl+...+S
kn>l-n
,..., 2 n - 1 + ( 2 n + l ) N - ( N + l ) s n ) .
N(n+(2n+l)N-(N+l)sl
L i Shi X i o n y and Zheny Xue An d e f i n e d and d i s c u s s e d Ceasro k e r n e l s and Cesaro summation o f F o u r i e r s e r i e s c o n n e c t e d w i t h compact L i e y r o u p s . w i t h , Cesaro (C,a)
a l g e b r a i s one o f t h e compact L i e a l g e b r a s (A,,)U, (F4lu,
F6
(E6)u,
TO b e g i n
k e r n e l s a r e d e f i n e d on any compact L i e groups whose L i e
( E 7 l u y ( E 8 ) u and un = ( A n - l ) u
@
(Bn)U, (Cn)u,
H1,
(G2)u,
6B H1,
Y2 =
e6 = (Efj)u f3
= ( E s ) u @I H2,
e7 = (E7),, 6B H1 and Hn w h i c h i s t h e L i e a l g e b r a o f t o r u s
Tn w i t h d i m e n s i o n n.
These L i e a l y e b r a s a r e u s u a l l y c a l l e d t h e b a s i c compact
Hl,
L i e alyebras.
F o r a g e n e r a l compact L i e g r o u p G, t h e L i e a l g e b r a o f I; can be
decomposed e i t h e r as a d i r e c t sum w h i c h c o n s i s t s o f t h e b a s i c compact L i e a l g e b r a s l i s t e d above e x c e p t (An)U, (G2)u,
(E6)u,
e6,
( E 7 ) u , o r as a d i r e c t sum
w h i c h c o n s i s t s of t h e b a s i c compact L i e a l y e b r a s l i s t e d above e x c e p t Hn and a t l e a s t one o f (An),,,
( G Z ) ~ , (E6)u, e6, (E7),,i s i n c l u d e d i n i t .
t h e r e y u l a r d e c o m p o s i t i o n o f a compact L i e a l g e b r a .
This i s called
Here t h e Cesaro k e r n e l o f
G i s j u s t a p r o d u c t o r some r e s t r i c t i o n o f t h e p r o d u c t o f Cesaro k e r n e l s o f s e v e r a l b a s i c compact L i e groups m e n t i o n e d above, w h i c h c o r r e s p o n d t o t h e r e g u l a r d e c o m p o s i t i o n o f t h e L i e a l g e b r a o f G.
THEOREM 2.10. ( L i Shi X i o n y and Zheny Xue An) group. whose L i e a l g e b r a i s one of (An)u, (Es),,,
(E7),,,
.-,
,
( E B ) ~ , un, 92, e6, e6
We h a v e ( 1 ) L e t G be a compact L i e
(Bn)us ( C n ) u , (Dn)u, (Gillu,
(F4Iu,
e7, and a g a i n l e t t h e c r i t i c a l v a l u e s a.
c o r r e s p o n d i n y t o t h e above-mentioned b a s i c compact L i e a1 gebras b e
respectively.
Then t h e Cesaro means
o f F o u r i e r s e r i e s of any c o n t i n u o u s f u n c t i o n f ( x ) on G u n i f o r m l y c o n v e r g e s t o f ( x ) i f a > ao, where x denotes convolution; satisfy
6
G, K’(x)
n
s t a n d f o r Cesaro ( C , a ) k e r n e l s on G,
and if f ( x ) b e l o n y s t o L i p p and . a
= a/b,
*
t h e n T;(x)
Harmonic Analysis on Classical Groups
d)
Iri(X)
-
f ( X ) ) < AIN-P,
b)
IT:(x)
-
f ( x ) ( < A2N-P
C)
IT;(x)
-
f(x)
I
89
i f ab-a > p;
l o g N, i f ab-a = p;
< A3Na-ab,
i f ab-a < p;
where a and b a r e g i v e n i n ( 2 . 3 8 ) . 2)
L e t G t a k e L as i t s L i e a l g e b r a and t h e r e y u l a r d e c o m p o s i t i o n o f L be L = L1 f3 L 2 f3
... f3 L k .
By a o ( L j ) we d e n o t e t h e c r i t i c a l v a l u e s c o r r e s p o n d i n g t o L j , j = 1,2,...,k,
and
set
Then t h e Cesaro summation o f F o u r i e r s e r i e s o f any c o n t i n u o u s f u n c t i o n f ( x ) on
G u n i f o r m l y c o n v e r g e s t o f ( x ) i f a > ag.
Moreover, i f a0 = a/b,
then a), b),
and c ) c o r r e s p o n d i n g t o 1 ) a r e a l s o v a l i d . The T-summation and T-summation o f t y p e I 1 o f F o u r i e r s e r i e s on u n i t a r y g r o u p s e s t a b l i s h e d by t h e methods " f r o m k e r n e l t o sum and f r o m sum t o k e r n e l " have s i m i l a r e x t e n s i o n s on compact L i e g r o u p s .
The r e l a t e d d e t a i l i s o m i t t e d .
3. The Cubical Partial Sums o f Fourier Series I n t h i s s e c t i o n we c o n s i d e r b r i e f l y t h e d e f i n i t i o n o f t h e c u b i c a l p a r t i a l sums o f F o u r i e r s e r i e s on u n i t a r y g r o u p s and i t s e x t e n s i o n s on c l a s s c a l g r o u p s and on compact L i e y r o u p s . I n t h e p r o o f o f Theorem 3.1,
i n which t h e concrete expression f o r D i r i c h l e t
k e r n e l s o f t h e c u b i c a l p a r t i a l sums o f F o u r i e r s e r i e s on u n i t a r y y r o u p s was e s t a b l i s h e d , a b a s i c method o f s t u d y i n y c l a s s f u n c t i o n s was s e t up.
The
essence o f t h e method i s t o t r a n s f o r m a r e s e a r c h p r o b l e m on c l a s s f u n c t i o n s t o a p r o b l e m on F o u r i e r s e r i e s o f t h e f u n c t i o n s ( s u c h as g(el,
...,en)
i n (3.6))
on
t o r u s w h i c h a r e made by t h e p r o d u c t o f v a l u e s a t t h e maximum t o r u s o f c l a s s f u n c t i o n s and t h e Weyl f u n c t i o n .
T h i s method i s a l s o w i d e l y a p p l i e d t o
r e s e a r c h f o r c l a s s f u n c t i o n s on c l a s s i c a l g r o u p s and compact L i e groups.
Some
r e s e a r c h e r s a b r o a d such as R. J . S t a n t o n and P. A. Tomas a d o p t e d t h i s method i n t h e i r studies
on t h e a l m o s t e v e r y w h e r e c o n v e r g e n c e o f F o u r i e r s e r i e s o f c l a s s
f u n c t i o n s on compact L i e y r o u p s . The c u b i c a l p a r t i a l sum o f F o u r i e r s e r i e s on u n i t a r y g r o u p s have t w o f o r m s
o f e x t e n s i o n s on compact L i e g r o u p s .
One i s made by R. J. S t a n t o n and P. A.
Tomas They, s t a r t i n g f r o m t h e convex p o l y h e d r o n ( i n c l u d i n g t h e o r i g i n as i t s i n t e r i o r p o i n t ) on C a r t a n sub-a1 g e b r a s o f L i e a1 g e b r a s o f compact L i e g r o u p s w h i c h i s i n v a r i a n t u n d e r Weyl g r o u p s , d e f i n e d t h e p o l y h e d r a l p a r t i a l sums, f o r
S. Gong e l al.
90
w h i c h one o f t h e fundamental p r o p e r t i e s f o r t h e c u b i c a l p a r t i a l sums d e f i n e d on u n i t a r y g r o u p s was used.
A n o t h e r i s made by L i S h i X i o n g and Zheng Xue An.
They, s t a r t i n g f r o m t h e r e g u l a r c o o r d i n a t e s f o r t h e h i g h e s t w e i g h t s i n a cube o r a p o l y h e d r o n , d e f i n e d t h e c u b i c a l and p o l y h e d r a l sums o f F o u r i e r s e r i e s on compact L i e groups, f o r w h i c h a n o t h e r b a s i c p r o p e r t y f o r t h e c u b i c a l p a r t i a l
sums d e f i n e d on u n i t a r y groups was used. F o r e x p r e s s i n g D i r i c h l e t k e r n e l s e x p l i c i t l y , a d i f f e r e n t i a l o p e r a t o r was e s t a b l i s h e d on u n i t a r y groups, by means o f w h i c h D i r i c h l e t k e r n e l s on u n i t a r y groups c o u l d be s i m p l y e x p r e s s e d by D i r i c h l e t k e r n e l s o f m u l t i p l e F o u r i e r series.
Moreover, when we e s t a b l i s h T-summation k e r n e l s o f t y p e I 1 i n s e c t i o n
I 1 and when we deduce t h e i n t e g r a l r e p r e s e n t a t i o n s o f t h e s p h e r i c a l means summation, t h i s o p e r a t o r a l s o p l a y an i m p o r t a n t r o l e .
Wany Shi Kun, Dony Uao
Zheng, He Zhu Qi, Chen Guang X i a o e s t a b l i s h e d c o r r e s p o n d i n g d i f f e r e n t i a l o p e r a t o r s on r o t a t i o n y r o u p s and u n i t a r y s y m p l e c t i c groups r e s p e c t i v e l y .
Li
S h i Xiong and Zheng Xue An e s t a b l i s h e d c o r r e s p o n d i n g d i f f e r e n t i a l o p e r a t o r s on g e n e r a l compact L i e groups and gave t h e i r r e p r e s e n t a t i o n s under v a r i o u s systems o f coordinates e x p l i c i t l y . Some r e s e a r c h e r s abroad such as J . L. C l e r c [ l l J e s t a b l i s h e d c o r r e s p o n d i n g d i f f e r e n t i a l o p e r a t o r s on ( s e m i - s i m p l e ) compact L i e g r o u p s w h i c h were e x p r e s s e d as d i r e c t i o n a l d e r i v a t i v e s . When d i s c u s s i n g t h e p r o b l e m a b o u t t h e c e n t r a l m u l t i p l i e r on compact L i e groups, K. Coifman, G. Weiss [ l o ] and N. J. Weiss [15] e s t a b l i s h e d t h e d i f f e r e n c e o p e r a t o r s s i m i l a r t o t h e d i f f e r e n t i a l o p e r a t o r s on u n i t a r y yroups. The c u b i c a l p a r t i a l sums o f F o u r i e r s e r i e s (1.9)
o f an i n t e g r a b l e f u n c t i o n
u(U) on t h e u n i t a r y group Un a r e d e f i n e d by
where L~ = fl+n-l,
k2 = f2tn-2,
..., in = fn.
Let
SN(U,U) = U * U N ( U ) = c-1
then
J
U(UV')UN(V)i,
'n
p ( V ) i s c a l l e d the D i r i c h l e t kernel. N
THEOREM 3.1.
121
d N ( a ) = I p = - N eipe,
Let
ia1
,
.,.,
t h e n we have
ie
n be t h e c h a r a c t e r i s t i c r o o t s o f V
e
Un,
Harmonic Analysis on Classical Groups
-
( - i )n(n-1)/2
'5,...,e l e n ) ( n - l ) ! ...l ! D ( e PROOF.
The f u n c t i o n
c .>tn>-N
N>tl>..
DN ( V ) ,
as Abel-means o f
(8 ))
d e t (din-J
(3.3)
.
( x ) = ( d / d x ) '-JdN( x )
where
91
Pf(r)N(f)xf
i s a class function,
V)
9
hence we o n l y need t o c o n s i d e r t h e
following series ( D ( e iel
,...,e i'n)l-l N>tl>
From t h e d e f i n i t i o n (1.8)
i S
iel
,...,e i e n ) ,
z ...
pf(r)N(f)Hf(e
of pf(r),
i t i s easy t o see t h a t t h e s e r i e s i n
>tn>-N
(3.4)
t h e c u b i c a l p a r t i a l sums o f t h e m u l t i p l e F o u r i e r s e r i e s o f t h e f u n c t i o n
y(el
,...,8,)
Thus (3.5)
= l(1-re
iel
2
i8, )...(l-re
) ) - 2 n ( l - r 2 ) n D(e
iel
,...,e
ie,
).
(3.6)
can be e x p r e s s e d as
(3.7)
I n v i r t u e o f t h e skew-symmetry o f g($l,...,$n)
,...,$,)
+ ($j
(n!)-1(2n)-n
,...,$jn ), 1 2n
I ... J
0
0
(3.5)
2n g(Q1
under t h e permutation
can a l s o be e x p r e s s e d as
,...,$n)P($l ,...,$n;
81,...yen)d$l...d$n
S. Gong et al.
92
c l a s s f u n c t i o n and i t s v a l u e f o r d i a g o n a l m a t r i c e s i s
By Theorem 1.1 t h e v a l u e o f (3.8)
$1
,...,$,
a t p o i n t $1 =
... = $n
i s t h a t o f t h e continuous f u n c t i o n o f
= 0 when r + 1.
By a r e s u l t i n [l], this is
Thus t h e c o n c l u s i o n f o l l o w s f r o m t a k i n g l i m i t i n ( 3 . 4 ) . F o r t h e u n i f o r m c o n v e r g e n c e o f t h e c u b i c a l p a r t i a l sums o f F o u r i e r s e r i e s on u n i t a r y groups, t h e f o l l o w i n g r e s u l t s a r e v a l i d . I f u(U)
[4]
THEOREM 3.2.
8
Cn(n-1)/2tp(Un)
(0 < p < l ) , t h e n t h e c u b i c a l
p a r t i a l Sums SN(U,U) o f i t s F o u r i e r s e r i e s c o n v e r g e t o u(U) and (SN(u,U) Let
u(r)
-
u(U)
1
< A max{ (N-'loyn
2
N)l/(ntl),
N-pl~gn-lN}.
be an i n t e g r a b l e f u n c t i o n on S 0 ( n ) , and t h e n t h e c u b i c a l p a r t i a l
sums o f i t s F o u r i e r s e r i e s (2.29) a r e d e f i n e d b y (3.10) i f n = 2k and
r
€
S0(2k+l);
The f o l l o w i n g lemma
s needed :
...
qk b e i n t e g e r s such t h a t q1 > q2 > > qk > 0, p j ( q s ) L e t ql... be a f u n c t i o n dependent o n l y on qs, j = 1,2 k, and l e t N be a p o s i t i v e
LEMMA 1. C8l
,...,
i n t e g e r , a and b be any r e a l numbers, t h e n
The D i r i c h l e t k e r n e l o f t h e c u b i c a l p a r t i a l sums d e f i n e d by (3.10) (3.11)
are vN(r)
therefore
"al>.
c..>en>O
N(m)om(r),
and (3.12)
93
Harmonic Analysis on Classical Groups where t h e meaniny o f a,(r)
THEOREM 3.3.
[81
Then by Lemma 1, we have
i s y i v e n i n Theorem 1.3.
I f n = 2k. then (3.13)
and i f n = 2 k + l , t h e n
where d N ( e ) = s i n ( N
...4 ! 2 ! ,
aZk = Z1-!2k-2)!
<
'
(ej)), c ( e )
det(C
1
+ ,)e1
qS
j ,s
< k , and e
=
tiel
/ sin a2k+l
0, e N ( e ) = s i n ( N + l ) e = Zmkik(2k-1)!
2 cos qe, s(ql, . . . , q k )
,...,e
fiek
...3 ! 1 ! ,
= det(S
,
/ s i n 1 8, C(q,
qS
(3.14)
,...,q k )
(ej)),
S
4
(el
are the characteristic roots o f
= = 2 i s i n qe,
r.
F o r t h e c o n v e r g e n c e o f F o u r i e r s e r i e s on S 0 ( n ) , t h e f o l l o w i n g t h e o r e m i s valid.
THEOREM 3.4.
(Wang Shi Kun and Dong Dao Zheng,
d e f i n e d on SO(n) and
u(r)
€
F o u r i e r s e r i e s (2.29) 9 r )
SO(n), moreover,
i f n = 2 k , where 0 < p
Ck(k-l)+P
1 sN ( u
r e
-
of
u(r)
converge t o
L e t u ( r ) be a f u n c t i o n see [l])
u(r)
let
6
Ck2+p i f n = 2 k + l and
1, t h e n t h e p a r t i a l sums SN(U'r)
u(r)
u ( r ) l < A max{(N - l / ( k + l ) ( l o g
Of
and
N) k 2 / ( k+l)
The c u b i c a l p a r t i a l sums of F o u r i e r s e r i e s (2.34)
,
N-P( l o g N) k-l)
1.
of integrable function
u ( U ) on USP(2n) d e f i n e d by He Zu Qi and Chen Guang X i a o a r e
where ak = f k + n - k + l . I n t h e same way, we can o b t a i n SN(U,U) = c - l
J
USP ( 2 n )
U(V'U)UN( v
)i,
(3.17)
where a r e fli r i c h l e t k e r n e l s
THEOREM 3.5.
.
(He Zu Qi and Chen Guang X i a o , see [ l ] )
L e t u ( U ) be an i n t e g r a b l e
f u n c t i o n on USP(2n), U E USP(2n), t h e n t h e p a r t i a l sums (3.15) s e r i e s (2.34)
(3.16)
can b e e x p r e s s e d as (3.16)
and
of i t s Fourier
S. Gong et al.
94
(3.18) (2n-2k+l) ! d e t ( s i n ( n-p+l)e. ) k=l J l
II
where e
tie1
,...,e
ti en
a r e t h e c h a r a c t e r i s t i c r o o t s o f V.
I t can be o b t a i n e d t h a t
(He Zu Qi and Chen Ggang Xiao, see [ l ] )
THEOREM 3.6.
f u n c t i o n on USP(2n) and u(U)
8
L
Cn 'p,
L e t u(U) be an i n t e g r a b l e
0 < p < 1, t h e n SN(u,U
c o n v e r g e s t o u( U)
u n i f o r m l y and
ISN(uyU)
-
u ( U ) ( < A max{(N-'loy n2 N) l / ( n + l ) ,
N-p(
oy N I n - ' } .
L i Shi X i o n g and Zheng Xue An s t u d i e d t h e c u b i c a l p a r t i a l sums and p o l y h e d r a l p a r t i a l sums o f F o u r i e r s e r i e s on compact L i e g r o u p s . The c o o r d i n a t e r e p r e s e n t a t i o n s o f t h e C a r t a n s u b a l g e b r a H I o f any s i m p l e compact L i e a l g e b r a a r e known.
1; H =
Aj
As t o (An-l)u,
we have H I = {hAl.,.An(
U}, t h u s t h e c o o r d i n a t e r e p r e s e n t a t i o n f o r C a r t a n s u b a l g e b r a o f un a r e
=
{ hA1.. .An}.
The c o o r d i n a t e r e p r e s e n t a t i o n f o r C a r t a n s u b a l g e b r a s o f o t h e r
b a s i c compact L i e a l g e b r a s m e n t i o n e d i n s e c t i o n 2 c a n a l s o be d e c i d e d s i m i larly.
I f L i s a compact L i e a l g e b r a , t h e n we t a k e t h e d i r e c t sums o f t h e
above-mentioned c o o r d i n a t e r e p r e s e n t a t i o n s f o r C a r t a n s u b a l g e b r a s o f t h o s e b a s i c compact L i e a l g e b r a s w h i c h a r e i n c l u d e d i n t h e r e g u l a r d e c o m p o s i t i o n o f L ( s e e s e c t i o n 2) as t h e c o o r d i n a t e r e p r e s e n t a t i o n s o f t h e C a r t a n s u b a l g e b r a o f L.
These r e p r e s e n t a t i o n s a r e c a l l e d t h e s t a n d a r d c o o r d i n a t e r e p r e s e n t a t i o n s
f o r C a r t a n s u b a l y e b r a o f compact L i e a l g e b r a s . L e t H be a C a r t a n s u b a l g e b r a o f a compact L i e a l g e b r a L, and t h e S t a n d a r d c o o r d i n a t e r e p r e s e n t a t i o n f o r t h e p o i n t s i n H be hA1...A
xl,
..., P a r e n o t A
n e c e s s a r i l y i n d e p e n d e n t o f each o t h e r .
r a l i t y , assume t h a t XlY...,A
4
P
.
G e n e r a l l y speaking,
W i t h o u t l o s s o f gene-
i s t h e maximal l i n e a r l y i n d e p e n d e n t system and
t h a t t h e system o f a f f i n e c o o r d i n a t e s composed by t h e maximal system i s c a l l e d t h e r e g u l a r system on H.
where f = (fl,
...,f 4)
Thus any w e i g h t A on H can be u n i q u e l y e x p r e s s e d as
are c a l l e d the regular coordinates f o r A.
L e t L be t h e d i r e c t sum o f a s e m i - s i m p l e compact L i e a l g e b r a L ' and t h e c e n t r e Hk.
N a t u r a l l y , as a system o f v e c t o r s on t h e C a r t a n s u b - a l g e b r a H I o f
L o , t h e system o f r o o t s o f L o i s j u s t t h e system o f v e c t o r s on t h e c o r r e s p o n d i n y C a r t a n s u b a l y e b r a H = HI tB Hk o f L w h i c h i s c a l l e d t h e system o f r o o t s
95
Harmonic Analysis on Classical Groups
f o r L and t h e g r o u p g e n e r a t e d by t h e r e f l e c t i o n s w i t h r e g a r d t o t h e r o o t s i n H i s c a l l e d t h e Weyl y r o u p f o r L. p o s i t i v e roots.
B e s i d e s , @ d e n o t e s t h e h a l f o f t h e sum o f a l l
Thus we v e r i f i e d t h a t t h e e q u i v a l e n t c l a s s o f a l l s i n y l e -
v a l u e d i r r e d u c i b l e r e p r e s e n t a t i o n s f o r a compact L i e g r o u p i s u n i q u e l y d e t e r m i n e d by t h e h i g h e s t w e i g h t s .
M o r e o v e r , we e x p l i c i t l y e s t a b l i s h t h e method o f
c a l c u l a t i n g t h e regular coordinates f o r t h e highest weights. L e t G be a c o n n e c t e d compact L i e g r o u p and ?ibe t h e s e t o f t h e h i g h e s t w e i g h t s o f a l l n o n e q u i v a l e n t s i n g l e - v a l u e d i r r e d u c i b l e r e p r e s e n t a t i o n s f o r G. Let AX(g), g f(y)
L(G).
E
E
x
which takes
G, be t h e s i n g l e - v a l u e d i r r e d u c i b l e u n i t a r y r e p r e s e n t a t i o n f o r G
as i t s h i g h e s t w e i y h t , and d X be t h e o r d e r o f A X ( g ) .
Let
The F o u r i e r s e r i e s o f f ( g ) i s u s u a l l y e x p r e s s e d as (3.19)
or where
(3.20)
c,
If X
I f(g)AX(g-’)dg
= E
G
6
IG dg
and
= 1, and X,(g)
and t h e r e g u l a r c o o r d i n a t e f o r
c u b i c a l p a r t i a l sums o f (3.19) SN(f;Y)
o r (3.20) =
N>E1,.
Assume t h a t D1(q)
N>El,.
...,E 9 )
then the
d X t r ( CXAX(Y) ) dx f*XX ( Y )
(1
= fr)N(Y)
DN(9) =
+ fl i s ( t 1 ,
are
c..,E >-N c 4 ..,E >-N
N>kl,.
where D N ( g ) i s D i r i c h l e t k e r n e l s and
x
i s t h e character o f AX(g).
9
c..,a
4
>-N
dXXX(S).
i s a p o l y h e d r o n i n E u c l i d e a n space o f d i m e n s i o n q w h i c h
t a k e s t h e o r i g i n as i t s i n t e r i o r p o i n t and t h e c o e f f i c i e n t s o f t h e e q u a t i o n s o f a l l faces being integers.
x
+ 6
E
S e t D N ( q ) = { x E E ~ , x = t y , y E D1(q),
0 < t < N).
DN(q) means t h a t t h e R e g u l a r c o o r d i n a t e s f o r A + fl b e l o n g t o UN(q).
Then t h e p o l y h e d r a l p a r t i a l sums o f F o u r i e r s e r i e s o f f ( g ) a r e
and D i r i c h l e t k e r n e l s a r e
I n t h i s c o n n e x i o n . we have t h e f o l l o w i n g r e s u l t s .
S. Gong et al.
96
THEOREM 3.7. ( L i Shi X i o n g and Zheng Xue An) L e t G be a compact L i e group, T be a maximal t o r u s o f G, dim G = n, d i m T = q, m = ( n - q ) / 2 and Lebesyue c o n s t a n t s f o r i t s U i r i c h l e t k e r n e l s be PN(G) = then
1)
AGN[n’31(10g
pN(G)
N)’,
j’ G
(’N(Y)Idy
where n I s mod 3, s = U,1,2,
[XI denotes
t h e g r e a t e s t i n t e g e r o f a l l i n t e g e r s t h a t a r e n o t g r e a t e r t h a n x, i f G t a k e s one of
2)
(Ck)u,
u k , (Bk),,, PN(G)
’
as i t s L i e a l g e b r a ;
AGN “nt1)’31(10y
Nls,where n
# 3, n + l
5
s mod 3, s = U,1,2;
if G
t a k e s ( A k ) u as i t s L i e a l g e b r a . 3)
pN(G)
5 HGN l o g N,
4)
pN(G)
AGN, i f G t a k e s one of (Al),,,
5)
pN(G) < AGNm(log N)’,
t a k e s one o f 92, (F4),,,
i f G t a k e s ( G Z ) ~as i t s L i e a l g e b r a ;
where s = 2 f o r
( E 6 l u , ( E 7 ) u , (E81u,
(Bl)u,
e6
(Cl),,
as i t s L i e a l g e b r a ;
and s = 1 f o r t h e o t h e r s , i f G
e6, e6, e7 as i t s L i e a l g e b r a ;
...
@ L i s the 6 ) PN(G) = A G P N ( G ~ ) P N ( G ~ ) pN(Gp), if L = L 1 @ L2 @ P r e g u l a r d e c o m p o s i t i o n f o r L i e a l g e b r a L o f G and Gk i s t h e b a s i c compact L i e
group o f w h i c h L i e a l g e b r a i s L k , k = 1,2 7)
,...,p;
Lebesyue c o n s t a n t o f t h e k e r n e l D;(Y)
o f t h e p o l y h e d r a l p a r t i a l sums f o r
F o u r i e r s e r i e s on G s a t i s f i e s
where s < q and s = 1 f o r t h o s e L i e a l g e b r a s i n 1 )
-
5 ) and s = 2 o n l y f o r
e6.
Moreover, t h e c o n c l u s i o n i n 6 ) i s a l s o v a l i d f o r g e n e r a l compact L i e g r o u p s .
8 ) The c o n d i t i o n f o r u n i f o r m c o n v e r g e n c e o f t h e c u b i c a l and p o l y h e d r a l p a r t i a l sums o f F o u r i e r s e r i e s and t h e e s t i m a t i o n f o r t h e a p p r o x i m a t i o n o f t h e p a r t i a l sums t o t h e f u n c t i o n s can be deduced f r o m J a c k s o n t h e o r e m ( s e e Theorem 4.14,
3)).
I n Theorem 3.7,
1)
-
d e n o t e s t h e p r i n c i p a l p a r t o f pN(G).
F o r Theorem 3.7,
4 ) , t h e e x a c t v a l u e s f o r c o n s t a n t s AG a r e a l r e a d y o b t a i n e d by us.
U s u a l l y , t h e a b s o l u t e convergence o f F o u r i e r s e r i e s on compact L i e g r o u p s i s e x p r e s s e d by (3.21)
THEOREM 3.8.
( L i Shi X i o n g and Zheng Xue An)
i n Theorem 3.7,
L e t G, T, n, q, m be d e f i n e d as
Harmonic Analysis on Classical Groups I f f ( g ) E L!'p(G),
1)
and p > n / 2
- [n/2],
U < p
and i n p a r t i c u l a r i f f ( y )
6
Ck*P(G)
91
,
where k = [ n / 2 ]
< 1, t h e n t h e F o u r i e r s e r i e s f o r f ( g ) c o n v e r g e s
a b s o l u t e l y and u n i f o r m l y , a c c o r d i n g t o t h e d e f i n i t i o n o f ( 3 . 2 1 ) .
If f(g)
2)
L b y s ( G ) , where k i s a n o n - n e g a t i v e i n t e g e r , U < r < p / ( p - 1 ) ,
f
1 < p c 2, U < s < 1, t h e n F o u r i e r s e r i e s o f f ( y ) s a t i s f i e s
p r o v i d e d k+s > ( ( 3 / p ) - 1 / 2 ) m + q ( r - ' + p - ' - l ) . I f f ( g ) f L b y s ( G ) , where k i s a n o n - n e g a t i v e i n t e g e r , 0 < r < 2,
3)
1< p <
Z,, U <
s < 1, t h e n F o u r i e r s e r i e s o f f ( y ) s a t i s f i e s
p r o v i d e d k+s > ( ( 3 / r ) + ( 3 / p ) - 3 ) m + q / p .
4)
I f f ( g ) 6 L b y s ( G ) , 1 < p < 2, 0 < r < p / ( p - l ) ,
0 < s < 1, k i s non-
negative integer, then
p r o v i d e d k+s > (3/p-3/2)m+q(l/(2r)+l/p-l). The p r i n c i p a l r e s u l t s abroad p a r a l l e l t o t h o s e on t h e c u b i c a l p a r t i a l sums of F o u r i e r s e r i e s i n t h i s s e c t i o n and t o t h o s e on t h e summations o f F o u r i e r s e r i e s i n s e c t i o n 2 a r e as f o l l o w s . In
[lo],
K.
Coifman and G. Weiss s t u d i e d t h e r e l a t i o n between t h e c e n t r a l
m u l t i p l i e r s f o r F o u r i e r s e r i e s on compact L i e g r o u p s and t h e m u l t i p l i e r s f o r multiple Fourier series. Let
They p r o v e d t h e f o l l o w i n g r e s u l t .
H be t h e C a r t a n s u b - a l g e b r a o f t h e L i e a l g e b r a o f a compact L i e g r o u p
exp be t h e e x p o n e n t i a l mapping, and
E
be t h e u n i t e l e m e n t o f G.
Ino ( d x m h ) C h ( r )
(3.22)
hEG
d e f i n e s t h e bounded m u l t i p l i e r on L ( H / e x p - l E ) , P
G,
If
then
1- mhdxXx(Y) x fG d e f i n e s t h e bounded c e n t r a l m u l t i p l i e r on L P ( G ) ,
(3.23) where p > 1.
I n addition, the
p r e c e d i n g c o n d i t i o n s a r e a l s o n e c e s s a r y f o r p = 1. I n (3.22),
'I E
H,
C,(T)
=
1 oew
eiB(a,ar),
(3.24)
S. Gong et al.
98
where W d e n o t e s t h e Weyl g r o u p , and B(
,
) represents t h e i n v a r i a n t inner
p r o d u c t on t h e L i e a l y e b r a f o r G. The d i f f e r e n c e o p e r a t o r
0
i n (3.22)
brinys
rn
where a l , a2
,..., a,
are a l l p o s i t i v e roots.
R. J . S t a n t o n and P. A. Tomas ( s e e 1121 and L131) d i s c u s s e d t h e p o l y h e d r a l p a r t i a l sums o f F o u r i e r s e r i e s on compact L i e y r o u p s d e f i n e d as f o l l o w s . Suppose t h a t 9 i s a c l o s e d connex p o l y h e d r o n w h i c h t a k e s t h e o r i g i n as i t s i n t e r i o r p o i n t and i s i n v a r i a n t under t h e t r a n s f o r m a t i o n o f t h e Weyl y r o u p i n t h e C a r t a n s u b a l y e b r a H o f t h e L i e a l y e b r a o f a compact L i e y r o u p G, and l e t Rt = { t x l x E R}.
They d e f i n e d t h e p o l y h e d r a l p a r t i a l sums o f f
6
L p ( G ) , p > 1,
by
and p r o v e d t h e f o l l o w i n y :
1) L e t G be a s i m p l y c o n n e c t e d s i m p l e compact L i e yroup, T be a maximal t o r u s of G, d i m G = n, dim T = q and Ly(G) be a l l c l a s s f u n c t i o n s i n L p ( G ) . p > 2 n / ( n + q ) and f
e
If
L ~ ( G ) ,t h e n S N f ( x ) a l m o s t e v e r y w h e r e c o n v e r g e s t o f .
2 ) When G, T, n, q a r e t h e same as I n l ) , and p < 2 n / ( n + q ) o r p > 2 n / ( n - q ) , t h e r e e x i s t s f E L y ( G ) such t h a t S N f ( x ) does n o t c o n v e r y e i n t h e sense o f L p norm.
3)
When G, T, n, q a r e a l s o t h e same as l ) , t h e r e e x i s t s a number p ( R ) ,
2 n / ( n t q ) < p(R)
(2n-2q+2)/(n-q+2)
such t h a t S N f ( x ) c o n v e r y e s i n t h e sense of
L p norm, t o f ( x ) f o r p ( R ) < p < p ( R ) ' and f
4)
6
Ly(ti).
When G i s a s i m p l e c o n n e c t e d s e m i - s i m p l e compact L i e yroup, t h e n t h e
r e s u l t s c o r r e s p o n d i n g t o 1)
-
3 ) can be composed by c o m b i n i n g t h e r e s u l t s o f
i t s s i m p l e subgroups. ) t h a t S N f ( x ) does n o t c o n v e r g e i n 5 ) When p # 2, t h e r e e x i s t s f E L ~ G such t h e sense o f L p norm.
6)
When p < 2, t h e r e e x i s t s f 6 Lp(G) such t h a t S N f ( x ) a l m o s t e v e r y w h e r e
does n o t c o n v e r g e t o f ( x ) .
R . A. Mayer ( s e e [18])
discussed F o u r i e r series f o r G = SU(2).
He p r o v e d
the followiny.
1) L e t f 6 C 1 ( t i ) , t h e n t h e F o u r i e r s e r i e s f o r f c o n v e r g e s u n i f o r m l y , and t h e r e e x i s t s g 6 C1(G) such t h a t i t s F o u r i e r s e r i e s does n o t c o n v e r g e absolutely. 2)
Let f
e L2(G) and f b e l o n g t o c l a s s C1 a l m o s t everywhere, t h e n t h e
F o u r i e r s e r i e s o f f a l m o s t e v e r y w h e r e c o n v e r g e s t o f.
Here f t h a t b e l o n g s t o
99
Harmonic Analysis on Classical Groups
c l a s s C1 a t one p o i n t means t h a t f i n a neighborhood o f t h e p o i n t i s equal t o a function i n c ~ ( G ) . 3)
L e t f E L1(G) and f be equal t o z e r o i n a neighborhood o f a p o i n t b e G.
Moreover, F o u r i e r s e r i e s Then
I;= p, nf(x)
f o r f s a t i s f i e s P n f ( b ) + 0, when n +
-.
p n f ( b ) converges t o zero.
L a t e r , Mayar s t u d i e d v a r i o u s problems about F o u r i e r s e r i e s on S U ( 2 ) systematically. I n [lY], (3.21))
PI.
E. T a y l o r discussed t h e a b s o l u t e converyence ( i n t h e sense o f
o f F o u r i e r s e r i e s on compact L i e groups and proved : l e t G be a compact
L i e yroup, dim G = n, and l e t s > n/4 be an i n t e y e r .
I f f e HZs and i n p a r t i -
c u l a r i f f E CZs(G), t h e n t h e F o u r i e r s e r i e s o f f converges a b s o l u t e l y and u n i f orml y
.
0. L. Ragozin (see 3 ) o f [20])
discussed t h e problem o f t h e a b s o l u t e con-
vergence o f F o u r i e r s e r i e s on compact L i e yroups i n t h e f o l l o w i n g sense and t h e problem o f t h e r e l a t i o n between t h e convergence and t h e d i f f e r e n t i a b i l i t y o f f :
where t h e meaning o f t h e r e l a t e d n o t a t i o n s i s t h e same as i n (3.19)
and (3.20),
and t r ( l C a I P ) i s d e f i n e d as f o l l o w s : L e t xl,
x2,
...,
be t h e c h a r a c t e r i s t i c r o o t s o f
non-negative and
Cayi.
Then t h e y a r e
d.
B. D r e s e l e r (see C161 and C171) s t u d i e d Lebesgue c o n s t a n t s f o r s p h e r i c a l p a r t i a l Sums o f F o u r i e r s e r i e s on compact L i e groups and proved t h a t t h e Lebesyue c o n s t a n t s a r e O(N(n-1)/2).
Moreover, he gave t h e e s t i m a t e s from above
and from below, n b e i n g t h e dimension o f t h e yroup.
4. Sumnation by S p h e r i c a l Means The d e f i n i t i o n o f summation by s p h e r i c a l means i n harmonic a n a l y s i s on u n i t a r y yroups and t h e r e l a t e d methods (see [6])
a r e w i d e l y used i n t h e
r e s e a r c h f o r harmonic a n a l y s i s on c l a s s i c a l groups and on compact L i e yroups. The s p h e r i c a l means summation o f F o u r i e r s e r i e s on u n i t a r y groups, essentially,
i s such a summation t h a t t h o s e terms o f F o u r i e r s e r i e s c o r r e s p o n d i n g t o
t h o s e f u n c t i o n s h a v i n g t h e same c h a r a c t e r i s t i c values o f L a p l a c e o p e r a t o r i n t h e r e p r e s e n t a t i v e r i n g o f a u n i t a r y group a r e m u l t i p l i e d by t h e same c o e f f i cient.
T h i s can e a s i l y be done by t a k i n g
adding a f a c t o r f u n c t i o n e x p ( - i ( n - l ) ( e l +
(4.4).
ak = fk + ( n - Z k + l ) / Z i n (4.1) and
...+en)/2)
t o the i n t e g r a l expression
S.Gong el al.
100
I n t h e r e s e a r c h work on t h e s p h e r i c a l means summation i n u n i t a r y groups, a method based on t h e F o u r i e r t r a n s f o r m a t i o n on C a r t a n s u b a l g e b r a s was e s t a blished.
As a C a r t a n s u b - a l g e b r a ,
u n d e r t h e i n v a r i a n t i n n e r p r o d u c t , con-
s t i t u t e s an E u c l i d e a n space, a v a r i e t y o f t o o l s o f t h e F o u r i e r t r a n s f o r m a t i o n i n t h e E u c l i d e a n space c a n be a p p l i e d .
Some r e s e a r c h e r s abroad such as
H.
S.
S t r i c h a r t z ( s e e C141) a d o p t e d a r e s e a r c h method, whose b a s i s i s t h e F o u r i e r t r a n s f o r m a t i o n on t h e L i e a l g e b r a .
C o m p a r a t i v e l y , t h e f o r m e r n o t o n l y can g i v e
an e x p l i c i t e x p r e s s i o n and r a t h e r a c c u r a t e r e s u l t s b u t a l s o can g i v e more F o r example, a w i d e c l a s s o f bounded o p e r a t o r s
r e s u l t s t o a l o t o f problems. on L ( G ) i n Theorem 4.12
( 1 ) w h i c h i s e s t a b l i s h e d by t h e methods on u n i t a r y
y r o u p s c a n n o t be o b t a i n e d by t h e methods on L i e a l g e b r a s i n [14].
But t h e
l a t t e r c e r t a i n l y has some advantages o v e r t h e f o r m e r i n some r e s p e c t s . F o r F o u r i e r s e r i e s ( l . Y ) y we c o n s i d e r t h e
L e t u ( U ) be i n t e g r a b l e on Un. f o l l o w i n g sum
I:
I:
m
fl>.,.>f
e;+.. ek = f k +n-k, k = l,2,...yn. L e t 4(t) be a f u n c t i o n on 0 <
N(f)tr(CfAf(U)) n
.+aE=m,
where
g i v e s us t h e means o f
4(6/R
O b v i o u s l y , when u(U
4.1)
-1
< -, c o n t i n u o u s a t t = 0 and a ( 0 ) = 1..
t
d e f i n e d as f o l l o w s :
1 4(JG/R)
m
I:
fl>" . > f
e 2l + . ..+ez=m
i s i n t e g r a b l e and R i s a c o n s t a n t , (4.2)
c o n v e r g e n t f o r a l m o s t a l l U E Un,
f
If t h e l i m i t o f ( 4 . 2 ) e x i s t s f o r R + I n (4.2),
i s uniformly
provided
1 (@(J;/R)N(f)( 4-summable t o a l i m i t .
N(f)tr(CfAf(U)). n
m
<
+
(4.3)
m.
then F o u r i e r s e r i e s f o r u(U) i s c a l l e d
b = n(n-1)(2n-l
/6.
Taking
where J s ( u ) i s t h e Bessel f u n c t i o n o f o r d e r s o f t h e f i r s t k i n d .
THEOREM 4.1. e x p r e s s e d as
(see
C61).
I f u ( U ) i s i n t e g r a b l e on Un,
t h e n (4.2)
can be
Harmonic Analysis on Classical Groups
a
D(
x
101
a
acl
(4.4)
acn
I , . . . , -
Here 6 ( t ) must s a t i s f y t h e f o l l o w i n g c o n d i t i o n s : 1)
b ( t ) i s a b s o l u t e l y c o n t i n u o u s on any d e f i n i t e i n t e r v a l ,
2)
jmI $ ( t ) I t ( n - 1 ) i 2 d t
where 0 < j, (4.4)
<
0
,...,j n <
(4.5)
-9
... + j n =
jl +
n-1,
n(n-1)/2.
can be r e w r i t t e n as
=
xf
(A)CfN( f)-l,
where A i s a d i a g o n a l m a t r i x and i t s d i a g o n a l e l e m e n t s a r e e
i5 1
,...,e i s n .
From t h i s , we o b t a i n
1
J 'n
s ~ ( ~ ; u ) A ~ ( u =~ )c o + ( ~ ~ / R ) ~ ( J w R ) - ' . f
Thus t h e F o u r i e r s e r i e s of (4.4) all
R > 0 is Si(u;U) By (4.3),
6(fi/R)-l
1 6(~/R)N(f)tr(CfAf(U)).
8
Un,
t h u s (4.2)
a )(Hb a ,..., -
acn
and (4.4)
(n-2)/2
(4.8)
1
t h e s e r i e s on t h e r i g h t s i d e o f (4.8)
almost every U As D(
-
w h i c h a r e i n t e g r a b l e f u n c t i o n s on Un f o r
1 1 1 l-n)
( 15 )
i s a b s o l u t e l y convergent f o r
a r e equal f o r almost, every u
6
Un.
can be c a l c u l a t e d by r e c u r r e n c e
formula i t takes i t s o r i g i n a l s i g n o r t h e o p p o s i t e s i g n under t h e permutation (cl
,...,5,)
+
(cj
1
,...,5 .
'n
) a c c o r d i n g t o t h e p e r m u t a t i o n b e i n g even o r odd.
102
S. Gong et al.
Thus i t i s e q u a l t o (-1)n(n-1)/2D(cl,...,cn)H and (4.7)
6 (n
a r e equal.
F o r 6 ( t ) i n t h e s p h e r i c a l means ( 4 . 2 ) ,
-2)/2
2 ( ~ E ( ) I ~ ,I i ~. e .- ~(4.4)
t h e most i n t e r e s t i n y examples a r e t h e
f o l 1owi ny :
1)
6 ( t ) = e-t,
2)
g ( t ) = e-t2,
3)
6(t) =
{
t h e Poisson-Abel summation, t h e Gauss-Sommerfeld summation,
:1-t2)6
Then, i n t h e A b e l - ,
for
o <
for
1 < t,
< 1,
t
t h e Gauss-,
t h e R i e s z summation o f o r d e r 6.
and t h e Riesz-summation o f o r d e r 6 o f
F o u r i e r s e r i e s f o r u ( U ) we c o n s i d e r (4.9) el+. 2 G s~(u;u) =
1 e- in/ R
tb
/R
m
..+eE=m
1 ... 'f,
fl'
N(f)tr(CfAf(U)),
( 4.10 )
.
el+. 2 .+e:=m and
Si(u;U)
=
fl'".'fn m =
respectively.
2 el+
1
( 1 - b / R 2 ) - 6 ( 1-m/R2)& N( f ) t r ( C f A f ( U ) )
(4.11)
2 2 ...fen
I t i s o b v i o u s t h a t t h e s e t h r e e summations s a t i s f y t h e c o n d i t i o n s
i n Theorem 4.1.
THEOREM 4.2.
(see [S]).
means S i ( u , U )
o f t h e F o u r i e r s e r i e s f o r u(U) converges t o u ( U ) u n i f o r m l y .
2)
L e t u ( U ) E Lp(Un).
for R +
3)
m
1)
L e t u ( U ) be c o n t i n u o u s on Un.
Then SR(u;U) A 6 Lp(Un) and S i ( u ; U )
i n t h e norm o f Lp(Un), where p > 1; and I l S i ( u ; U ) l l
L e t u ( U ) be i n t e g r a b l e .
Then S;(u;U)
L e t u(U) E L i p a .
Then
A (SR(u;U) i f 0 < a < 1,and
ISR(u;U) A i f a = 1.
-
-
P
converges t o u ( U )
u ( U ) I < AIK-'
u ( U ) ( < A2R-'log
R,
-
< AoIlu(U)IIp.
converges t o u(U) f o r R +
everywhere.
4)
Then t h e Abel
almost
Huniionic Anu1,vsis O I I Classical Groups (see [S]).
THEOREM 4.3. Si(u;U)
1 ) I f u ( U ) i s c o n t i n u o u s on U,
103 t h e n t h e Gauss means
o f i t s F o u r i e r s e r i e s u n i f o r m l y converyes t o u(U) f o r R +
modulus o f c o n t i n u i t y o f u ( U ) i s w ( t ) ,
-
IS;(u;U)
2) I f u(U)
B
-,
and i f t h e
then
u ( U ) ( < A3w(K
-1
),
G t h e n SR(u;U) 6 Lp(Un) and
Lp(U,),
G IIS~(U;U)II < A 4 ~ l u ( U ) i ~ P P’ and SG(u;U) c o n v e r y e s t o u ( U ) f o r K + i n t h e norm o f Lp(U,), where p > 1. K ti 3 ) I f u ( U ) i s i n t e g r a b l e on Un, t h e n SR(u;U) c o n v e r g e s t o u ( U ) f o r R +
-
a l m o s t everywhere.
THEOREM 4.4.
then
converges t o u(u) u n i f o r m l y , f o r R +
s;(u;u)
1)
I f 6 > (n2-1)/2,
(see [S]).
And i f u ( U ) 6 L i p a, (1 < a < 1, t h e n
U.,
2)
+
if
U(U)
a)
(SR(u;U)
-
u ( U ) I < AgK - 6 + ( n 2 - 1 ) / 2 ,
b)
lSi(u;U)
-
u ( U ) ) < A6R-alog R , i f a + ( n 2 - 1 ) / 2 = 6;
c)
IS;(~;U)
-
u ( u ) ( < A ~ R - ~ i, f a
I f u(U)
Lp(Un),
3)
6
-
6 Lp(U,),
for R +
-,
p > 1, t h e n S;(U;u)
i s continuous on
( n2 - 1 ) / 2 > 6 ;
(n2-1)/2 < 6 . c o n v e r g e s t o u ( U ) i n t h e norm o f
and I l S ~ ( u ; U ) i lP < A811u(U)II P’
I f u(U) i s i n t e g r a b l e on Un,
everywhere f o r R +
+
if a
-
-.
I n Theorems 4.2, 4.3
and 4.4,
then Si(u;U)
t h e numbers Ao,
c o n v e r g e s t o u(U
A1
a1 inos t
ndependent o f
R.
THEOREM 4.5.
(see [6])
V a l , and (4.3),
i f U < (51 < 1/R,
where p > 0, Then,
(4.5),
L e t a ( t ) be a b s o l u t e l y c o n t nuous on any f i n i t e i n t e r and (4.6)
Eloreover, we have
and
i f 1/R < (51 <
for R +
be v a l i d f o r a ( t ) .
-,
Si(u;U)
m.
u n i f o r m l y converges t o u(U) p r o v i d e d u(U) i s
continuous. As i n t h e c a s e o f r o t a t i o n y r o u p s , Wang S h i k u n and Dong Daozheng d i s c u s s e d t h e summation o f F o u r i e r s e r i e s o n r o t a t i o n g r o u p s by s p h e r i c a l means. proved:
They
S. Gong e l a1
104
THEOREM 4.6.
u(r)
(Wang S h i k u n and Dong Daozheng see [l]). Let
on SO(n) and
1
m
where b = 1' + 2'
+
le(JTiIR)N(m)
... + ( k - 1 ) '
I
<
+
be i n t e g r a b l e
-,
(4.12)
i f n = 2k, and b = ( 1 / 2 ) 2 +
... + ( k - 1 / 2 ) 2
if
n = 2 k + l , and t h e n t h e i n t e g r a l r e p r e s e n t a t i o n o f t h e s p h e r i c a l means o f Fourier series for
u(r)
is
(4.14)
on any f i n i t e i n t e r v a l ;
= 0 , where 0
THEOREM 4.7.
(Wang S h i k u n and Dong Daozheng, see [ l ] ) .
< j,
,...,j k <
n-2.
By t a k i n g t h e above-
m e n t i o n e d t h r e e f u n c t i o n s as + ( t ) , d e f i n e t h e s o - c a l l e d t h e Abel, t h e Gauss and t h e R i e s z summations o f o r d e r 6 o f F o u r i e r s e r i e s on r o t a t i o n y r o u p s r e s p e c tively.
F o r t h e s e t h r e e summations t h e f o l l o w i n g r e s u l t s a r e v a l i d where
6 > n(n-1)/4-1/2
1)
u(r)
2)
These t h r e e summations u n i f o r m l y c o n v e r g e t o
u(r)
u(r)
for R +
m,
provided
i s c o n t i n u o u s on s O ( n ) .
Si(u;r),
provided 3)
i s needed:
u(r)
Si(U;r),
S i ( u ; r ) , i n t h e of L P ( S O ( n ) ) , p > 1, c o n v e r g e t o
u(r),
E LP(SO(n)).
G SAR ( u ; r ) , SR(u;T),
Si(u;r) a l m o s t e v e r y w h e r e c o n v e r g e t o u ( r ) , p r o v i d e d
i s integrable.
THEOREM 4.8. on SO(n),
(Wang S h i k u n and Dong Daozheng, see [ l ] ) .
Let
u(r)
be c o n t i n u o u s
and $ ( t ) be a b s o l u t e l y c o n t i n u o u s i n any f i n i t e i n t e r v a l and s a t i s f y
Harmonic Analysis on Classical Groups
4)
ti,
a ( --
a
a%
i f 151 > 1 / R ,
,..., -
Ht/2-1(1c1R) = O(R-p-llcl-p-kn+k 2 );
--k-l
Id
ack
t h e n S:(u;r)
105
u n i f o r m l y converges t o
u(r).
He Zuqi and Chen Guangxiao d i s c u s s e d t h e summation by s p h e r i c a l means on u n i t a r y s y m p l e c t i c g r o u p s and o b t a i n e d t h e f o l l o w i n y r e s u l t s .
THEOREM 4.9.
(He Zuqi and Cheny Guangxiao, see E l ] ) .
L e t u U) be i n t e g r a b l e on
USP(2n) and
2)
+ ( t ) i s a b s o l u t e l y c o n t i n u o u s i n any f i n i t e i n t e r v a l
Then t h e s p h e r i c a l means o f F o u r i e r s e r i e s f o r u ( U ) (4.15) al+. 2 whose i n t e g r a l r e p r e s e n t a t i o n i s Si(u;U)
=
where Q ( x l
( - i I n R ( 2 n ) - n / 2 2-n n!D(nL,...,lL)n!+(JR)
,...,xn)
= xlx 2 . . . ~ n D ( ~ :
J
..+e:=m
-... J
-m
m
$(,e
is1
,...,e
is,
)
-m
,...,x n2 ) ,
tk = fk+n+l-k,
k = 1,2
,...,n,
and
b = n(n+1)(2n+1)/6. By t a k i n g t h e aboveA G m e n t i o n e d t h r e e f u n c t i o n s as + ( t ) , s p h e r i c a l means SR(u;U), SR(u;U) and
THEOREM 4.10. Si(u;U)
(He Zuqi and Chen Guangxiao,
see [ l ] ) .
o f F o u r i e r s e r i e s f o r u(U) a r e d e f i n e d r e s p e c t i v e l y , and t h e f o l l o w i n g
r e s u l t s a r e v a l i d ( f o r t h e R i e s z means, t h e c o n d i t i o n 6 > n2 + ( n - 1 ) / 2 needed) :
is
S. Gong et al.
106
1 cont
The t h r e e s p h e r i c a l means c o n v e r g e t o u(U) f o r R + flUOUS
m
i f u(U) i s
on USP(2n).
F o r p > 1, t h e t h r e e s p h e r i c a l means c o n v e r g e t o u ( U ) i n t h e norm o f
2
L ~ ( u s P ( ~ i~ f) )U ( U ) e L ~ ( u s P ( ~ ~ ) ) . 3)
The t h r e e s p h e r i c a l means a l m o s t e v e r y w h e r e c o n v e r g e t o u(U) f o r R +
m
i f u(U) i s i n t e y r a b l e .
THEOREM 4.11. (He Zuqi and Chen Guanxiao, see [l]). c o n d i t i o n s i n Theorem 4.9.
where p > 0 and u(U) i s c o n t i n u o u s . for R +
Let $ ( t ) satisfy the
Moreover
Then S$(u;U)
u n i f o r m l y converges t o u(U)
m.
L i S h i x i o n g and Zheng Xucan d i s c u s s e d t h e s p h e r i c a l means and t h e more g e n e r a l means o f F o u r i e r s e r i e s on compact L i e groups. L e t G be a compact L i e group o f d i m e n s i o n n, T be a maximal t o r u s o f dimens i o n q o f G, rn = ( n - q ) / 2 , B(
,
H be t h e C a r t a n s u b - a l g e b r a o f t h e L i e a l g e b r a o f G ,
) be t h e i n v a r i a n t i n n e r p r o d u c t on t h e L i e a l g e b r a o f G , and (
,
) * be
t h e special i n v a r i a n t i n n e r product which i s c a l l e d quasi K i l l i n g - C a r t a n form on compact L i e a l g e b r a s .
The r e l a t e d d e f i n i t i o n can be found i n " F o u r i e r
a n a l y s i s on compact L i e g r o u p s " t o appear i n "Advances i n Flathematics ( i n C h i n e s e ) [21]. Let f(g)
6
L(G).
We c o n s i d e r t h e f o l l o w i n g means o f F o u r i e r s e r i e s f o r f ( g ) .
1) L e t $ ( t ) , H!(t)
and W;(t)
d e f i n e as b e f o r e and c o n s i d e r t h e s p h e r i c a l
means o f F o u r i e r s e r i e s ( 3 . 2 0 ) f o r f ( g )
(4.17-1) t ;(h) 6
6
L ( H ) , ;(h)
be i n v a r i a n t under t h e t r a n s f o r m a t i o n o f t h e Weyl
H,
$ ( h ) = ( 2 ~ ) - ~ / ./' $(y)e-iB(hyY)dy H d e r t h e means
lA o(
AEG
I$( ft. ) - l d X f * X X ( S ) ,
(4.17-2) (4.17-3)
(4.17-4)
I07
Harmonic AnaI.vsis on Classical Groups Take $ ( h ) = W$2-l(lhl) (4.17-1),
i n (4.17-2).
where
( A + B I = lB(A+B,
I t i s o b v i o u s t h a t (4.17-2)
becomes
A+B)) 1/2 ,
and, as a f u n c t i o n on H, g ( h ) i s i n v a r i a n t u n d e r t h e t r a n s f o r m a t i o n o f t h e Weyl yroup.
Thus g ( h ) can be u n i q u e l y e x t e n d e d as a f u n c t i o n on t h e L i e a l y e b r a f o r
G, t h e v a l u e s o f w h i c h a r e @ ( a d h ) = g ( h ) f o r h E H and y Y L e t a1
,...,am be
a l l p o s i t i v e r o o t s on H; p ( h ) = n j = l
be t h e o r t h o n o r m a l b a s i s f o r B( and h = xlXl+x2X2+
...+ x X
q q
,
) i n H;
a = ax
Y
Q(h) = ?r
ZoeW
(4.17-4)
and C,
E
e
G.
B(h,aj);
a + x2
1 ax1
a +,,,+ ax2
Y
(exp h) =
I f(gt
G
G, exp be t h e e x p o n e n t i a l mapping; A ( h ) = n y = 1 ( 2 i iB(ho,oh)
,
ho
X1,X2
,...,X 9 x a q axq’
be a p o i n t i n H; a g a i n l e t W d e n o t e t h e Weyl y r o u p ,
)111 be t h e o r d e r o f t h e Weyl y r o u p ; J, ( h ) = h E H, y , t
x
E
e H.
exp(h)t-’)dt, sin
B(h,ai));
Then t h e i n t e y r a l e x p r e s s i o n s f o r (4.17-1)
are respectively
depends o n l y on t h e L i e a l g e b r a .
For t h e means (4.17-1) e x p r e s s i o n s S!,R(f;g)
THEOREH 4.12.
, ,+
%
(4.17-4)
Si,R(f;g),
and f o r t h e i r c o r r e s p o n d i n g i n t e g r a l the following results are valid.
( L i S h i x i o n g and Zheng Xuean).
v a t i v e s o f up t o m - t i m e s on H.
L e t $ ( h ) h a v e L1 p a r t i a l d e r i -
Then t h e f o l l o w i n g h o l d .
S. Gong et al.
108
1 ) I f f ( g ) E L p ( G ) , p > 1, f o r j = 1,2,3, o p e r a t i o n s on Lp(G) and
t h e n SQ,,(f;g)
a r e bounded l i n e a r
l l S ~ , R ( f ; y ) i i p < A(G,$,j ,R) ilfll P ' and S'? ( f ; g ) i s r e y a r d e d as an i n t e g r a b l e f u n c t i o n f o r w h i c h t h e F o u r i e r J ,R s e r i e s i s j u s t (4.17-j).
&
1, and i f P ( h ) P ( ) { $ ( h ) } 6 L(H), then f o r I f f ( g ) E Lp(G), p S'? ( f ; g ) i s a bounded l i n e a r o p e r a t o r on Lp(G) and J ,R
2)
j = 1,2,3,4,
and S'? ( f ; g ) i s r e g a r d e d as an i n t e g r a b l e f u n c t i o n f o r w h i c h t h e F o u r i e r J ,R s e r i e s i s j u s t (4.17-j).
&
) { $ ( h ) } ( < A ( l + (hI)-"', and j = 1,2,3,4, 3) I f IP(h)-lP( b e s i d e s 2 ) o f t h i s theorem, t h e f o l l o w i n g r e s u l t s a r e v a l i d . a)
SQ,,(f;y)
almost everywhere converges t o f ( g )
b)
SQ,R(f;g)
u n i f o r m l y converges t o f ( g ) f o r R +
C)
SUP
R>U
M f ( y ) = sup r>O
(sj,R(f;g)I
/
B(g;r)
< A(G,$,j)(Mf(Y)
If(t)(dt(B(g;r)(-',
+
/
G
h(t )
6
-
-'
E
L(G) f o r R +
> 0, t h e n
m.
i f f ( g ) i s continuous.
I I f ( g t - ' ) 1 d t ) , where
and B ( g r ) d e n o t e s a l l t
E
G from which
t h e Riemann d i s t a n c e t o g i s l e s s t h a n r;
[ { s uR p I S ? ,R ( f ; g ) )
d) 4)
If
1-
A€G
I$((A+e)/R)ldA <
1
A€G
(4.17-j)
> y } l < A(G,$,j)y-lllfllLl.
+
m,
then,
i n t h e sense o f t h a t
l$((A+E)/R)dAf*xX(Y)
1
<
+
m,
a b s o l u t e l y c o n v e r y e s f o r a l m o s t e v e r y g 6 G and j = 1,Z.
And, i n t h e
i s e q u a l t o S'? ( f ; g ) f o r a l m o s t e v e r y y 6 G and j = 1,2, J sR G(h) s a t i s f i e s t h e f i r s t c o n d i t i o n , where f ( g ) 6 L(G) b e s i d e s t h e above
meantime, ( 4 . 1 7 - j )
if
mentioned c o n d i t i o n s .
5)
(4.17-j)
j = 1,2,3,4,
i n t h e sense o f 4 ) a b s o l u t e l y c o n v e r y e s f o r a l l R and
i f ( $ ( h ) I < C ( l t (h()-n'z-q/2-E,
E
> 0.
And, i n t h e meantime,
i s equal t o S'? ( f ; g ) f o r a l m o s t e v e r y g 6 G and j = 1,2,3 o r j = 4, J ,R i f $ ( h ) s a t i s f i e s t h e f i r s t c o n d i t i o n o r t h e c o n d i t i o n i n 3) r e s p e c t i v e l y , (4.17-j)
b e s i d e s t h e above m e n t i o n e d c o n d i t i o n s .
6 ) From t h e P o i s s o n summation f o r m u l a t h e summation k e r n e l s K ? ( 9 ) c a n be J YR deduced w h i c h s a t i s f i e s
Harmonic Analysis on Classical Groups
S$
THEOREM 4.13. U
1
f ( g t - l ) KQ,R(t)dt. G Take + ( t ) = ( 1 - t 2 k ) 6 , ( L i S h i x i o n g and Zheng Xuean).
J ,R
(f;g) =
109
t < 1 and 0 f o r t > 1, k b e i n g a p o s i t i v e i n t e g e r .
Thus (4.17-1)
(4.18) for defines
t h e R i e s z summation of o r d e r 6 and d e g r e e 2k o f F o u r i e r s e r i e s on compact L i e When k = 1, i t i s t h e u s u a l 1 R i e s z S Z k s 6 ( f ; g ) denotes S2k*6(f;g). 1,R summation d e n o t e d by S i ( f ; g ) . Then S i k S 6 ( f ; g ) s a t i s f i e s t h e f o l l o w i n y :
groups.
i s valid f o r Sik9&(f;g) i f 6 > (n-l)/2.
1)
The c o n c l u s i o n of Theorem 4.12
2)
I f f ( g ) i s c o n t i n u o u s on G and 6 > ( n - 1 ) / 2 t h e n 1Sik"(f;g)
3)
The s a t u r a t i o n o r d e r o f
THEOREM 4.14.
-
f(g)
Siky6
1
< A(G,k,G)w(f;l/R).
i s R-2k.
( L i S h i x i o n g and Zheng Xuean).
I f 6 > (n-1)/2,
then
s < 2k-1.
< A(G,k,G)
1
x+Bl
i f f ( g ) c C2k(G).
Ilfl12kR-2k
dxtr(C,A,(g))
-
f ( g ) l l m } , C x an a r b i t r a r y
and i n d e p e n d e n t o f f ( g ) .
From 1 ) and 2 ) o f t h i s
theorem, t h e J a c k s o n Theorem f o l l o w s : ER(f) i f f(g)
6
CksW(G).
<
A(G,k,p)
liflk,wR-kw(l/R),
B e s i d e s , t h e B e r n s t e i n Theorem c a n be d i r e c t l y deduced b y
t h e u n i t a r y r e p r e s e n t a t i o n s f o r compact L i e groups. 4)
L e t 11 > ( n - 1 ) / 2 ,
M ' where T k ( y ) = f r o m 1,2,..
k
1
x. y
M be an i n t e g e r , and
and any o f xl,
x2,
..., x
j =1 .,M. Then
M IIVR(f;Y)
P4 where sup llVRU < + R>O
THEOREM 4.15.
i s a sum o f k numbers c h o s e n $4
-.
-
f(y)( <
PI
( S U P IIVRII +
R>U
( L i S h i x i o n g , Fan Dashan and Zheng Xuean).
Then t h e k e r n e l s o f R i e s z means o f ( 2 k , 6 ) s a t i s f y 1)
2k,6, nKR
l)ER(f),
(g)iill
A(G,k)
l o y R,
( ( s e e (4.18)).
Take 6, = ( n - 1 ) / 2 .
S. Gong el al.
110
6
nsup ) S i k ' 6 ( f , y ) 1 i i p R>O
b)
S i k s 6 ( f ; y ) c o n v e r g e s t o f ( y ) a l m o s t everywhere;
c)
l i m iisiky6(f;g) I?+-
-
)iitilp;
= 0.
f(g)ii,
I
f ( y ) d y , where g,y a G. B(g;r) G t h e r e e x i s t s r o > 0 such t h a t
4) g
< A(G,P,k
a)
Let f*(g;r)
=
f*(g;r+2s)
-
+ f*(g;r)
2f*(g;r+s)
I f f o r almost every
= o(s/log
s)
i s v a l i d u n i f o r m l y f o r s < r < ro, t h e n t h e F o l l o w i n g r e s u l t o f t h e Salem t y p e 2 k ,6 i s v a l i d : sR O(f;g) converges t o f ( g ) ( f o r R + W ) almost everywhere i f I t ) l o g + l f ( i s i n t e g r a l f o r G b e i n g a t o r u s of d i m e n s i o n i n t e g r a l f o r G b e i n g o t h e r compact L i e group, Dini-,
n >
2 or i f f i s
S i m i l a r l y , we can g i v e t h e
t h e J o r d a n - and t h e L e b e s g u e - t e s t f o r S ~ " ' " O ( f ; g )
on compact L i e g r o u p s
by use o f t h e f u n c t i o n f * ( y ; r ) .
E. PI. S t e i n ( s e e [ 9 ] ) d i s c u s s e d t h e f o l l o w i n y s p h e r i c a l means o f F o u r i e r
where x E G, f E L ( G ) , and he p r o v e d
2)
where t > 0, f ( x ) € Lp(G), p > 1. P' p t i s a s e l f - c o n j u y a t e o p e r a t o r on L ~ ( G ) .
3)
f > 0 i m p l i e s t h a t ptf
4)
l i m -P= t f - f
llPtfUp c Ufll
1)
t+O
t
-(-A) l / Z f
0.
,
where
5) u(t;x) equation
I Ptf(x)
E C"(Gx(0,-)),
( 6) XI,
u(t;x)
X2,
and a l s o u ( t ; x )
5 2
+
A)U
I 0.
converges t o f ( x ) f o r t + 0 i n t h e norm o f L ( G ) , where
..., Xn
i s a b a s i s o f t h e L i e a l g e b r a o f G,
n A =
1
i,J=l
s a t i s f i e s t h e Laplace
( a i j ) = (-B(Xi,
n
a..X.x., 'J 1 J
AA ( x ) = -p A ( x ) , A f ( x ) = A X
1
a. . X . x . f . 1J 1 J
i ,j=1
L e t f be a r e a l v a l u e d f u n c t i o n w h i c h b e l o n g s t o C"(G)
and d e f i n e
Xj))".
Harrnonic Analysis on Classical Groups
( v f (2 ( x ) If f
6
Cm(tix(O,-)),
111
n a..(xif)(x.f). i ,j=1 1J J
1
=
then
S t e i n d e f i n e d t h e L i t t l e w o o d - P a l e y f u n c t i o n o f f f Lp(G) as
Then E. M.
m
I0 t l v u ( t ; x ) ( 2 d t ) 1 / 2
(
Y(f)(X) =
9
and p r o v e d t h e f o l l o w i n g :
7 ) Let f 6 Lp(G), 1 < P < Ap such t h a t
-.
Then g ( f )
IIg(f)ll Conversely, i f
I f(x)dx
= 0,
G
< A Ilfll P
Lp(G) and t h e r e e x i s t s a c o n s t a n t
P '
then there e x i s t s a constant B Ilfllp
8)
P
6
P
such t h a t
< Bpllg(f)llp.
L e t t h e R i e s z t r a n s f o r m a t i o n on G be j =1,2
K . f = X.(-A)-"'f, J J
...,n,
Then R . , j = 1,2, J from which f o l l o w s
where f E C"(G).
1 < p < -,
J. L. C l e r c ( s e e [ l l ] )
,...,n,
a r e bounded o p e r a t o r s on Lp(G) f o r
d i s c u s s e d t h e summation o f F o u r i e r s e r i e s on compact
L i e y r o u p s by R i e s z means o f o r d e r 6.
H i s m a i n r e s u l t s a r e as f o l l o w s :
L e t G be a compact L i e g r o u p o f d i m e n s i o n n and r a n k q, D ( e x p h ) be C l e y l ' s f u n c t i o n o f G and then, 1) 2)
3)
S i f + f f o r 6 > ( n - 1 ) / 2 i n t h e norm o f L p ( G ) , p sup ( S i f ( x ) I < C ( M f ( x )
f
K*lf((x)),
R>O
1.
6 > (n-l)/2.
If 6 > ( n - 1 ) / 2 , f E L(G) and m i s t h e Haar measure, t h e n m{sup I S i f I > a] < A llflll , R
and, from t h i s , S i f c o n v e r y e s t o f a l m o s t e v e r y w h e r e ;
4) that
I f 1 < p < 2, 6 > ( n - l ) ( l / p - 1 / 2 ) ,
IlSUP
R
R.
S.
t h e n t h e r e e x i s t s a c o n s t a n t Ap such
6
I S R f ( II
P
< A
P
llfll
P
.
S t r i c h a r t z ( s e e C141) d i s c u s s e d t h e m u l t i p l i e r t r a n s f o r m a t i o n on
compact L i e a l g e b r a s and groups.
S. Gong et al.
112
L e t G be a compact L i e y r o u p and $I be i t s L i e a l g e b r a , H be a C a r t a n subalgebra o f
9,
dp
be ad- n v a r i a n t f i n i t e measure o n
9.
E s p e c i a l l y , when dp
i s absolutely continuous, t h e r e e x i s t s a f u n c t i o n F(x), x E i n t e g r a b l e and a d - i n v a r i a t (i.e.
9,
which i s
F ( h ) ( P ( h ) I 2 i s i n t e g r a b l e on ti, h E H such
t h a t dp = F ( x ) d x . R. S. S t r i c h a r t z p r o v e d :
1)
If
then
$(A)
or
=
$(A) =
(*I J @ ( A + B - ~ ~ ~ B(**I) ~ Y @(A+B)
G
a r e bounded o p e r a t o r s on L ( G ) . 2 ) L e t @ ( x ) be t h e same as i n 1 ) and d e f i n e o r ( x ) = @ ( x / r ) . an o p e r a t o r 0P(@) on :
and ( * ) o r ( * * ) d e f i n e s a n o p e r a t o r o p ( $ ) on G. t h a t 0 P ( @ ) i s bounded on L ( D.
L. R a g o z i n ( s e e [ n o ] ) ,
9)is
Then d e f i n e s
Then t h e n e c e s s a r y c o n d i t i o n
t h a t o p ( g r ) i s u n i f o r m l y bounded when r +
m.
u s i n g i m b e d d i n g method i n t o t h e E u c l i d e a n space,
p r o v e d t h e Jackson Theorem, t h e B e r n s t e i n Theorem and o t h e r r e s u l t s on compact L i e groups and on compact homoyeneous spaces. As t o t h e harmonic a n a l y s i s on u n i t a r y groups and i t s e x t e n s i o n on c l a s s i c a l y r o u p s and compact L i e groups, t h e r e a r e many r e s u l t s such as : a v a r i e t y o f theorems o f Tauber t y p e , a v a r i e t y o f p r o b l e m s on how t o s t u d y t h e h a r m o n i c a n a l y s i s on c l a s s i c a l domains t h r o u y h t h e harmonic a n a l y s i s on c l a s s i c a l yroups, and many r e s u l t s on t h e a p p r o x i m a t i o n t h e o r y . omitted,
A l l these r e s u l t s are
f o r w h i c h t h e r e a d e r s a r e r e f e r r e d t o [l] - [ 6 ] and o t h e r a r t i c l e s .
REFERENCES
El1
Gony Sheny (Kuny Sun), Harmonic A n a l y s i s on C l a s s i c a l Gr-0ups ( i n Chinese S c i e n c e Press, B e i j i n g China, 1983. , Acta. Math. S i n i c a , 1 0 ( 1 Y 6 0 ) , 239-261 ( i n Chi nese c21 , i b i d 1 2 ( 1 9 6 2 ) , 17-31 ( i n C h i n e s e ) , C31 , i b i d 1 3 ( 1 9 6 3 ) , 152-161 ( i n C h i n e s e ) . C41 , i b i d 1 3 ( 1 9 6 3 ) , 323-331 ( i n C h i n e s e ) . [51 , i b i d 15(1Y65), 305-325 ( i n C h i n e s e ) . C61 1 7 1 2 h o n g J i a q i n g , J o u r n a l o f Chinese U n i v e r s i t y o f S c i e n c e and ’echnol ogy , 9(197Y), 31-43. [ 8 ] Gony Sheny, J o u r n a l o f Chinese U n i v e r s i t y o f S c i e n c e and Technology, 9 ( 1 9 7 9 ) , 25-30. [9] S t e i n , E. M., Annals i n Math. Study, P r i n c e t o n , 1970, No. 63. [ l o ] Coifman, R . & Weiss. G., B u l l . Amer. Math. SOC. 8 0 ( 1 9 7 4 ) , 124-126. [ll] C l e r c , J. L., Ann. I n s t . F o u r i e r . Grenoble, 2 4 ( 1 9 7 4 ) , 1:14Y-172. [12] S t a n t o n , R. J., Trans. Amer. Math. SOC. 218(1976), 61-81.
Harmonic Analysis on Classical Groups
[13] [14] [l5] [16]
[I71
[18]
[lY] [20] c211
c221 [23]
S t a n t o n , R. J . & Tomas, P. A., Amer. J. Math. 1 0 0 ( 1 9 7 8 ) , 477-493. S t r i c h a r t z , R. S., T r a n s . Amer. l l a t h . SOC. 1 9 3 ( 1 9 7 4 ) , 99-110. Weiss, N. J . , Amer. J. Math. 9 4 ( 1 9 7 2 ) , 1U3-118. D r e s e l e r , R., M a n u s c r i p t a Math. 3 1 ( 1 Y 8 0 ) , 17-23. , F o u r i e r A n a l y s i s and A p p r o x i m a t i o n Theory, Ed. G. A l e x i t s and P. Turan, V o l . I ( 1 9 7 6 ) , 327-342. Mayer, R. A., Duke Math. J . 3 4 ( 1 Y 6 7 ) , 549-554. T a l o r , M. E., Amer. Math. SOC. 1 Y ( 1 9 6 8 ) , 1103-1105. K a y o z i n , D. L., Trans. Amer. Math. SOC. 1 5 0 ( 1 9 7 0 ) , 41-53. , I l a t h . Ann. 1 9 5 ( 1 9 7 2 ) , 87-94. , i b i d , 2 1 9 ( 1 9 7 6 ) , 1-11. Zheny Xue An, Advances i n Math., V o l . 1 3 , 2 ( 1 9 8 4 ) , 103-118.
113