Heat transfer coefficients for boiling mixtures

Heat transfer coefficients for boiling mixtures

Chemicsl EngineeringScience,1961,Vol. 16, pp. 297 to 837. Pergamon Press Ltd., London. Printed in Great Britain. Heat transfer Experimental data C...

3MB Sizes 0 Downloads 199 Views

Chemicsl EngineeringScience,1961,Vol. 16, pp. 297 to 837. Pergamon Press Ltd., London. Printed in Great Britain.

Heat

transfer

Experimental

data C.

coefficients for binary

V.

STERNLING

Shell Development

.

mixtures

of large

mixtures relative

L. J.

TICHACEK*

Emeryville,

California,

and

Company,

(Received

for boiling

28 March

volatility

IJ.S.A.

1061)

Abstract-In the process industries boiling is usually used to separate the components of a miuture. Notwithstanding, published correlations of heat transfer rates in boiling are almost always baaed on studies on pure substances and involve the tacit assumption that a pure compound and a mixture with the same average properties boil alike. The data presented here show that this assumption is untrue and unsafe. Heat transfer coefficients were measured in a pool boiler for fourteen binary mixtures. Included were systems which form ideal solutions and systems with strong positive and negative deviations from Raoult’s law. The boiling range was larger than 170 “F in all cases. In these systems with wide boiling range, boiling heat transfer coefficients are smaller, by up to thirty-fold, than the appropriate average of the coefficients for the two pure components. This is due to a diffusional resistance which appears when, as a consequence of boiling, the components are partially separated. R&urn&Dam les proc6d6.s industriels on utilise en g&&al la distillation pour &parer les constituants d’un mblange. Cependans les relations publites sur les vitesses de transfert de chaleur en distillation sont presque toujours fondt5es sur des etudes de corps purs avec l’hypothhse tacite qu’un constituant pur, et un melange avec des propri&Ps identiques distillent de m&me fapon. Les donntes p&sent&es ici montrent clue cette supposition est fausse et hasardeuse. .

ia

Les coefficients de transtert de chaleur ont &tg mesun% dans une chaudi&e pour quatorze m&lane. Dans ces systemes certains forment des solutions idbales, d’autres manifestent un L’intervalle entre les temp&atures fort &art positif ou nt!gatif par rapport B la loi de Raoult. d’dbullition est sup&ieur B 1’70°F dans tous les c&s. Dans ces syst&mes Q grands intervalles de distillation, les coefficients de transfert de chaleur B l’dbullition sent plus petits - plus de 30 fois - que la moyenne des coefficients pour les deux composants purs. Ceci est dii B la r&istance de la diffusion qui apparalt quand les constituants sont partiellement s&pa& par suite de l’tbullition. Zusammenfassung-In der Verfahrenstechnik wird das Verdampfen gewiihnlich zum Trennen Trotzdem sind die vetiffentlichten Wiirmeiibervon Komponenten einer M&hung benutzt. gangsgeschwindigkeiten filr die Verdampfung fast immer auf das Studium reiner Substanzen hegrilndet und schliessen die stillschweigende Annahme mit ein, dass reine Verbindungen und Mischungen unter sonst gleichen Bedingungen such gleichartig sieden. Die hier vetiffentlichten Daten zeigen aber, dass diese Annahme unwahr und unsicher ist. Wsrmeilbergangszahlen wurden in einem Verdampfer fiir 14 binlre Gem&he untersucht. Darin waren Systeme eingeschlossen, die ideale Liisdngen darstellen und solche, die stark positive und negative Abweichungen vom Raoult’schen Gesetz zeigen. Der Siedebereich war in allen Fiillen griisser als 1’70OF. In den Systemen mit grossem Siedebereich waren die Wiirmeiibergangszahlen bis zu einem dreissbigstel kleiner als die durchschnittlichen Werte filr die beiden reinen Komponenten. Dies ist durch den Diffusionswidemtand bedingt, der auftritt, wenn im Verlauf der Verdampfung die Komponenten teilweise getrennt werden. * Present

address

: Shell Oil Company, Norco, Louisiana. 297

C. V. STERNLINGand L. J. TICHACEK

PURPOSE

AND

A MAJOR use of boiling

SCOPE

is in the separation

components of a liquid mixture. surprising, therefore, that almost

of

It is rather all studies of

heat transfer

during boiling deal only with pure

components.

The standard

present correlations only

by tacitly

like a pure component

that

having

a mixture

The experiments ing typical water

reported

the same average

to that

explain boiling this assumption

mixtures

of

here show that this is

Consider, for example,

data

the follow-

for boiling of ethylene at one atmosphere

lkmperalure

glycol-

pressure.

drop required to give

h, = 400 B.Th.U/hr ft2 “F

“F 23 51 28

Pure water

21% v water, 79% glycol Pure ethylene glycol

Obviously, effect

an

engineer

of composition

who

on boiling

overlooks may

this

blunder.

By assuming the same vigour of nucleate boiling for a mixture as for a pure component, he may be led to specify a boiler which is too small. attempting

to

recommend

a

improve change

operation,

in the

wrong

he

Or, may

direction.

For example, ordinarily one would expect that increasing recycle rate to a forced circulation boiler would increase boil-up rates. It has been found, however, that increasing circulation in a. glycerol-water evaporator was harmful in at least one case known to the authors. The observed loss in heat transfer is attributable mainly to the suppression

completely.

The purpose

of

the data with only a few

remarks.

APPARATUS

boils

would be very bad when applied to mixtures wide boiling range. indeed the case.

the results

this paper is to present explanatory

properties. In our early attempts theoretically, we suspected

explain

texts on heat transfer

that can be used for mixtures

assuming

from Raoult’s law) were studied, the results are widely applicable. No attempt is made here to

of boiling due, in part,

to change

in

feed composition. In this paper, we present data for pool boiling at atmospheric pressure of binary mixtures with wide boiling range. Since all the common solution zero and positive deviations types (negative, 298

AND

PROCEDURE

The electrically heated pool boiler shown in Fig. 1 was used. The sides, top and bottom are of 4 in. thick aluminium welded to form a chamber with inside dimensions 6 in. wide x 7 in. high x 3 in. deep. Windows of JJin. thick pyrex glass were clamped to the open ends of the frame using neoprene caskets. In operation the boiler holds about 14 1. of liquid. The heating surface is formed by a 34 in. length of No. 7 gauge stainless steel hypodermic tubing of O.D. = 0.180 in. and 0.015 in. wall thickness. Lengths of 4 in. copper tubing were brazed to the stainless steel section and the assembly inserted horizontally through electrically insulating seals in the aluminium walls. The seals were made of bakelite grommets mounted so as to press a teflon gasket against both copper tubing and aluminium frame. Sixty cycle alternating electric current was passed directly through the heater from the secondary of a specially constructed transformer which was wound to deliver 3 v at 200 A with a maximum of 110 v on the primary. A Variac in the primary circuit regulated the power to the heater. The voltage drop across and current flow through the heater were measured by meters and the power computed as for a resistive load. For temperature measurement, three thermocouples were placed inside the stainless steel heater-one $ in. inboard from the right end, one at the centre, and one 8 in. from the left end. The thermocouple wires were clothcovered single strands of 2%gauge iron or constantan wire. The iron-constantan connexion was made by carefully silver soldering a small section of the wire to produce a junction which was as close as possible to a point contact. The thermocouple at the left end of the heater was brought in through the tubing from the right side and vice versa. This placement eliminates most of the error due to conduction along the thermocouple wires. The bare thermocouple junctions were coated with sodium silicate to electrically insulated them against contact with the inside surface of the stainless steel heater. After the thermocouples were placed at their measured positions inside the heater silicon carbide powder was packed inside the heater tube around the thermocouples. Besides preventing movement of the junctions during use, this powder also insures good thermal contact between the thermocouples and the heater tubing and reduces temperature fluctuations. With these precautions in the placement of the thermocouples and by the use of fine thermocouple wire, conduction errors in the thermocouple reading were made negligible. The thermocouple e.m.f.‘s were measured on

Heat transfer cocfticients

for boiling mixtures-Experimental

Polished Freshly

data for binary mixtures of large relative volatility

Surface Treated after

with Sic*,

0

Fouled

n

Boiling

.05 N HCI,

V

Surface

Etched

Good

Nucleation

SiCL Preparation Excellent

Nucleation

by Acid

3”

AT, FIG.

8.

Comparison

OF

of boiling curves for water with varying

Chm.

a99

nucleating

conditions.

En&w!. Sci. Vol. 16, Nos.

Y and 4. December,

1UOl.

C. V. STEHNLING and L. J. TICHACEK 10’

0

Run 168

0

Run 159

A

Run

95

10” 0

30

20

10

AT FIG. 4.

Comparison of boiling curves for isopropanol

a Leeds and Northrup Model 1882 precision portable potentiometer. A large choke was placed in series with the thermocouples to reduce the 60-cycle component. It was found advisable to keep the iron and constantan leads close together to minimize inductive pick-up of 60-cycle current. Heat losses from the boiler, mainly through the uninsulated glass windows, were large. When the test heater was operated at low current, the heat losses exceeded heat input from the test heater

on different occasions.

alone. To prevent the temperature of the liquid from dropping slowly below its boiling point it was necessary to add extra energy through an auxiliary electric heater placed in the bottom of the boiler, as seen in Fig. 1. The vapour generated by boiling was condensed on a water-cooled coil $ in. copper tubing placed in the top of the boiling vessel. It contained about 8 ft. of tubing.

300

SURFACE TREATMENT It is unquestionable that the condition of the

Heat transfer coefficients for boiling mixtures-Experimental heating surface greatly affects heat flux. To obtain data unobscured by random changes in surface condition requires considerable care. Since the object of this work was to study the effect of liquid composition it is sufficient to be able to make surface that gives reproducible results for a given system. Of course, it would be desirable also to make a surface that gives results reproducible from system to system. Several treatments of the heater surface were tried. Polishing the heater with fine crocus cloth gave a very smooth surface, but poor nucleation ; the boiling was bumpy. Surfaces polished with rough grit cloth were initially very variable and furthermore changed in several days time. Chemical roughening of the surface with a mixture of hydrochloric acid and ferric chloride gave an apparent uniformly rough etching, but the nucleation was poorest of all surfaces tried. Best results were obtained by grinding No. 200 silicon carbide grit against the heater surface with a piece of brass. A relative motion that crushed the particles against the surface appeared preferable to those that scraped the grit along the surface to produce scratches. This treatment was adopted for all data reported here. After a few hours of use the boiling stabilized with relatively good nucleation. Table 1.

data for binary mixtures

of large relative volatility

Figs. 3 and 4 illustrate the effects of surface treatment and show why careful preparation of the surface and judicious interpretation of the results are essential. In Fig. 3 data are given for water boiling on several surfaces ; in Fig. 4 are data for isopropanol boiling on a single surface on different occasions. Conclusions presented in this report are based solely on intercomparison of results for a single surface taken within a total elapsed operating time of a few hours at most. DATA The fourteen binary systems studied are listed in Table 1. Properties of the pure components are shown in Table 2, viscosities for the mixtures in Table 3, and vapour-liquid equilibrium data derived from the measured boiling points in Table 4. Note that we have included systems which obey Raoult’s law, e.g. water-glycol, systems with large positive deviations, e.g. IPA-Ondina oil, and systems with large negative deviations, e.g. carbon tetrachloride-Ondina oil. Original data taken were : mixture composition, heater voltage and current and thermocouple e.m.f.‘s for the liquid pool, the right end the centre and the left end of the heater tube. The derived heat transfer coefficients are

Systems studied -

System no.

More v&tile

.._ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Volume A

Less ldutile

component, A

conaponent, B

--

Ondina No. 1’7 Oil Ondina No. 133 Oil Ondina No. 133 Oil Di-n-butylphthalate Ondina No. 17 Oil Di-n-butylphthalate Ethylene glycol Glycerine Ethylene glycol Glycerine Ethylene glycol Glycerine Amy1 alcohol X-38 resin

Benzene Methyl chloroform Carbon tetraohloride Carbon tetrachloride Zsopropanol Zsopropanol Zsopropanol Zsopropanol Methanol Methanol Water Water Methanol Zsopropanol

y.

100, 90, 80, 60, 40, 20 100, 90, 80, 60, 40, 20 100, 90, 80, 60, 40 100, 90, 80, 60, 4Q, 18, 10, 5 100, 90, 80, 60, 40, 20, 10, 5, 2-5 100, 90, 80, 60, 40, 20, 10 100, 90, 80, 60, 40, 20 100, 90, 80, 60, 40, 20, 10 100, 90, 80, 80, 40, 20 100, 90, 80, 60, 40, 20 100, 70, 50, 21, 11, 3, 0 100, 79, 56, 34, 12, 5, 2 100, 60, 27, 8.5, 0

-

Chm.

301

En@&

Sci.

Vol.

16, Nos.

3 and 4.

December,

1961.

g

_ .

04

0.887 3990

104Yo

"1

104Y0 'I

104", rl

Vl

104vo v

"1

104.0 rl

Vl

r)

- ,>_

0.20 0.698 4425

1.81 3272

Vl

-~

o*eo

104", rl

--

--

--

0.20 00231 7421

,,

-

--

--

0.0651 6162

040

0.341 46a9

0.60

0.80 1.72 3189

0.80 3.58 2602

01

104Yo 71

%

0.90 3.75 2521

1.00 5.58 2088

0.20 0.217 5890

.

IPA

-

-

-

_

_

_A,l

0.025 1.57 4487

0.05 1.50 4469

0.10 1.23 4446

0.10 1.61 4oo2

0.10 0.0732 7083

04k-J 0.593 4498

0.60 0.461 4422

0.80 0.340 4413

0.90 0302 44Q5

1m 0.259 4425

Ondina 17

0.20 0.810 4557

0.80 0.643 M66

0.80 0.426 4207

O*QO 0.342 4291

l*oo 0.259 4425

IPA DBPH

-,

^

-

0.05 3.74 3580 _-

0.18 6.47 3000 __0.10 4.92 3315

4.50 2899

040

0.60 5.89 2480

0.80 7.40 2018

1.00 6.47 1887 __0.90 7.74 1890

__

-1

.

_

_

._I”

2.81 3588

040

0.60 4.53 2835

0.80 6.01 2284

6.05 2110

090

1.00 6.47 1887

__

--

--

--

--

--

5.04 2841

040

0.60 6.01 2459

0.80 5.85 2258

0.90 6.36 2105

0.754 1.26 3266

1.00 1.99 2733

.-

.-

.-

__

--

0.301 0.31 4890

4640

0.339 0.392

3685

0.555 0.97

0.788 1.29 3291

l*oo 1.99 2733

Hz0 glycerine

_-

0.1114 0.918 434Q

._

0.504 1.05 3687 _-_____ ._ 0.211 0.760 4319

._

.-

.-

H20

glycol

__

-

I-I--yLI

I

--

0.20 0.0293 0.1186 2.35 3.50 1.078 0.09 4253 6680 4340 3454 - __ ---__ .oma2 0.0533 1.142 0.0654 7222 434Q --_-_0.0213 0+491 7737

040

4.22 3360

040

0.60 6.51 2647

0.80 6.59 2246

0.90 5.77 2165

1.00 6.01 2033

ccl, CH,CCl, ccl, Benzene r)BPH 0ndinal38 hdhJ1a: 3(hzdina17

-

v, = volume .fraction more volatile component

04O 0.825 4086 -___ 0.20 0.20 O.0736 1.11 6947 4125

040 0.0543 6797

o+o 0.0698 6227

o%o om5 4819 040 0.307 5ooo

0.80 0.0732 5697

0.90 0.132 5095

1.00 0.259 4425

0.80 0.329 4580

0.90 0.284 4516

1.00 0*259 4425

IPA gIyce&e

Mixture viscosities

C%OH IPA glycerine gly&

0.90 3.995 2418

"1

1.00 lo*v,(ft~/hr) 5.58 7 ml-') 2088

Component1 CH,OH Cotnponenl2 glycol

-

Table 3.

ti

R

2 E

6 a ? 4

z g 3 P c

c

1

016.0

9.m

08Z oz.0

VIZ oz.0

2800.0 SS8 fE6Z.O

PQZ

-i _.

ZIZ

PZO.0 89& 800

161 oz.0

-/-

_.

9@0

682 01.0

8% oz.0 /

WZ

VBT 01.0

808 oz.0

01-o

668 OI.0 881 oz.0

OLI op.0

-.-

Q.&Q1 08.0

09.0

812 OF0

QVZ 81.0

1pLZ

081 09.0

__

I 08.0 /

Z61

861 Ova

' ~ I

861 09.0

861 09.0

V61 OP.0

981 09.0

981 Ova

881 09.0

L61 Ova

781 09.0

VIII.0 TQZ 1IZ.O

__

091

881. 08.0

06.0

881 08.0

981

9.181 08.0

06.0

!a1 08.0

I;81 06.0 I _.

822 mIi.0

06.0

9.181 06.0 06.0

081 06.0

06.0

LVT 0O.I

ZLI 06.0

!az P9L.O

081 00.1

HO”H3

auya3/ilP

996

_.

_.

081 00.1

VdI

103JizB

QP6

VdI

au.pa3tQ8

-

991 09.0

103fililll

HO’H3

1tu~dwo3

z guauoduw,g

C. V. STERNLING and L. J. TICHACEK

Table 5.

Derived boiling data

Run 110 100’$(ovbenzene

72,4x)0 56,Qoo 44,4QO 32,4QO 28,200 15,100 32,200 3540 72&M

209.9

208.2 206.0 202.6 199.8 197-l 205.0 193.1 210.4

Run 107 6O%vbenzene

33.9 32.2 30.0 26*6 23.3 21.1 29.0 17.1 a4.4

2138 1771 1478 1219 973 716 1112 499 2105

72 71 70 68 66 64 69 61 78

2066 1699 1408 1151 Qo7 652 1042 4aQ 2033

2164 1795 1510 1215 976 704 504 1093 2133

72 71 70 68 66 64 62 70 72

2092 1728 1440 1147 910 640 443 1023 2061

1050 1014 896 775 586 434 299 7G4 1058

88 83 80 77 76 73 69 79 88

963 931 816 698 510 as1 230 625 970

119,900 102,000 79,000 61,900 47,4JM 34.,800 24,800 15,600 9054 34,600 79,OOQ 119,500

RunlO1lOO'$Ovbenzene 72,400 56,QO0 44,381 32,500 23,200 15,100 9158 32,200 72,800 Run 105 I 74,500 58,200 44,900 33,200 23,400 15,100 8540 32,700 74,100

208-S 207-l 204.8 202.1 199.1 196-S 198.5 204.8 m9.5

33.5 31.7 29.4 26.7 23-7 21.5 18.1 29.5 34~1

70.9 57.4 50.1 42.8 39.9 34-8 28.5 46.5 70-l

139,000 119,000 96,700 77,600 60,700 46,900 24,200 15,600 9040 aa, 78,000 189,000

144,000

ai2.2 283.2 263.9 254.1 247-o 240.1 238.0 213-O 250.9 291.1 310.6

132.9 103.9 84.6 74.7 67.6 60.8 53.6 33.6 71.6 111.8 131.3

-

710 727 691 609 497 389 288 250 466 676 719

94 89 84 81 79 77 75 66 80 90 94

590 680 586 549 477 410 335 259 197 398 580 599 1

97 Qo 86 81 78 75 72 68 64 76 86 96

492 539 501 468 399 335 263 190 133 322 494 508

451-6 396.1 364.7 339.0 314.3 294.6 261.4 246.8 237.4 281.0 351.1 449.2

255-O 199.6 168.2 142.5 117.7 98.0 64.8 50.3 40.8 84.4 154.5 252.7

546 595 575 545 515 478 373 311 222 399 505 551

94 87 82 78 74 70 63 59 55 68 80 94

452 508 493 466 441 4Q8 310 252 166 331 424 457

530 522 500 478 446 4Ql 357 303 280 238 332 444 522

86 82 78 74 70 67 63 60 55 50 64 75 87

444 441 422 4Q5 a77 334 294 243 2Q5 189 268 368 436

Run109 20%vbenzene

Run 106 SO%vbenzene 94,4QO 75,500 58,500 45,500 33,600 23,600 15,500 8420 38,400 75,500 Q4,a

2Q3.3 162.0 134-S 112.6 99.2 84.9 73.9 6o.4 45.9 86.9 136.2 199.4

Run 108 4O%vbenzene

%v benze:ne 248.9 235.4 228.2 220.8 217.9 212.9 206.5 224.5 248.1

ass.9 247.7 320.4 298.3 284.9 270.5 259.5 246-l 231.6 272.6 321.8 385.1

121,000 98,6oQ 79,000 61,QO0 47,400 34,600 24AQo 15,800 9550 33,900 79,800 146,000

616 639 608 527 418 312 213 184 386 585 625

501.4 460.8 426.9 394.8 368.2 347.8 326.4 810-i 2Qo-a 269.7 381.7 408.4 508.5

271.8 231.2 197.3 165.2 138.6 118.2 96.8 SO-5 60.7 401 102.1 178.8 278,Q

-

-

. 304

-

Heat transfer coefficients for boiling mixtures-Experimental

Table 5.

Q/A

data for binary mixtures of large relative volatility

Derived boiling data -

co&d.

L~_2~_2JL-/L-

s@e??l 2. Methp!chbrofom-Ondina

138 oil

Run 69 100%~ me th:~lchloroform 1932 i96.4 88.6 65,000 196.4 1774 83.7 59,700 194.9 82.1 1440 46,300 30.6 1108 198.3 83,900 881 29.3 2Jk400 192.1 189.1 26.8 599 15,800 422 9400 185.1 22.3 6120 22.7 269 185.5 4260 181.7 19.0 224 2610 1’79.6 16.9 155 28.8 393 9160 186.0 1108 198.8 30.6 88,900 197.4 34.7 1875 65,000

57 57 56 55 55 54 51 52 49 48 52 55 57

1875 1717 1384 1053 776 546 370 218 175 107 342 1053 1817

Run 82 100%~ Me th!flchloroform 31.7 2ooo 198.0 63,300 1851 31.4 197.8’ 58,806 1481 30.5 196.9 45,206 28.2 1188 194.6 38,400 28.8 811 195.2 28,400 192.4 26.9 595 15,400 22.9 389 189.8 8910 177 190.7 24.3 4310 20.9 125 187.4 2610 27.2 387 193.6 9160 1101 196.7 30.3 33,400 32.4 1967 198.8 68,700

46 54 54 53 53 52 50 51 49 53 54 55

1954 1796 1427 1180 758 543 339 126 75 284 1047 1912

Run 83 9O%v met1‘Y ~lchloroform 71,200 256.8 II 87.1 817 73.9 812 60,000 248.7 233.1 63.4 730 46,300 228.5 53.8 629 83,900 220.1 472 28,800 50.4 216.1 46.4 333 15,400 8410 209.2 39.5 213 242.8 466 34,100 73.1 262.0 71,800 779 92.2

72 69 66 63 62 61 58 69 78

745 743 664 566 410 272 155 898 706

Run 70 80%~ methylchloroform 818.7 1440 80,m 294.5 124.7 61,900 280.8 111.1 47,900 270.2 100.5 35,000 254.0 84.8 24,700 71.4 I 15,600 1 241.1

88 83 80 78 73 70

471 413 851 271 220 149

558 496 431 348 293 281

167 270 591

65 85 86

102 185 505

Run 71 60%~ met1 lchloroform 418.2 519 123,000 287.5 101,706 386.0 4188 210.8 354.7 457 179.0 81,800 326.4 423 150.7 63,800 807.1 369 131.2 48,500 282.9 334 107.2 35,800 285.8 327 109.6 35,800 268.0 92.8 25,200 273 248.6 217 72.9 15,800 227.4 187 51.7 9690 354.3 204 179.5 36,700 281.7 400 88,200 207.9 426,s 492 253.3 124,500

110 95 89 84 80 74 75 71 66 59 89 94 102

419 388 368 339 289 260 252 202 151 128 115 806 389

9520

1

1

35,700 80,44W

Run7244 189,900 124,600 102,100 82,100 64,100 47,400 35,800 24600 15,600 8680 35,800 82,100 123,700

226.6 302.0 305.9

&v meti 476.1 445.6 410.7 380.6 359.5 838.7 318.7 296.9 273.4 238.8 319.3 381.5 448.4

Run73% 30/ &v met.1 553.9 140,000 523.8 128,800 475.5 104,700 433.8 83,900 402.9 65,600 50,100 380.9 358.5 36,200 25,400 335.6 16,700 312.3 285.5 9540 361.6 86,700 445.7 85,900 128,000 523.8 Chew.

305

Engng.

56.9

132.2 186.1

chloroform 259.3 224.4 194.3 178.2 152.4 132.4 110.6 87.1 52.5 132.9 195.2 262.1

483 480 455 428 870 311 270 222 179 165 269 421 472

92 87 83 78 75 72 68 64 59 51 68 78 88

891 393 372 344 295 239 202 158 120 114 201 343 384

chloroform 830.5 310.4 262.1 220.4 189.5 167.5 145.1 122.2 98.9 72.1 148.2 232.8 810.5

412 414 400 380 34s 299 250 207 169 182 247 369 415

96 92 85 79 74 70 67 63 58 52 67 80 92

316 323 815 302 272 229 188 145 111 80 180 289 323

289.7

Sci.

Vol

16,

Nos.

3

and4. December, 1061

C. V. STERNLING and L. J. TICHACEK Table

Q/A

)

1;

1 AT 1 h

5.

hc

Derived

/

boiling data -

h

hb

53 53 52 52 51 50 43 52

Run 33 40%~ carbontetrachloride 137,600 537.6 I 344.0 Mm 114,300 436.7 293-i 390 92,300 440.5 246.9 376 357 79,300 415.6 222.0 a34 61,900 373.7 135.1 297 47,400 353.0 159.5 34,600 333.9 140.3 246 24,400 319-O 125.4 194 15,600 302.3 109.2 143 9000 274.3 111 31.2 34,400 337.7 144.1 233 79,700 416.7 223.2 a57 13,300 535.8 a41.7 403

53

1396 1762 1400 1054 '790 545 333 1050 1371

Run 35 90%~ carbontetrachloride 71,500 279.1 103.0 662 65,600 266.7 95.7 636 81.3 60,000 252.4 733 46,300 288.9 67.9 632 33,900 227.2 56.2 603 24,200 221.4 50.3 480 15,600 220.4 49.3 316 9000 213.6 42.5 212 33,600 286.1 65.0 517 71,300 275.9 104.3 635

71 69 66 68 60 59 58 56 62 70

591 617 672 619 543 421 253 156 455 615

Run 36 30%~ carbon Itetrachloride 436 73,600 352.2 130.2 60,600 303.2 136.2 445 409 46,300 236.5 114.4 34,100 266.6 94.5 361 294 31.4 23,900 253.5 224 15,600 241.7 69.7 54.0 167 9000 226.1 99.9 389 83,900 271.9 447 79,000 343.6 176.6

77 72 69 65 68 61 57 66 77

359 a78 340 295 291 163 110 273 a71

Run37 6( DO / 119,900 441.7 93,200 393.8 73,700 374.1 61,300 a43.4 47,100 330.3 34,300 ao3.5 24,700 299.4 15,44m 273.8 3900 243.4 33,900 a16.2 78,300 379.2 120,OOQ 442.4

32 73 75 72 70 67 66 6a 57 63 76 32

375 370 a29 290 242 193 140 93 172 179 316 375

m Run 4 6.4%,vcarbc 95,000 503.5 31,800 487.4 69,800 438.9 53,300 467.5 49,500 455.2 39,300 439.9 31,300 425.2 24,500 409.8 13,700 4Q2.4 la,400 331.0 3900 360.1

262.5 219.6 194.9 169.2 151.1 129.4 120*3 99.1 69.2 137.0 200.1 263.2

-

457 447 404 362 312 265 206 156 129 247 391 457

-1

hc

______

hb

system a (Contd.)

Systema. Carbontelmchlovi&-Ondina oil133

Run 35 100%~ carbontetrachloride 63,700 202.4 32.7 1949 59,100 202.3 32.6 1315 al.3 45,500 201.0 1452 200.1 33,600 30.4 1106 193.0 23,300 23.2 341 15,600 196.0 26.2 595 3900 193.1 23.4 332 33,400 200.0 30.3 1102 64,500 203.3 33.5 1924

contd.

-

-

101 94 87 34 73 74 70 67 64 53 71 34 101

299

296 288 274 256 176 127 79 53 167 273 302

Systena 4. Carbontetrachloride-Dibutylphthalate Run 2 2%~ 9800 13,900 19,300 25,900 32,900 4Q,700

carbontetrachloride 456.2 60.2 162 507.0 111.0 125 144 530.7 134.7 532.3 136.2 190 533.3 142.2 232 542.6 146.6 277

62 73 78 73 79 79

100 52 66 112 153 193

Run a 3.4 ‘%,vcarbontetrachloride 9500 I 433.6 162 53.7 13,900 452.1 77.2 131 19,500 473.2 103.2 139 25,900 498.7 123.7 209 32,900 520.4 145.4 226 41,000 530.5 155.5 264 50,600 524.5 149.5 339 41,100 491.1 123.2 334 a2,500 494.3 119.3 271 214 25,100 492.3 117.4

61 66 71 75 78 30 79 75 74 74

101 115 113 134 148 134 260 259 197 140

tetrachloride 193.3 478 177.7 460 174.2 401 157.3 372 145.4 341 180.2 306 115.5 276 100.1 245 92.6 202 71.2 137 50.4 177

36 3a 33 30 79 76 74 70 69 64 59

392 377 313 292 262 230 202 175 133 128 113

i

306

Heat transfer coefficients forboiling mixtures-Experimental data ION binarymixturesof large relative volatility Table

5.

Derived

boiling

data -

contd.

h

-~ System4 (Co&d.)

Run5 13. 94,200 80,400 67,900 57,300 47,600 38,600 30,700 24,100 18,200 13,000 8900

vOvcarbontetrachloride 432 476.8 217.8 185.8 433 444.7 416 422.1 163.2 384 408.2 149-3 325 4Q5.2 146.3 295 389.8 130.9 273 371.4 112.6 94.4 256 353.3 77.5 234 336.4 321.7 62.9 207 44.4 200 303.3

85 82 80 79 77 74 70 66 62 57

343 348 334 304 246 218 199 186 168 145 143

Run 37 5 0’ 143,OQO 128,OQO 106,300 86,300 66,960 52,300 37,900 27,000 17,200 9700

yOvcarbontetrachloride 726 565.3 196.8 692 553.4 184.9 648 532.5 164.1 577 518.0 149.5 490 505.0 136.5 423 492.0 123.6 353 475.8 107.4 287 93.8 462.3 207 83.1 451.6 149 64.9 433.3

85 84 81 79 77 74 72 69 67 63

641 608 567 498 413 349 281 218 140 86

Run38 9.7c%v carbontetrachloride 598 146,600 532.8 234.5 604 125,000 505.3 207.0 562 105,000 485.2 186.9 504 84,200 465.4 167.1 443 65,900 447.2 143.9 375 51,000 434.2 135.9 303 37,200 420.8 122.5 246 25,900 403.9 105.6 192 86.5 16,600 384.8 65.3 136 8900 363.6 293 36,900 424.6 126.3 483 85,000 474.4 176.1

92 89 86 84 81 79 76 73 69 64 77 85

506 515 476 420 362 296 227 173 123 72 216 398

Run 39 17.9%~ carbontetrachloride 550 143,000 506.1 260.3 554 123,000 468.4 222.6 196.7 521 102,000 442.5 174.0 474 82,500 419.7 420 64,460 398.8 153.0 364 49,300 381.1 135.4 305 36,000 363.6 117.9 25.700 346.1 loo.3 257

95 90 87 84 80 78 74 71

455 464 434 390 340 286 231 186

89

15,800 8900 35,700 82,100

317.1 295.8 367.9 427.8

71.4 50.1 121.1 182.1

65 59 75 85

156 119 217 366

90

87 83 80 78 75 71 66 58 75 83

429 4Q2 374 317 261 205 133 134 113 201 364

91 86 82 78 74 70 66 61 59

443 494 489 466 439 415 370 357 243

67 82

362 362

Run 42 79.8%~ carbontetrachloride 117,000 iiQ.3 174.6 668 94,400 307.8 133.1 709 75,200 280.9 106.2 708 58,800 260.8 86.1 683 45,200 245.5 70.8 639 32,QO0 236.3 61.6 534 19,900 227.7 53.0 375 15,000 220.1 45.4 330 9400 211.5 36.8 255 32,900 242.4 67.7 486 75,900 297.5 122.8 618

80 75 71 67 64 62 59 57 54 63 73

588 634 637 616 575 472 316 273 201 423 545

Run 60 90%~ carbontetrachloride 96,700 I 275.1 I 103-l 937 77,600 254.9 82.9 936 888 60.900 240.6 68.6

70 66 63

867 870 825

221 178 293 451

Run 40 40.2%~ carbontetrachloride 519 123,OQO 434.0 236.4 489 101,000 404.0 206.4 81,500 375.7 178.2 457 397 63,400 357.2 159.7 339 48,500 34Q.5 142.9 280 35,300 323.4 125.8 204 21,500 302.7 105.1 200 15,800 276.4 78.8 171 8700 248.1 50.5 276 35,000 324.5 127.0 81,100 378.9 181.4 447 Run 41 59.7%~ carbontetrachloride 534 136,000 439.2 255.6 122,000 394.3 210.7 580 571 99,800 358.3 174.8 544 80,100 331.0 147.4 62,600 305.7 122.0 513 98.5 47,700 282.1 485 34,900 263.6 79.9 436 24,600 242.5 58.9 418 51.4 15,300 235.0 307 9206 256.6 34,900 264.9 81.3 429 444 80,700 365.2 181.6

Chem. Enpg.

307

Sci. Vol. 16, Nos. 9 and 4. December,

1981.

C. V. STERNLING

Table 5.

Q/A

T,

.h

AT

Derived boiling &a -

“c

_-

I

and L. J. TICHACEK

hb I

Syslem 4 (Contd.)

System 5 (Cm&) -__

46,800 84,800 24,100 15,800 9000 88,900 78,800 77,800 71,400 60,500 51,400 48,300 85,400 28,100 22,400 16,800 12,200 8200 51,700 61,500

230.2 228.2 219.6 214.8 201.2 226.8 261.7 212.4 211.8 209.2 207.8 206.8 204.5 202.4 201.0 198.8 196.4 194.0 207.8 209.2

58.1 51.1 47.0 42.8 29.2 54.7 89.6 43.9 42.9 408 89.4 8’7.9 86.1 34.0 82.6 30.4 27.9 25.6 89.4 40.8

805 671 507 878 309 619 874 17.58 1663 1482 1805 1141 979 825 686 553 435 319 1811 1506

745 612 449 317 258 559 806 1702 1607 1426 1250 1086 925 772 683 501 385 270 1256 1450

60

59 58 56 51 60 68 52 56 56 5.5 55 54 58 53 52 50 49 55 56

14,800 9200 32,500 72,800

Run 43 100%~ Carbon Tetrachloride 2$:

1 z::

j

::;

/ ::;

Run 44 100~Ov Carbon Tetrachloride ‘208.6 35.6 1791 63,700 203.1 35.1 1668 58,500 201.9 1335 45,200 83.9 200.1 1042 32.0 83,400 198.5 30.5 774 28,600 575 196.6 28.5 16,400 192.4 24.3 366 8900 32.0 1086 200.1 88,100 1774 204.0 35.9 63,700

Syslm 5. Isopropyl Alcohol-Ondina

58 53

1758 1289

54 54 58 52 52 51 49 52 54

1737 1614 1282 990 722 524 317 984 1720

-

i

i

195.0 192.6 202.0 205.4

14.7 12.3 21.7 25.0

oil

gg

308

1006 747 1497 2907

57 67 70

946 690 1430 2887

Run 96 90%~ isopropyl alcohol 243.5 91,800 68.5 1437 78,800 228,7 48.3 1529 216.8 57,900 36.8 1573 45,200 210.8 80.8 1468 206.0 1287 33,400 25.9 23,400 202.5 22.5 1040 15,400 199.5 19.5 793 198.6 18.6 458 8400 206.6 26.6 1237 32,900 288.2 53.2 1887 73,800 242.5 62.5 1460 91,800

84 73 72 69 66 68 61 60 66 80 84

1858 1451 1501 1399 1221 977 782 898 1171 1307 1876

Run 97 8( bv isopropyl alcohol 806.8 125.2 914 114,400 274.9 98.3 999 93,200 258.8 71.6 1045 74,800 1001 240.7 59.0 59,100 288.6 51.9 882 45,700 226.8 44.6 754 83,600 617 220.2 88.5 28,800 216.0 454 24.8 15,600 286 213.2 81.5 9000 684 48.8 38,4QO 230.4 958 259.8 78.1 74,800 306.8 125.1 915 114,000

100 90 88 78 75 72 69 66 65 73 85 100

814 909 962 928 807 682 548 388 221 611 873 815

113 100 87 75 67 61 57 53 51 62 86 112

415 473 561 708 828 860 748 606 4Q8 802 594 420

Run 98 6( 6 isoprc‘P4,I alcohlDl 402.7 219.7 116,000 847.4 164.4 94,800 115.3 298.3 74,800 74.7 257.7 58,200 50.6 288.6 45,200 219.3 86.8 83,400 212.5 29.5 23,600 28.0 206.0 15,200 19.5 202.4 8900 221.2 88.2 33,000 110.5 293.5 75,200 217.9 4QO.9 116,000 -

Run 95 100%~ Isopropyl alcohol

ZE~Eg

co&.

528 578 648 778 895 921 800 659 459 864 680 532

60

-

Heat transfer coefficients for boiling mixtures-Experimental

Table 5.

Q/A / T, system

j AT

1h

/

hc

Derived boiling data -

(

Q/A

hb

5 (Co&f.)

Run 99 40%~ isopropyl alcohol 398.3 214.6 119,000 365-9 182.2 96,600 333.2 149.6 77,200 299.7 116-l 60,000 266.3 82.6 45,700 235.7 52.0 33,400 223.1 39.5 23,600 214.5 30.8 15,500 209.6 25.9 9200 235.4 51.7 32,900 330.1 147.0 76,500 464.1 220.5 119,000

data for binary mixtures of large relative volatility

System

555 530 516 516 553 642 597 502 354 637 521 540

98

92 85 78 70 60 56 52 50 60 85 99

Run 106 20%~ isopropyl alcohol 581 430.5 242.9 141,000 579 391.9 204.3 118,060 557 361.1 173.4 96,700 517 337.0 149.3 77,300 464 317.5 129.6 60,300 414 299.4 111.8 46,300 383 2’75.9 88.2 33,800 373 251.3 63.7 23,806 384 227.9 PO.3 15,500 276 221.7 34.1 9460 375 276.6 89-O 33,460 507 349.0 152.4 77,300 581 430.3 242.7 141,000

93 86 81 76 72 69 63 57 50 47 63 77 93

457 438 431 438 483 582 541 450 304 577 436 441

contd.

TS

99,000

430.3 397.2

365,O 341.1 315.5 295-2 2756 255.1 324-3 421.4 510.2

Run 104 2.5%~ tic 142,000 546.8 123,000 510.5 477.3 101,060 445.1 80,490 412.6 63,100 386.0 48,200 35,800 360.8 344.7 24,900 15,900 322.8 303,4 9306 367.9 34,800 469.4 81,460 149,000 ( 547.3

488 493 476 441 392 345 320 316 334 229 312 430 488

hb

5 (Cmtd.)

79,ooo

81,300 47,100 34,300 24,206 15,606 9000 33,900 79,700 146,000

1AT 1 h 1 hc )

System 6. Isopropyl

218.8 185.8 1536 1296 140.0 83.7 64.2 436 112.9 210.0 2983

452 425 399 363 330 288 243 207 300 379 470

78 73 69 64 60 56 52 46 62 77 89

374 352 330 299 270 232 191 161 238 302 381

opyl alcohol 276.9 511 246.6 500 213.5 472 181.2 444 424 148.8 122.1 395 96.9 364 80.9 308 58.9 270 247 37.5 104.1 334 205.5 396 283.4 493

91 87 82 78 72 68 63 59 54 47 64 81 92

420 413 390 366 352 327 301 249 216 200 270 315 401

Alcohol-di-n-butylphthalate ___-

Run 102 10%~ isopropyl alcohol 515 473.0 279.4 144,060 517 424.5 230.9 119,000 516 382.4 188.8 97,460 351.3 157.7 494 78,000 455 327.1 133.4 60,609 309.1 115.5 465 46,800 352 391.0 97.4 37,300 305 271.5 77.9 23,800 252.2 255 58.7 15,060 41.9 195 235.5 8200 293.9 100.3 342 34,300 485 854.8 161.2 78,300 276.9 519 470.5 144,060

90 83 77 72 68 64 61 57 52 47 61 72 89

425 434 439 422 387 341 291 243 208 148 281 413 430

Run 103 5%~ isopropyl alcohol 61 9400 293,7 154.2 470 146,000 I 510.0 I 298.6 476 466.0 254.5 121,600

61 89 83

0 881 393

j

Run 130 100~Ov isopropyl alcohol 74,900 203.8 24,8 3021 57,900 202.0 23.0 2514 44,900 200.7 21.7 2045 32,500 199.1 20.1 1615 23,000 197.3 18.3 1259 195.3 14,900 16.3 917 192.8 9000 13.8 657

70 69 68 66 65 63 60

2951 2445 1977 1549 1194 854 597

Run 131 90%~ isopropyl alcohol 91,300 238.6 56.9 1604 226.6 44.9 73,500 1634 217.8 57,990 36.2 1599 213.1 4,700 31.4 1422 207.8 32,900 26-l 1259 25,200 204.5 22.8 1103 15,000 200.7 19.0 787 8890 1 290.3 1 18.6 1 472

86 80 75 72 68 66 62 62

1518 1554 1524 1350 1191 1037 725 410

Chm.

309

Engng.

Sci. Vol.

lf?, Nos.

a

and4.

I

December,

1861.

C. V. STERNLINC and L. J. Table

1AT

Q/A / T,

j

h

Derived

5.

1 1 h=

boiling data -

contd.

hb

System 6 (Co&d.)

System 6 (Contd.)

Run 132 80%~ isopropyl alcohol 291.2 ib8.9 1055 115,000 94,000 269.8 86.8 1083 1033 75,600 256.1 73.1 59,100 243.9 60.9 970 45,200 238.9 56.0 807 698 33,44M 230.8 47.8 221.5 38.5 618 23,800 214.4 31.4 483 15,200 206.0 23.0 388 8900

105 96 91 86 83 79 74 70 64

884 724 619 544 413 324

Run 133 60%~ isolP” opyl alcohol 187.5 373.5 740 139,000 341.2 748 155.2 116,000 127.8 313.8 744 95,100 707 108.3 294.3 76,600 99.0 285.0 606 60,000 517 89.5 275.5 46,300 436 76.5 262.5 33,400 74.0 321 260.0 23,800 260 59.5 245.5 15,500 182 50.2 236.2 9160

118 110 102 96 94 90 86 85 80 76

622 638 642 611 512 427 350 236 180 106

Run 136 10%~ isopropyl alcohol 135,000 493.0 253.8 531 122,000 474.4 235.3 520 101,000 442.9 203.7 497 80,700 411.8 172.6 468 63,100 388.4 149.3 423 48,500 371.4 132.3 367 35,500 351.3 112.2 317 24,800 336.6 97.4 254 16,100 320.8 81.6 197 296.2 9200 57.1 160 35,300 355.6 116.4 303 81,100 419.7 180.5 449 135.000 493.7 254.5 529

950 987 942

Run 134 4010/oVisopropyl alcohol 416.7 223.8 610 136,000 388.9 195.9 608 119,000 365.5 172.6 567 97,800 154.3 347.3 509 78,700 331.9 139.0 441 61,300 123.1 316.0 381 40,900 303.6 110.7 308 34,100 249 289.2 96.2 24,000 75.6 204 268.5 15,500 56.3 158 84QO 249.2

110 105 100 96 93 89 86 82 76 70

500 503 467 413 348 292 222 167 128 88

Run 135 20%~ isopropyl alcohol 252.9 547 461.l 138,000 434.1 226.0 534 121,000 202.3 495 410.4 100,000 184.0 435 392.2 80,000 168.0 373 62,800 376.1 159.6 304 48,400 367.7 356.9 148.7 237 35,200 190 335.5 127.3 24,100 316.6 144 15,600 108.5 77-5 117 285.7 9000 198.0 4Q6 80,400 406.2 429.6 221.4 625 138,000

94 90 87 85 82 81 79 76 72 66 87 90

543 444 44I8 350 291 223 158 114 72 51 319 535

-

TICHACEK

-

88 82 79 76 72 69 66 59 73 84 95

436 428 4Q9 385 344 291 245 185 131 101 230 365 434

3131 2530 2117 1648 1292 933 607 1584 3105

70 69 68 67 65 63 61 68 70

3061 2461 2049 1581 1227 870 546 1516 3035

Run 120 9O%v isopropyl alcohol 94,800 246.0 59.4 1596 75,900 236.1 1534 49.5 60,000 226.4 1511 39.7 46,600 220.8 34.1 1365 34,100 215.1 28.5 1198 24,400 212.0 959 25.4 15,600 209.7 676 23.1 9000 208.8 22.2 44I7 33,600 216.0 1146 29.4 75,900 238.1 51.5 1475 94:4Qo 247.6 1547 61.0

90 85 80 76 73 70 68 67 73 87 91

1506 1449 1431 1289 1125 889 608 340 1073 1388 1456

Sysiem 7.

95 92

-

Isoptopyl alcohol-glycol

Run 119 100’$(ovZsoptopyl alcohol 74,900

203.9

23.9

59,400

203.5 201.6 200.4 198,7 196.6 194.3 201.2 204.2

23.5 21.6 20.4 18.7 16.6 14.3 21.2 24.2

45,700 33,606 24,200 15,400 8706 33,600 75,200

Run 121 80%~ isopropyl alcohol

310

Heat transfer

coefficients for boiling mixtures-Experimenta

Table

Q/A

(

Ts

( AT (

5.

data for binary

Derived boiling duta -

mixtures

of large relative

volatility

contd.

h

h

System 7 (Contd.)

I I 4

4'

58,500

251.2

59.3

987

91

896

34,606

331.8

887

390

116

274

45,200

245.3

53.4

847

88

759

24,500

322.2

79.1

310

112

198

33,600

237.8

459

734

84

650

15,800

308.0

64.9

243

105

138

23,800

2349

42.9

554

83

471

8900

291.1

48.0

186

97

89

15,300

227.2

35.3

434

78

356

34,600

348.2

105.1

329

122

207

581

133

448

946

137

803

8900

223.0

31.1

286

75

211

79,000

379.1

1360

32,900

242.8

50.8

648

87

561

137,000

389.2

146.0

112,000

290.4

98.5

1141

108

1033

128

950

Run 122 60 O/dvisopropyl

ale ‘oh01

339.0

136.2

1078

136,000

329.1

126.2

1081

125

956

115,000

309.5

106.6

1077

117

960

94,400

292.2

89.3

1056

109

947

75,500

277.6

74.8

1010

103

907

59,400

265.1

62.3

954

97

857

45,700

261.6

58.8

778

95

683

33,600

253.8

50.9

661

91

570

24,000

251.8

49.0

490

90

400

15,100

249.7

46.8

323

85

235

147,000

8700

237.2

34.4

251

80

171

33,900

259.6

56.7

597

94

503

76,200

281.0

78.1

976

104

872

147,000

338.9

136.0

1079

128

951

Run 123 40%~

isopropyl

alcohol

System 8.

Isopropyl

Run 112 100%~

-

alcohol--glycerol

isopropul

alcohol

74,900

201.1

21.4

3499

69

3430

59,100

201.4

21.7

2718

70

2648

45,500

200.7

21.0

2165

69

2096

33,600

198.9

19.3

1744

68

1676

23,600

197.9

18.2

1294

67

1227

15,000

196.3

16.7

399

65

834

9800

195.2

15.5

630

64

566

33,600

199.0

19.4

1738

68

1670

74,500

201.4

21.7

3427

70

3357

1460

167.7

22.1

64

63

1

2700

183.1

35.8

74

74

0

Run 113 90%~

isopropyl

alcohol

147,000

361.1

142.8

1031

133

898

90,900

236.8

52.1

1745

84

351.6

133.2

1031

130

901

1661

137,000

227.0

42.3

1736

1004

881

1657

332.8

123

79

115,000

114.4

73,500

218.8

34.1

1687

315.4

97-o

973

857

74

1613

94,490

116

57,600 44,700

211.9

27.3

1636

70

298.6

80.2

942

109

833

1566

75,600

208.0

23.4

1410

67

288.0

854

105

749

1343

59,400

69.6

32,900 23,200

205.8

21.1

1098

65

45,800

281.0

62.6

731

101

630

1033

15,000

203.5

18.9

792

274.9

56.5

600

98

502

63

729

33,900

201.3

16.6

543

2729

436

97

339

61

482

23,800

54.5

9000 32,900

208.7

24.1

1367

68

269.2

50.8

304

95

209

1299

15,500

229.5

44.8

1639

35.7

257

86

171

81

1558

9200

254.1

73,500

2464

55.7

1631

290.1

472

105

367

86

1545

33,900

71.7

90,900

75,900

314.7

96.3

789

116

673

143,000

364.5

146.1

975

134

841

Run 114 80 %v isopropyl

alcohol

113,000

292.2

104.9

1075

104

971

92,800

269.2

31.9

1133

95

1038 1030

74,900

254.2

66.9

1119

89

137,000

386.5

143.4

957

135

822

58,200

244.6

57.3

1015

84

119,000

374.7

131.6

905

132

773

45,500

237.7

50.4

902

81

97,800

363.6

120.5

812

128

684

33,490

233.0

45.7

731

73

79,000

353.6

110.5

715

124

591

23,460

224.4

37.1

630

74

62,460

343.3

100.1

623

121

502

15,500

220.1

32.8

471

71

47,490

339.9

96.8

489

119

370

8800

214.1

26.8

328

67

Run 124 20%~

isopropyl

alcohol

--

Chews. Engng.

311

Sci. Vol. 16, Nos. 3

I

and 4. December,

931 821 653 556

490 261 1961.

Q/A

C.

V.

Table

5.

STERNLING

Derived

1 Ts 1** 1 1 1 h

hc

and L. J. TICAACEK boiling &to -

Q/A

hb

System8 (Co&d.)

j T,

/

AT

/

h

hc

1 hb

186 180 175 170 162 152 141 182 118 99 144 171 186

436 885 318 251 200 159 124 78 58 57 106 248 428

system a (Co&.)

Run 115 60%~ isol ~pylalcohol 136,000 352.4 160.1 852 114,000 328.0 135.8 840 302.7 110.4 855 Q4MO 75,600 282.9 90.6 834 59,400 267,2 75.0 793 45,800 257.1 64.9 705 33,600 251.1 58.9 571 23,600 248.8 56.5 416 14,900 241.1 48.8 306 9200 234.2 41.9 218 38,700 259.7 67.5 499 76,300 308.3 116.1 657 136,000 353.3 161.0 847

120 112 103 96 90 85 a2 81 77 74 86 105 120

732 728 752 738 703 620 489 335 229 144 413 552 727

Run 116 40%~ isopropyl alcohol 150,000 388.1 183.6 816 137,000 873.1 173.6 791 116,000 356.2 156.6 739 95,100 333.1 133.5 712 76,300 310.9 111.4 685 59,700 293.5 94.0 636 46,300 276.6 77.1 601 38,900 264.8 65.3 519 23,800 254.5 54.9 433 15,100 250.3 50.8 298 a‘lQ0 237.6 38.0 221 33,700 267.0 67.4 499 77,000 317.7 118.2 651 145,000 386.8 187.3 774

145 140 138 122 112 104 96 89 84 81 73 90 115 146

671 651 606 590 573 582 505 430 349 217 148 409 536 628

Run 117 20%~ iso] Pr‘1py1alcohol 145,000 445.7 232.9 622 120,000 428.7 215.9 557 98,600 412.0 199.2 495 80,100 395.2 182.5 439 62,500 375.1 162.4 385 48,290 358.6 145.9 330 35,100 385.6 122.8 285 25,000 316.3 103.5 241 16,100 293.3 80.5 200 9000 266.2 53.5 169 34,800 244.2 131.4 265 80,600 415.9 203.2 397 147,000 348.8 226.0 651

173 165 157 150 140 132 121 112 100 85 125 159 170

449 392 338 289 245 198 164 129 100 84 140 238 481

-

contd.

Run 118 10%~ isopropyl alcohol 143,000 470.8 230.0 622 123,000 459.0 218.2 565 102,000 448.5 207.7 493 82,500 436.9 196.0 421 65,300 421.3 180.5 362 49,800 400.8 160.0 311 36,500 378.5 137.7 265 25,600 362.6 121.8 210 16,400 334.8 93.5 176 9‘lQO 301.0 60.2 156 36,000 285.0 144.2 250 82,800 440.6 199.7 414 141,000 470.9 230.1 614

-

Sy.slslew 9. Methanol-glycol

Run751OO%vmethanol 20.8 109,000 168.6 89,44M 169.5 21.7 21.3 72,100 169.1 21.6 56,600 169.4 44,100 168.2 20.4 21.2 32,200 169.0 22.5 23,000 170.3 15,100 175.4 27.6 9200 171.8 240 109,000 176.7 28.9 28.4 89,400 176.2 27.6 71,700 175.4 26.9 56,600 174.7 25.6 44,100 178.4 24.6 32,200 172.4 23,200 171.5 28.7 22.2 14,800 170.0 8800 168.5 20.7 4300 182.6 34.8 9000 177.3 29.5 33.3 31,700 181.1 71,700 187.2 39.4 33.4 107,000 177.9

71,700 1 174.9 j 312

5219 4128 3386 2621 2159 1519 1020 547 881 3'759 3144 2596 2103 1722 1311 977 666 44Il 124 806 954 1818 3199

94 95 95 95 94 95 96 101 98 108 102 101 101 99 98 98 96 94 108 108 107 111 106

5125 4033 3291 2526 2065 1424 924 446 288 3656 3042 2495 2002 1628 1218 879 570 307 16 203 847 1707 3093

27.1 1 2644 ) 101

1 2543

Heat transfer coefficients forboiling mixtures-Experimental data forbinarymixturesof large relative volatility

Table 5.

Derived boiling data Q/A

Sysla

9 (Cmtd.)

Sysfetn

1

cod. T,

9 (Conid.)

/

AT

2573 3822

2062 1634 1228 886 587 339 347 22 490 1303 2472 3720

Run776( bvmethanol 150,000 300.2 134.8 133,000 288.1 122.7 112,000 272.2 106.8 92.2 91,300 257.6 87.6 73,800 253.0 82.9 57,900 248.3 81.3 44,900 246.7 68.4 33,4QO 233.8 68.8 23,400 234.2 58.2 15,000 221.7 39.6 8200 205.0 81.8 33,44Xl 247.3 74,200 265.7 100.3 152,000 305.6 14.01

bvmethanol 215.5 63.9 204.4 52.7 196.9 45-3 189.3 37.7 186.2 34.6 185.9 34.3 184.4 32.8 187.4 35-8 181.7 30.0 177-l 25.4 189-7 38-l 196.1 44.5 217.9 66.2

2057 2099 2017 lQ49 1672 1230 1012 648 503 331 871 1666 1991

115 109 104 99 97 97 96 98 93 90 100 104 116

1942 1990 1913 1850 1575 1133 916 550 410 241 771 1562 1875

Run 78 400%~ methanol 153,000 336.9 156.7 136,000 327.0 146.8 114,009 316.5 136.3 306.7 136.5 Q4,m 75,500 302.9 122.7 59,44XI 297.2 117.0 45,700 286.3 106.2 93.8 33,600 274.0 23,800 263.8 83.7 70.6 15,100 250.8 50.5 8400 230.7 33,44xI 280.9 109.7 76,900 309.2 129.0 155,000 332.4 152.2

Run 76 80%~ methanol 105.4 152,000 259.9 89.1 130,000 243.5 70.9 109,000 225-4 60.1 89,800 214.5 55.5 71,700 209.9 47.3 56,609 201.8 47.7 44,100 202.2 44.3 32,200 198.8 42.8 23,000 197.3 39.6 15,000 194.0 188.1 33.7 8400 48.2 32,200 202.7 56.3 72,100 210.7 91.1 13,100 245.6 102.5 148,000 257-O

1446 1460 1531 1494 129 1196 924 726 536 378 249 668 1281 1436 1441

145 136 126 120 117 111 111 109 108 105 100 112 117 138 143

1301 1324 14Q5 1374 12 1085 813 617 428 273 149 556 1164 1298 1298

Run 81 20%vmethanol 152,000 365.1 155.6 14qOOo 360.2 150.8 120,090 347.8 138.3 98,600 339.1 129.6 78,300 330.9 121.4 116.5 62,800 326-O 116.3 48,500 325.7 106.0 35,500 315.4 97.1 25,100 306.6 16,200 290.3 80.9 8900 264.1 54.6 35,300 321-1 111.6 80,100 335.8 126.3 155-4 152,000 364.9

Run 80 9( 131,000 111,000 91,300 73,500 57,900 42,200 33,200 23,200 15,100 8900 33,200 74,200 132,000

26.0 25.3 24.3 23.2 21.1 20.3 20.0 32.8 15.4 22.4 27-6 27.9

2162 1733 1326 983 682 433 440 128 577

Chem.

313

Ewn&f.

/ hb



100 99 98 97 95 94 93 106 87 96 101 102

56,300 173.8 43,800 173.1 32,206 172.1 22,800 170.9 14,800 169.5 168.1 8800 167.8 8800 4200 180.6 163.2 8900 31,500 170.3 71,000 175.4 106,000 175.7

1 h 1hc

Sci.

Vol.

1114 1086 1048

159 153 145 138 136 133 132 125 125 117 106 133 142 161

955 933 903 852 707 565 42 363 214 149 100 275 598 932

976 926 839 746 615 508 431 358 284 214 166 331 ,596 1017

162 158 153 149 147 145 140 134 129 122 110 137 150 160

814 768 686 597 468 363 291 224 155 92 56 194 446 857

976 929 864 761 645 539 417 335 259 201 163 316 634 977

171 169 163 159 155 153 153 148 143 134 118 150 158 171

805 760 701 602 490 886 264 187 116 67 45 166 476 806

990

843 698 552 488 339 266 206 408 74a

16, Nos.

9 and

4.

December,

1961.

C.

V.

STERNLING

Table 5.

Q/A

/

T,

1

AT

1

h

t

Derived

1

hc

and L. J. TICHACEK

boiling

data -

co&d.

hb

1-__.__1_/__1_1_.___

System

10. Methanol- glycerine

Run 61 100%~ methanol 27.3 112,000 174.8 27.8 92,500 175.3 26.9 74,000 174.4 26.2 58,800 173.6 25.2 45,500 172.6 24.4 33,600 171.8 23,600 1'70.8 23.4 21.3 15,400 168.8 18.4 8900 165.9 25.7 6000 173.1 27.9 33,4Qo 175.3 31.7 74,900 179.2 32.2 112,000 179.6

4081 3322 2783 2245 1807 1380 1008 723 483 235 1198 2361 3431

3220 2682 2145 1708 1282 011 628 392 135 1096 2256 3376

2545 2731 2980 2945 2740 2344 1915 1529 1146 793 452 1361 2470 2542

1574 1620 1681 1622 1454 1258 1013 844 598 393 223 656 1295

Run 62 10%~ glycerine 58.4 155,000 208.8 46.7 133,000 197.2 36.4 112,000 186.9 30.8 92,100 180.7 26.3 74,500 176.7 24.1 58,900 174.6 22.7 45,500 173.1 20.8 33,600 171.2 19.4 24,000 169.9 17.2 15,100 167.7 16.4 8900 166.8 28.1 33,600 173.6 29.1 74,800 179.6 50.0 133,000 200.5

1618 1234 878 536 1453 2568 2655

117 110 103 99 95 OS 91 89 88 85 84 92 98 113

Run 63 2Oo/bv glycerine 86.3 148,000 289.0 76.8 135,000 229.4 62.9 114,000 215.6 53.8 03,600 206.4 48.2 75,500 200.8 43.4 50,400 196.0 41.0 46,000 103.7 35.5 38,600 188.1 S4.2 186.8 %,OOO 31.4 15,400 184.0 28.2 9000 180.8 44.2 33,900 196.8 53.5 75,500 206.1

1713 1753 1805 1740 1568 1368 1121 948 700 493 320 767 1413

139 138 124 118 114 110 108 104 102 100 97 111 118

2841 8083 3044 2835 2437

Run 64 4 137,000 136,000 117,000 97,200 77,500 60,600 47,000 34,800 24,300 15,700 9000 34,500 78,600 138,000

3980

101 102 101 100 99 98 97 95 Ql 100 102 105 105

-

bv glycerine 306.2 148.1 300.0 142.0 289.3 131.2 281.5 123.4 270.5 112.4 268.5 105.4 256.0 97.9 250.5 92.4 241.8 83.7 225.3 67.2 200.9 51.8 253.0 94.8 280.0 121.8 301.5 143.4

922 958 893 788 690 575 480 376 290 234 174 364 645 964

152 149 145 141 136 133 129 127 122 113 104 128 140 150

770 809 748 647 554 442 351 249 168 121 70 236 505 814

Run 65 60%~ glycerine 148,000 355.3 185.6 142,000 S49.2 179.5 119,000 335.2 165.5 98,600 321.3 151.5 79,300 307.2 187.5 62,200 290.2 120.4 47,900 277.8 107.6 92.9 35,300 262.7 80.3 24,400 250.0 15,000 230.7 61.0 43.6 7900 218.3 55.2 9800 224.9 34,800 265.9 96.1 80,700 315.5 145.8 142,000 357.2 187.5

799 701 722 650 577 516 445 879 308 245 182 177 362 554 757

171 160 162 155 149 14d 133 126 119 107 96 104 128 153 172

628 622 560 405 428 376 312 253 184 138 86 73 234 4Ql 585

Run 66 800, iv glycerine 147,000 418.i 227.4 123,000 398.9 207.6 101,000 379.4 188.2 82,100 368.2 172.0 151.8 64,000 343.1 49,600 326.6 135.8 118.2 36,000 309.4 25.300 200,7 99.4 15,800 270.0 78.7 8900 243.7 52-4 35,800 308.8 117-5 82,500 375.7 184.5 147,000 425.3 2S4.1

648 594 538 478 422 366 304 255 200 170 304 447 626

229 214 200 189 174 168 151 188 123 104 150 197 234

419 380 338 289 248 203 153 117 77 66 154 250 892

-

314

Heat transfer coefficients forboiling mixtures-Experimeutal data forbinarymixturesof largerelative volatility l'able5.

Derived

boiling d&u -

contd.

Q/A / T, system 11. Water -ethylene

Run 128 95% water 148,000 236.1 131,000 236.2 111,000 236.1 91,300 236.3 '73,800 236.2 58,200 237.3 45,200 236.2 33,200 2351 23,600 235.1 15,100 232.4 9030 228.4 33,200 236.2 74,200 2M.O 131,000 238.3 147,000 237.5

glycol

25.6 25.7 25.6 25.8 25.7 26.9 25.7 24.7 24.6 22.0 17.9 25.7 29.4 27.9 27.0

AT

~

hc /

h

hb

syslern 11. (Contd.)

5784 5090 4317 3539 2873 2163 1759 1343 958 688 505 1290 2519 4713 5428

218 218 218 218 218 220 218 216 215 209 199 218 225 222 221

4491 4044 3474 2867 2341 1785 1454 1090 809 567 479 1044l 1728 3720 M4

253 252 250 250 250 251 249 247 245 238 216 250 273 258 255

4238 3792 3224 2618 2092 1533 1205 843 563 330 263 791 1456 3463 4149

Run540 125,000 103,000 34,200 66,500 51,200 37,600 26,500 17,400 9650 37,100 84,200

2494 2197 1877 1559 1225 945 718 539 342 894 1324

141 139 137 135 134 132 130 125 121 134 139

2352 2057 1739 1423 1091 812 588 414 222 759 1686

-

Run 55 2.64%~ water 77.4 142,000 410.0 71.3 123,000 403.9 67.0 103,000 399.6 61.8 82,500 394.4 58.9 65,900 391.5 55.4 50,900 388.0 50.3 37,100 382.9 45.3 26,500 378.0 38.1 16,700 370.8 31.3 9410 363.9 52.8 36,900 385.4 63.3 83,900 395.9 75.6 143,000 408.2

1846 1735 1534 1334 1119 920 738 585 439 301 699 1325 1890

160 155 153 148 146 143 139 135 128 121 141 149 158

1686 1580 1382 1185 973 776 599 450 311 180 558 1176 1732

Run 56 10.1%~ water 139,000 367.0 93.3 119,000 361.7 88.0 81.3 97,800 355.0 79,000 348.8 75.1 62,200 341.4 67.7 47,900 337.0 63.3 58.1 35,300 331.8 51.7 24,900 325.4 16,200 318.6 44.9 34.9 9030 308.6 58.6 35,000 332.3 78.4 79,300 352.1 139,000 366.8 93.1

1492 1349 1204 1053 919 757 607 483 362 259 598 1012 1495

186 182 177 173 167 163 158 152 146 135 159 175 186

1305 1166 1026 880 752 594 448 330 216 124 439 837 1308

Run571 9.: 141,000 120,000 99,000 80,700 63,4QO 49,300 36,000 25,300 16,600 9520 35,900 81,100 141,000

1567 1450 1308 1141 981 805 651 485 351 249 608 1084 1622

191 185 179 175 170 166 161 158 153 143 164 178 189

1376 1265 1129 966 811 638 491 327 198 106 443 905 1434

Run 58 47.65%~ water 138,000 279.3 117,000 275.3 97,100 1 273.3 / 50.7 ) 1916 1 227

1 1689

5567 4871 4100 3321 2655 1943 1542 1128 743 479 306 1072 2294 4491 5208

Run 129 90%~ water 149,000 243.8 33.3 132,000 243.1 32.6 111,000 242.4 32.0 91,300 242.3 31.8 74,500 242.3 31.8 58,200 243.1 32.6 45,800 241.9 31.4 30.6 33,400 241.1 24,200 240.3 29.9 15,100 237.1 26.7 9030 229.3 18.8 33,200 242.3 31.9 74,500 253.6 43.1 132,000 245.9 35.5 150,000 244.5 34.0

3%~ wate'r 424.8 49.9 421.9 47.0 419.8 44.9 417.6 42.7 416.7 41.8 414.8 39.8 411.9 36.9 M7.2 32.2 403.1 28.2 416.5 41.6 421.1 46.2

1

I%wwa ,te r 340.7 90.0 333.1 82.4 326.4 75.7 321.5 70.8 315.4 64.7 311.9 61.3 305.9 55.2 302.9 52.2 297.9 47.3 288.9 38.2 309.9 59.2 325.5 74.8 337.6 86.9

Chem. Engng.

315

Sci. Vol. 16, Nos. 3

and4. December,

1961,

C. V. STERNLINO and L. J. TICHACEK

Table 5. Derived boiling data -

“c

contd.

d-

system 11

271*1 267.1 267.5 263.3 262.8 258.4 250.9 266.1 270.2 279.8

48.5 44.4 44.8 40.7 40.1 85.7 28*1 43.4 47.5 56.6

1623 1394 1070 868 622 436 817 802 1656 2435

228 217 218 211 210 202 188 215 222 235

1899 1178 852 657 412 234 129 587 1434

Run 59 73.3%~ water 37.6 186,000 252.0 85.9 116,000 250.3 85.8 95,500 250.2 31.9 77,600 246.4 30.5 60,600 244-Q 29.7 47,100 244.2 81.5 84,600 245.9 29.2 24,000 243.6 27.5 15,400 241.9 22.3 8900 236.7 31.4 34,800 245.8 33.0 77,600 247.4 87.9 136,000 252.4

3632 3226 2671 2480 1990 1584 1097 822 561 400 1093 2352 3598

282 278 277 268 264 262 267 260 256 241 268 271 283

3851 2948 2394 2162 1726 1822 880 561 305 160 827 2081 3315

Run 18 0*3:3yown rati er 84.9 143,006 588.9 88.6 125,000 587.6 75.8 105,000 579.8 69.8 84,600 573.3 64.6 67,100 568.6 60.6 52,300 564.6 55.3 88,300 559.3 27,300 555.8 51.8 17,000 548.1 44.1 10,300 538.6 34%

1680 1500 1381 1220 1040 862 692 527 386 297

180 180 174 168 166 168 158 155 148 139

1499 1820 1206 1050 874 700 534 372 238 158

Run 19 1.73%~ water 144,000 503.8 112-6 123,000 492.9 101.7 102,000 484-l 92.9 65,300 469-3 78.1 51,100 462.5 71.3 37,200 452.9 61.7

1281 1208 1098 886 716 602

170 164 159 150 146 189

1111 1044 939 685 571 403

-

Sydm

-

4

I

hb

II----

System 12. (Coni?d.) ~__

78,700 61,900 47,900 35,800 24,906 15,600 8900 34,800 78,700 138,000

I

h

hb /

26,500 16,300 9160 36,900 82,500 144,000

12. Water-glycerol

316

447.8 441.9 424.9 453.5 477.9 604.4

56.6 50.7 33.8 62.4 86.7 118.2

469 ) 136 322 131 271 117 592 140 951 156 1274 171

)

338 191 155 452 795 1103

Run 20 4.05% w water 142,000 4b2.1 121-l 106-6 119,000 487.6 98,600 426.0 95-O 86.1 79,000 417.1 63,100 409-6 78.6 72.1 48,700 403.1 35,700 396.4 65.4 25,100 390.9 59-9 54.6 16,600 385.6 9160 879.3 48.3 35,300 394.8 63.8 79,700 416.6 86.7 142,000 445.9 114.9

1172 1117 1088 917 803 676 546 420 304 190 553 930 1236

158 152 147 142 138 134 130 126 122 133 146 163

1007 958 886 771 661 588 418 290 177 68 420 784 1078

Run 21 9.09%~ w ate :r 140,000 402.3 118.7 118,000 389.1 105.6 97,100 377,3 93.8 78,000 368.7 85.1 61,300 361.7 78.1 47,400 355.7 72.1 34,800 850.9 67.4 24,600 346,2 62.7 15,600 339.6 56.0 8480 325.9 42.4 34,600 349.7 66.1 78,000 366.5 82.9 189,000 398.0 114.5

1176 1116 1035 916 784 657 518 392 279 200 523 94Q 1216

170 163 156 150 146 142 139 135 131 120 188 149 168

1006 958 879 765 638 515 378 256 148 80 385 791 1043

Run22 18.6%~~ ater 152,000 883.7 134.7 136,000 851.5 102.4 116,000 343-2 94.1 95,100 335.0 85.9 77,800 328-S 79.8 61,400 322-5 73.4 47,300 318.9 69.9 314.5 65.4 3fWOO 24,100 311.7 62.6 15,500 306.1 57.1 8910 292.9 43.8

1129 1382 1229 1107 969 837 677 528 386 272 203

203 182 177 171 166 162 158 155 153 149 187

926 1149 1052 986 802 675 518 373 233 124 67

-

166

-

Heat

transfer

coefficients for boiling mixturesExperimental

Table 5.

&&a for binary

Derived boiling data -

mixtures

of large relative volatility

contd.

/Li”‘l”__?J hb

Q’A

System 12.

(CoMd.)

~.__ 33,800

315.1

66.1

512

156

357

76,600

327.3

78.2

979

165

814

147,000

456.7

127.4

1150

169

981

136,000

350.3

101.2

1343

181

1162

139,000

452.8

123.8

1120

167

952

123,000

444.6

117.0

1053

163

890

103,000

432.2

105.6

975

157

819

83,900

421.9

96.0

874

151

723

Run 23 4.8%~

water

156,000

298.7

74.0

2107

211

1896

133,000

293.8

69.2

1920

206

1713

112,000

289.7

65.0

1728

202

1526

92,800

286.0

61.4

1513

198

1315

74,900

285,.5

60.9

1230

198

1032

59,400

283.6

59.0

1008

196

812

45,706

281.7

57.0

802

193

609

33,600

279.8

55.1

610

191

418

24,006

275.3

50.6

474

186

287 156

270.5

45.8

337

181

8540

258.0

33.3

256

164

92

33,400

279.1

54.4

613

191

423

75,200

285.9

61.2

1228

198

1030

133,000

294.0

69.4

1921

206

1714

15,4QO

Run 24 67.4%~

Run 29 4.28%~

154,000

270.7

56.6

2720

270

2451

65,600

410.3

84.6

775

145

631

50,700

400.1

75.6

670

139

531

37,200

388.0

64.0

581

131

450

26,000

379.2

56.2

461

126

336

16,100

370.7

50.1

322

120

201

8530

359.2

44I.2

212

112

100

36,900

386.4

64.9

570

131

439

82,800

419.8

93.9

882

150

782

Run309

water

water

t

.64SO/OW WBhe:r

155,000

407.9

129.3

1195

176

1019

143,000

4Q3.0

124.4

1152

173

979

121,000

390.6

112.0

1082

166

916

101,000

380.9

102.3

982

161

822

82,400

368.1

89.5

921

153

767

63,4QO

357.2

78.6

807

146

661

49,300

347.9

70,2

702

140

562

132,000

268.9

54.8

2407

267

2139

35,800

338.7

6194

582

134

446

111,000

267.5

53.4

2073

265

1808

25,000

329.4

52~6

474

127

347

90,700

265.9

51.8

1752

262

1489

15,700

322.0

45,6

344

122

222

74,206

265.8

51.7

1435

262

1173

8410

311.9

36.6

230

113

117

58,800

265.0

50.9

1156

261

895

81,100

367.5

88.9

912

153

759

1263

45,500

263.4

49.3

923

258

665

38,400

262.6

48.5

689

257

432

23,600

260.3

46.2

510

253

256

14,800

252.3

38.2

387

239

148

8040

233.5

19.4

415

197

218

Run 28 1.69%~

water

516.2

125.1

1208

177

1032

517.2

119.4

1125

177

948

127,000

506.7

115.5

1099

172

927

105,000

493.8

102.6

1028

165

863

151,000 134,000

Run 31 25.5o/,w water

85,4QO

481.8

89.6

953

157

796

67,200

470.3

79.2

849

151

698

149,000

339.1

101.6

1463

200

141,000

338.0

100.5

1404

199

1204

119,000

329.4

91.9

1296

193

1102

98,200

320.7

83.1

1181

186

995

79,000

312.4

75,o

1053

179

874

61,900

306.1

68.6

902

174

728

48,500

300.5

62.9

770

169

610

35,300

293.7

56.2

627

163

464

25,000

286.6

49.1

508

156

352

16,100

281.2

43.7

368

150

218

8910

270.0

32.5

274

137

137

51,800

458.6

67.4

768

143

624

37,600

448.1

56,9

662

136

526

26,400

442.2

51.0

517

132

385

147,000

319.7

86.3

1700

195

1505

16,600

436.4

45.2

367

127

240

138,000

317-3

88.9

1647

193

1454

8900

422.5

31.4

284

114

170

117,000

809.8

76.4

1581

187

1344

37,900

447.7

56.6

670

136

5a4

96,300

302.9

69.5

1385

181

1204

85,300

478.3

828

78,000

68.5

1 1228

-

87.1

-

979

-

156

i

Run 33 28.9%~

1

296.9

Chm.

317

water

Engng.

(

Sci.

Vol.

16, Nos.

3

1

176

1

1052

and 4. December, 1Ml.

C. V. STEHNLING and L. J. TICHACEK

Table 5.

60,000 47,400 34,300 23,800 15,000 8170 78,300

291.0 286.3 281.5 276.6 262.8 249.3 296.6

Derived boiling data -

57.6 52.9 43.1 43.2 29.4 15.9 63.1

1042 895 714 549 508 514 1240

170 165 160 155 138 116 175

871 730 553 394 370 398 1065

Run 34 49.8o/,w water 145,000 284.9 64.9 63.4 136,000 283.4 115,000 278.5 58.4 55.3 95,100 275.3 74,200 271.4 51.4 50.0 60,300 270.1 47.8 46,800 267.9 4A.7 34,300 264.7 408 23,950 260.9 34.4 15,400 254.4 8410 246.3 26.3 53.4 76,900 273.5

2232 2145 1973 1722 1443 1206 979 768 588 450 320 1439

225 224 218 214 209 207 204 200 195 185 171 212

2007 1921 1755 1508 1234 998 775 568 393 265 149 1228

Run 35 74,7%w water 49.8 157,000 263.6 48.0 136,000 261.7 45.4 115,000 259.2 42.8 95,100 256.6 42.4 76,900 256.2 41.1 60,600 254.9 40.6 46,800 254.3 39.0 34,300 252.8 35.4 24,200 249.2 35.3 24,400 249.1 28.8 15,800 242.5 21.2 8540 234.9 39.3 34,300 253.1 42.0 76,900 255.8 46.5 136,000 260.3

3159 2825 2529 2221 1814 1474 1155 879 682 690 549 403 874 1830 2915

283 280 275 270 269 267 266 263 255 255 241 221 263 269 277

2876 2545 2254 1951 1544 1207 889 616 427 434 308 182 610 1561 2638

73 72 71 71 69 67

2257 1831 1483 1091 815 574

i

-

-

Run 145 91.47%~ n-amylalcohol

92,800 282.6 75,200 275.2 58,800 268.3 45,500 262.2 33,200 255,2 23,400 250.4 15,300 247.4 8900 242.9 32,900 261.4 74,800 279.4 93,200 281.1

alcohol systewb 13. Methanol-n-anmyl

Run148 lOO%vn-amyl alcohol 32.6 2330 75,900 305.6 31.4 1903 59,700 304.4 1554 30.0 46,600 302.9 1162 29.1 33,900 302.1 884 27.3 24,200 300.3 641 24.3 15,600 297.3

contd.

1361 1238 1092 952 814 650 463 313 701 1151 1398

87 84 81 78 75 72 70 67 78 85 86

1274 1154 1011 874 739 578 393 246 623 1066 1312

Run 146 72.9%~ n-amylalcohol 77.9 1403 109,000 253.7 70.3 1288 91,000 246.0 63.4 1142 72,400 239.1 57.6 57,200 233.3 994 50.7 226.4 876 ‘NM 44.9 32,200 220.7 716 39.8 568 22,600 215.5 33.5 441 14,800 209.2 25.9 8300 201.6 320 45.9 696 32,000 221.6 66.0 1107 73,100 241.7 76.8 1431 10,000 252.5

86 84 81 79 77 74 72 68 64 74 82 86

1317 1204 1061 915 799 642 496 373 256 622 1025 1345

Run 147 40.1%~ n-amylalcohol rl.6 1510 108,000 228.4 61.0 1458 89,000 217.8 52.8 1359 71,700 209.5 46.4 1213 56,300 203.2 41.8 44,100 198.5 1056 38.1 32,200 194.9 845 35.2 22,600 191.9 642 14,600 191.0 34.2 428 8200 185.2 28.5 286 31,700 196.4 39.7 800 55.1 1303 71,700 211.8 70.6 1 1526 108,000 227.4

99 95 92 89 86 84 83 82 78 85 93 99

Systenl 14. Isopropyl

68.2 60.7 53.9 47.8 40.8 35.9 33.0 28.4 46.9 65.0 66.7

alcohol-X

Run156 36%wpropanol 102,000I 471.5 I 276.9 81,700 373.6 179.0 62,500 334.4 139.8 318

38 resin

369 456 447

I

1411 1363 1267 1124 970 761 559 346 208 715 1210 1427

I 242 366 370

Heat transfer

coefficients forboiling mixtures-Experimental data forbinarymixturesof large relative volatility Table

5.

Derived

boiling data -

contd.

1 1AT 1h ) hi1hb

Q’A Ts Syswn 14. (Contd.)

systetn 15. (Contd.)

__.._

116.8 89.1 63.5 44.0 34.5 92.7 172.1

407 385 380 344 255 378 479

69 60 51 44 40 61 88

338 325 329 800 215 317 391

Run15766%w propanol 304.2 118.9 99,700 96.3 79,000 281.6 78.6 61,300 263.9 62.1 46,800 247.4 51.7 33,900 237.0 44.1 24,000 229.4 39.7 15,100 225.0 8700 217.5 32.2 54.6 34,300 239.9 99.5 80,100 2848 99,700 304.9 119.6

838 820 779 745 655 544 381 269 628 805 834

90

743

82 76 69 65 62 60 56 66 84 91

738 703 676 590 482 321 213 562 721 743

47,600 34,300 24,200 15,100 8800 35,000 82,400

311.4 233.7 258.1 238.5 229.0 287.3 366.7

Run 158 82%~ prc mol 102,000 376.0 194.7 65.1 77,300 246.5 47.1 59,700 228.4 37.8 45,500 219.1 33.3 33,400 214.6 31.3 23,400 212.6 27.5 15,300 208.8 24.9 8800 206.3 37.2 33,6qo 218.5 65.4 78,700 246.7

-

522 1187 1267 1204 1004 747 556 332 QO3 1203

120 79 71 67 64 63 61 59 66 79

402 1108 1196 1187 940 684 495 273 837 1124

sys1nn15. n-heptane-Ondina oil

Run90 lOO%vn-heptane 27.3 65,000 235.1 26.1 59,700 233.9 24.5 46,300 232.4 22.2 34,300 230.0 21.0 24,200 228.9 17.6 15,100 225.4 14.5 8760 222.8 24.4 33,900 232.2 27.1 65,000 234.9

2382 2285 1885 1548 1148 860 599 1389 24Q3

68 67 66 64 64 61 58 66 68

-

2314 2218 1819 1484 1084 799 541 1323 2385

-___

Run 91 QO~/,vn-he Ptane 86.7 72,800 298.0 70.5 61,200 281.8 47,100 264.8 53.5 42.5 34,800 258.8 248.1 M,SOO 36.9 31.9 16,100 243.2 80.3 9300 241.6 46.1 34,300 257.8 72,800 300.0 88.7

840 869 881 818 672 505 306 745 821

86 81 75 70 68 65 64 72 86

754 788 806 748 604 440 242 673 735

Run 92 SO%vn-heptane 77,600 338.9 126.1 89.7 60,000 302.4 73.4 46,600 286.2 60.8 34,300 273.6 51.1 24,000 263.9 47.6 15,800 260.4 34.2 8900 247.0 61.7 33,900 274.5 77,300 338.4 125.6

615 669 635 565 469 331 261 549 615

90 82 78 74 71 69 64 74 90

525 587 557 491 398 262 197 475 525

Run 93 60%vn-heptane 102,000 416.6 195.6 81,800 380.3 159.3 64,000 347.3 126.3 49,000 321.7 100.7 80.1 36,000 301.1 71.8 25,400 292.8 69.7 16,400 290.7 57.1 9200 278.1 84.8 35,600 305.9 81,800 383.8 162.7 102,000 418.1 197.1

522 513 507 487 450 353 236 160 419 502 518

92 87 81 76 72 69 69 65 73 87 92

430 426 426 411 378 284 167 95 346 415 426

560 544 512 479 434 401 379 329 237 18'7 399 479 564

90 87 83 80 76 73 68 64 62 57 68 80 90

470 457 429 399 358 328 311 265 175 130 331 399 474

Run94407 143,000 122,000 100,000 80,400 62,500 48,200 35,300 25,060 16,300 9000 37,200 80,400 142,000

/,vn-heptane 497.6 255.1 465.8 223.4 437.9 195.4 410.4 167.9 386.3 143.8 862.7 120.2 93.2 335.7 76.0 318.4 68.6 311.0 48.3 290.8 93.1 335.5 410.4 167.9 495.0 252.5

Chem. En@&

319

Sci. Vol. 16, Nos. 3 and 4.

December,

1961.

C. V.

STERNLING

and L. J. TICEACEK

10’

0

80%.Data

” f 2 10’ 2 Iii . J?

--_

___-___-

102

1

0

I

I

I

I

50

100

150

200

40%

i

AT, OF IW.

5.

Boiling data for benzene-Ondiua

oil, 17 mixtures.

0

80%, Data, Runs 70, 192

CH,CCl,

10’

0

50

100

150 ’

FIG. 0.

200

AT, ‘F

Boiling data for methylchloroform-Ondina

320

oil, 188 mixtures.

2 '0

Heat transfer coefficients for boiling mixtures--Experimental

data for binary mixtures of large relative volatility

10’

0

80%.

Data

2 :,10’ e B. f

10’ 0

200 AT,

“F

FIQ. 7. Boiling data for CCI, - Ondins oil, 188 mixtures

*__ 10

0

80%,

Data

f

1

0

150

200

250

AT, “F

FIG. 8.

Boiling

data for CCI, - di-n-butylphthalate Chem. E+w&

a21

mixtm. sci’. Vol.

16, Nos. ~3and 4.

December,

lei_~,

and L. J. TICHACEK

C. V. STERNLING

0 ,

q

80%. Data - Runs 97, 170

AT, OF

FIG. 9.

Boiling data for isopropanol_Ondina oil, 17 mixtures.

1 0

80% Data

IPA

00

0 60% 40 II’

--.

---

10%

/’ 20%

//-

/’ AT, “F

FIG. lo.

Boiling data for isopropanol-di-n-butylphthalate 322

mixtures.

Heat transfer coetllcients for boiling mixtures-Experimental

data for binary mixtures of large relative volatility data presented here a reversed procedure must be used. Heat fluxes due to boiling and due to convection are to be computed separately and then added. Smoothed graphs of the data are shown in Figs. 5-18. In most cases, points are given for a single composition, near 80% v of component A to show typical scatter.

given in Table 5 as functions of temperature difference, At. The values reported are time averages. Fuctuations in At caused by heating with alternating current are negligible as is shown in the Appendix. Also described in the Appendix are ways for correcting for the temperature drop through the tube wall, for heat losses by longitudinal conduction out the ends of the stainless steel heater tube, The first two corrections are and for natural convection. straightforward, but a few words about the last are apt here. Natural convection without change of phase would give heat transfer coefficients around W-150 B.Th.U/hr ft2 “F These rather for the conditions of these experiments.

DISCXJSSION OF DATA A full explanation on the

boiling

of the effect of composition

of liquids

time. In a later correlation based

high values result from the use of a small diameter tube. Obviously, in those runs where the over-all coefficient, h, is only slightly greater than these values, the computed boiling coefficients are worthless. However, for most of the data, h was considerably higher than this and hence the effects of natural convection were small compared to those of boiling. Now, it has been noted [I] that, within experimental accuracy, heat fluxes due to boiling and various types of convection appear to be additive. To divorce the data from natural convection effects as much as possible the heat transfer coefficients due to natural convection were computed for each run and were subtracted from the measured over-all coefficient. To retain the full accuracy of predictions based on the

enables

one to predict

reasonable only

accuracy.

certain

curves. First,

that

boiling coefficients of low volatility Data to

add

for

a

features

in all

glycol,

the

(component

this

typical h, 10%

0

with

we discuss

of the systems

boiling tested,

as material

B) is added to the

A. system,

are shown in Fig.

there is about

at

coefficients

decrease markedly

pure light component, glycol,

boiling

In this paper,

qualitative

note

is impossible

paper we plan to present a on simplified model which

15.

continues v water

water-ethylene As one continues

to

decrease

until

in the mixture.

At

SO%,Data

IPA

90% IPA

I

I

20

40

1

I

60

1

80

I

100

120

I 140

IO

AT, “F

FIG. 11.

Boiling

data for isopropanokthylene

glycol

mixtures.

Chm. Ew!ng. Sci. Vol. 18, Nos. 4 nnd 4. December, 1861.

323

C. V. STERNLINGand L. J. TICHACEK

0

IPA

AT, FIG. 12.

SO%,Data

“F

Boiling data for isopropanol-glycerine

this composition there is a turnaround, addition of more glycol raises I+, until finally the boiling curve for pure glycol approaches closely to that for pure water. For most of our systems we did not reach the turnaround composition. To do so would require operating the boiler at an unsafe high temperature. Nevertheless, we think all of our systems 324

mixtures.

will exhibit the turnaround if tested at sufficiently high concentrations. How are these results to be explained ? One might invoke, first, the change in properties, notably viscosity ; second, the change in bubble growth rates caused by the varying resistance to mass transfer of the volatile components in diffusing into the growing bubble ; and third,

Heat transfer

IO’

coefficients

for boiling

mixtures-Experimental

data for binary

mixtures

of large relative

volatility

I

0

80%, Data

Methanol

0

P N’

0

G :, 10’ c 3 ai

0 60%

5 t:

lo2

0

40

20 FIG. la.

60

Boiling

data

100

80 AT, “F

for metbsnol-ethylene

/r

120

glycol

140

1 0

mixtures.

0

80%.Data

Methanol

90% Methanol

0

OOOO

0

0

0

I

60%

F

40% /-

20%

0

i

0 I2

0

20

40

FIG. 14.

60 Boiling

80

100 AT, OF

120

data for methanol~lycerine

140

160

180

30

mixtures.

Chem.Engrq. Sci. Vol. 16, Nos. 8 and 4. December, 1961

325

C. V.

STERNLING and L.

J. TICHACEK

k( J 1

10’

‘3 dii . f

I

I

10’

0

FIG.

15.

Boiling

data

for

water-ethylene

80

70

60

50 AT, “F

40

30

20

10

glycol

90

mixtures.

0

7970, Data

Water

8 /G%

O

Water

0

34%

0

12%

0

i

2% /

0

/

0

/-

5%

/

’ /’

I]

O I

20

O 1’ / / 4

40

I

60

I

I

100

80

120

140

AT. OF FIG. 16. Boiling data for water-glycerine

526

mixtures.

160

180

0

Heat transfer coefficients for boiling mixtures-Experimental

data for bmary mixtures of large relative volatility

10’

100% Methanol

P J c I,

10’

e 8. . B

102

I 10

I 20

FIG. 17.

I 30

Boiling

I 50

I 40

I 60

AT. OF data for methanol-amyl

I 70

I

I 80

90

30

alcohol mixtures.

10

I -.II

I In

I ,A

I ^^

I _^^

L”

WV

0”

8”

1””

I .__

1LO

I

I

I

140

160

IRO

2 D

AT, ‘F

FIG. 18.

Boiling data for hopropanol-X-88

resin mixtures.

Chem. Engng.

827

SC& Vol. 18, Nos.

8

and 4. Deeember,

1061

-_

I

1 2.5 4-5 5.4 6.2 8.0

18 a3 59 70 80 104

100 90 80 60 40 20

i

25 4Q 50 65 156 140 112

100 90 80 60 40 10 5

At at

h,, x 800

I I

sysiem 5 IPA-cmdina 17

At at hb = 800

Ul

01

I F,

Fe

1 1.6 2 2.6 6.2 5.6 4.5

I I

I

system 4 CC+-DBP

10 14 30 50 70 153 160 210

28 45 100 180 260

109 90 80 60 40

.

h, = 800

F1

1 2.0 4.3 7.8 11.3

FC 1

100 90 80 60 40 20 10

V

9 15 20 75 128 170 186

At at hb = 300

100 90 80 60 40 20 10 5

At at

1 1.8 3.2 6.5 9.0 11.0

System 6 IPA-DBP

20 a5 63 130 180 220

system 3 cc1,-ondiflu 133

100 90 80 60 40 20

1 1.4 3.0 5.0 7.0 15.8 16 21

100 90 80 60 40 20

Vl

100 90 80 60 4Q 20 10

-

_-

19 28 4Q 78 104 96

At at I’ h, = 800

System 8 Methanol-glycol

11 14 28 52 85 186 206

Ul

I

System 8 IPA-glycerine

11 21 34 43 65 92

At at hb = 800

At at h, x 300

100 90 80 60 40 20

Vl

system 7 IPA-&ye01

1 1.1 2.2 4.0 6.5 14.3 15.8

FC

1 1.5 2.1 8-8 5.5 5.0

I Fe

I

1 1.9 3.1 2.9 5.9 8.4

Values of F, derived

l-----r

System 2. Methyl chlmofomn-ondina 133

I

F,

At at hb = 300

,w_sondina 17

sysktn 1

"1

Ber

Table 6.

-.

I

28 37 51 50 39 31

28

At at ib() x 300

syste7n 11 water-glyw1

14 24 44 80 95 120

At at hb = 300

I

a0 29 39 52 56 45

22

At at hb = 800

system 12 Waler-glycerine

100 79 56 34 12 5 2

Vl

0

50 21 11 3

100 75

Vl

100 90 80 60 40 20

%

system 10 Mfl ul an&&yet&e

from data

I

1 1.4 1.8 1.8 2.4 2.5 2.0

FC

1 1.2 1.6 2.2 2-2 1.7 1.3

FE

1 1.7 3.1 5.7 6.8 8.6

Fc 16 81 29 29 20

At at h, = 800

66 36

100 82

Vl

37 45

9 25

h, x 300

At at

4

r

B a 4.1 5.0

t

z

;c

F,

1.9 1.8 1.8 1.3

1

FC

A01

-Q 1 2.8

system 14 IPA-X 38 &sin

100 60 27 8.5 0

01

system 13 ikfethan&amyl a

Heat transfer coefficients for boiling mixtures-Experimental

changes in the rate of nucleation, i.e. the ease of forming new bubbles on the surface. Probably all three contribute. It is difficult to see, however, how the first two can account for changes in h, (at constant At) of more than about two-fold. We think, therefore, that the rate of nucleation is by far the most important. In nucleate boiling bubbles form and grow only at definite non-moving sites. Furthermore, as CLARKet al. [2] have shown, there is a pithole in the surface at almost every site. Near an active site, the more volatile components in a boiling-liquid mixture are preferentially stripped out to feed the growing bubbles. In time, then, there will accumulate near the pitholes material of low volatility. Unless vigorous mixing is maintained with the bulk liquid the pithole may be clogged with liquid of low volatility. In order to maintain a nucleus of vapour in the hole, the temperature there may have to be raised. From this explanation, one might guess that the boiling curves for pure components and for mixtures would have similar shape but that the scale of At for the mixture would be expanded relative to that for a pure component. As a matter of fact, the curves of Figs. 5-18 may be brought together quite well, at least for heat fluxes below about 30,000 B.Th.U./hr fts, by multiplying At by a factor, F,, characteristic of composition alone. Table 6 shows values of At at h, = 300 B.Th.U./hr ft2 “F for all systems and compositions. Also shown are F, the ratio of the At for each case to that for the corresponding pure light component. Figs. 19-23 show how F, depends on composition. Similar plots could be made for ha’s other than 300. Inspection of the data will show, however, that using any h, below about 600 would not alter the values of F, much. One can estimate the consequences of the depletion effect for any widely boiling binary system as follows. Pick from the systems shown in Tab!e 1 that which is most like the system of interest as regards chemical nature and relative volatility. Read the value of F, for that system at the appropriate composition from the appropriate diagram (Figs. S-18). Now simply interpret the scale of temperature differences of the boiling rurve of the pure light component as At/F,.

data for binary mixtures of large relative volatility

Table

7. Maximum he& transfm coejkients fun&m of temperature diflereme At

_

_-

WA),,,,,

960 630 530 500

70 97 160 170

67,000 61,000 85,000 85,000

90 80 ~___

860 550

70 110

60,000

90 80 _-___

670 370

80 150

54,000 56,000

90 80 10 _I.-I_-

880 650 510

80 110 220

70,000 72,000 113,000

90 80 60 40 _..----

2200 1300 820 550

35 70 95 180

77,000 91,000 78,000 99,000

90 80 60 4Q

i 1600

50 90 150 210

75,060 90,000 96,000 105,000

50 80 90 130

75,000 88,000 88,000 109,000

50 80 90

85,000 80,000 67,000

50 70 120

100,000 98,000 115,009

50 80 la0 160

130,000 144,000 143,000 134,000

B-17

90 80 60 40

;

as

p,MC-183

cq-133

CCI,-DBP

IPA-

I

IPA-I)BP

-_ i 1

1000 640 500

IPA-EG

IPA-G

-_

~~

_.___-

M-EG

90 80 60 _.___~

2000 1400 960

90 80 60 40

2600 1800 1100 840

6

1200

_____ M-G

--

--

-p, IP4-resin

64,000

54,000

A second characteristic feature of many to the boiling curves shown in Figs. 5-18 is worth noting. There is a maximum in h, as a function of At. This maximum occurs at a relatively low Chm. Engng. Sd. Vol. 16, Nos. 3 and4. December, 1961.

C. V. STERNLINC and L. J. TICHACEK

IOC

IPA-

/

MAA 0

0.2

0.6

0.4

0.0

VI FIG. 19. FC vs. composition

880

- all systems.

1.0

Heat transfer coefficients for boillog mixtures-Experimental

FIG. 20.

data for binary mixtures of large relative volatility

Fc vs. composition-systems

Ckm.

331

with

Engng.

PA.

Sci. Vol. 18, Nos. 8 and 4. December,

1@61.

C. V. !STERNLJNUand L. J. TICHACEK

,B-17

0.2

0.4

0.6

0.8

1 .o

VI FIG. 21.

Fc vs. composition - systems

332

with water

and benzene.

data for binary mixtures of large relative volatility

Heat transfer eoefEcients for boiling mixtures-Experimental

100

1

1

I 0.2

0.4

0.8

0.6

1.0

VI FIG. 22.

Fc vs. composition-systems

with Ccl, CH, CHCl,

Ckm.

888:

Engng.

Sci.

Vol.

16, Nos.

8 and 4.

December,

1081.

C. V. STERNLING and L. J. TICEACEK

10

0.2

0.4

0.6

0.8

“1 PIG. 28. Fc vs.composition

334

systems with methanol.

1 .O

Heat transfer coefficients for boiling mixtures-Experimental

data for binary mixtures of large relative volatility

. heat

flux,

B.Th.U./hr

50,000-150,000

ft2,

This is derived for an assumed parabolic temperature profile along the heater. Since the correction is small, it is not necessary to use a more accurate profile. The coefficient 3.77 incorporates the cross-sectional area of the metal in the heater, the distance between thermocouple locations, the surface area of the heater and the coefficient of proportionality between e.m.f. and temperature. Next, power dissipation per unit surface area of the heater was calculated by

and

must not be confused with the drop-off caused by the transition

to film boiling which occurs

heat flux about ten fold higher.

at a

The maxima

are

most pronounced at low concentrations, 10-20 %v, of the heavy component and occur at heat fluxes which are nearly constant in given systems. As seen from Table 7, this q/A varies from about 50,000

resin)

B.Th.U/hr to about

P

ft2 for the thick system (IPA140,000 for the mobile system

A

now explain this effect.

In several of the tests a peculiar type of nucleation which we call patch boiling was noted.

Q/A = (P/A)

On

these patches

were large areas It

appears

potential

site is sometimes to an active site. Patch

that

completely

clear

nucleation

at

(A.5)

a (A.6) This was derived for uniform heat generation in the metal which implies that temperature is parabolic in radius. The wall thickness, m, is 0+C112 ft. The temperature at the surface of the heater was then calculated from

APPENDIX

At each heat flux during a boiling run the following values were recorded : V, the voltage drop across the heater ; I, the current through the heater ; EC,the thermocouple e.m.f. at the centre of the heater; EL and E,, the thermocouple e.m.f. at the left and right ends of the heater ; Eli,, the e.m.f. of a thermocouple submerged in the pool of liquid being boiled. A Datatron computer was used to reduce these data, fed on punched cards, to heat fluxes, temperature differences and heat transfer coefficients. The centre temperature in “F was calculated from a thermocouple e.m.f. by means of the relation. Tc = 36.1 + 33.63 EC -

0.0553 EC2

This formula reproduces the standard charts to within & 0.4”F over the range Errors in AT due to using this formula 1 per cent. The thermal conductivity, k, at T,, of steel heater wall was calculated from le, = 8.83 + 0~0041’7 T,

(A.1)

thermocouple 14O”F-500°F. are less than the stainless

(A.7)

and this surface temperature is that associated with the heat flux q/A. The temperature of the liquid, in those runs without sub-cooling, was calculated from the average value of Eli, for the boiling data of that run. The temperature difference for boiling heat transfer is then At = T, The liquid heat transfer

T,i,

coefficient

was calculated

from (A.91

At This heat transfer coefficient was then corrected for the effect of free convection around the heater. Because of the small diameter of the heater, this correction was important at low heat fluxes. The natural convection heat transfer coefficient was assumed to vary according to the relationship

4 = 4 (AW4exp

-•E T,

+

Tliq

+

Q20

(A.10)

64.2)

The reduction in heat flux caused by longitudinal conduction along the heater was evaluated for a point at the centre of the heater from EL -

AT,

T, = Tc -

Calculation of boiling heat transfer coe_#icients from eizperi7nental data

= 3.77 k, (2E, -

(L/A)

favoured by proximity boiling was especially

noted in the systems methanol-glycol, methanolglycerol, IPA-Ondina 17, and CClhOndina 17.

L/A

-

This heat flux was assumed to be that associated with the surface temperature at the centre of the heater. The temperature difference between the inner and outer surfaces of the heater was calculated from

the heater were rather large irregular patches of very closely-spaced small bubbles. Between of bubbles.

(A.4)

where P/A is in B.Th.U/hr ft2. The heat transferred from the surface of the heater to the boiling liquid follows from

(methanol-glycerol). We cannot

VI 0+0404

ER)

G4.3)

which is based on the usual equation for natural convection. The coefficient A, depends on heater diameter, liquid, thermal conductivity, viscosity and coefficient of expansion while E reflects the influence of temperature on the same properties. Both A, and l were evaluated for each Chm.

335

En@&

Sci.

Vol.

16, Nos.

3 and 4.

December,

1961.

C. V. STEBNLING

and L. J. TICHACEK .

Table 8.

Estimates

of amplitude

by me Basis

A = 0*01374

:

ft2,

of heater surface

of jluctuutions of ax.

= 0.1 B.Th.lJ/lb

C,,

p,,, = 487 lb/fP, case I @18 in. x 0.15 in. tube v/A = 72 ft

fta “F

X

100 800 1000 8000

1510 505 151 50.5

o*OOO7 0.002 o+m7 0420

mixture tested by fitting equation (A.lO) to heat transfer coefficients measured at the lower heat fluxes where there was natural convection but no nucleate boiling. For boiling runs the boiling heat transfer coefficient was then calculated by ha = h -

FLUCTUATIONS ALTJGWATING

CAUSED BY CURRENT

THE

USE OF

(A.12)

(WeI

where

l+ I

sin(29$

-

1/P+*)

tan-’

X) - I

Fluct. amp. Au. At

X 109 86 10.9 8.6

0.009 &OS 0.09 0.27

(14)

NOTATIONS

Thus, twice in each cycle the power release is zero and twice it is double its average value, &. The temperature of the heater surface also fluctuates at the same frequency. However, because of thermal capacity, the phase is shifted and the amplitude lessened. To estimate the effect of using a.~. on surface temperature we consider a heater of volume Y, total surface area A, with heat released uniformly throughout the volume at the rate given by equation (A.12). The temperature inside the heater is assumed uniform at any instant of time. (This requires that 2 k,lhm > 1. In these experiments 2k,/hm z 5, for h = 8000). The heater surface temperature is then given by A.t=cA 81

c/set

Thus, for a very small h, X is large. The amplitude of the fluctuations approach a limit independent of h, but the average At, which is proportional to l/h, becomes large. Hence, the ratio of fluctuation amplitude to average At approaches zero. On the other hand, for large h or small X the amplitude of the fluctuations approaches the mean value of At. Table 8 shows estimated amplitudes for our 0.18 in. O.D. heater. For comparison, also shown are amplitudes for an O-004 in. wire which is the smallest one used by Rinaldo (see MCADAMS)[a]. From these calculations, we conclude that it is safe to neglect fluctuations in heater surface temperature for the data presented here, but that in studies which use fine wires this may be risky. In particular, care must be taken in comparing data taken on wires with those for “ large ” heaters.

In a resistive element heated by 60 a.c., energy is released as a sine wave at 120 c/see with amplitude equal to its average value, q = & [I + sin

f =:120

hA

On completion of the calculation, the computer printed the following : q/A, the gross heat flux ; T,, the surface temperature, At, the driving force for heat transfer ; h, the gross liquid heat transfer coefficient ; h,, the convection heat transfer coefficient ; hb, the boiling heat transfer coefficient. TEMPERATURE

“F,

x=2~fPnIc,mv

(A.ll)

hc

caused

Case II O+O4in. tire v/A=loOOft

Flu&. amp. Au. At

lb B.Th.U/hr

temperature

heating

(18)

336

al = constant in vapour pressure formula, Table 8 A = heat transfer area ft2 AC = constant in natural convection formula, equation (A-10) A, = van Laar constant, Table 5 A, = van Laar constant, Table 5 b, = constant in specific heat formula, see Table 8 c1 = liquid specific heat Cl' = constant in specific heat formula, see Table 8 c B.Th.U/lb OF Pm = metal specific heat, EC = Thermocouple, e.m.f., at centre ” EL = thermocouple, e.m.f., at left end V ELIQ = Thermocouple, e.m.f., for liquid pool v E, = thermocouple, e.m.f., at right end V Fc = ratio of At required for a given hb for a boiling mixture to that required for the pure more volatile component

Heat transfer coefficients

for boiling mixtures-Experimental

data for binary mixtures of large relative volatility

. f = frequency h = measured beat transfer coefficient for outside of tube B.Th.U/hr “F h, = boiling heat transfer coefficient, B.Th.U/hr fts “F hc = natural convection coefficient, B.Th.U/hr ft2 “F h mar = maximum hb with respect to changes in At, B.Th.U/hr ft2 “F I = current through heater A j, = constant in latent heat formula, Table 3 K, = constant in thermal conductivity formula, Table 3 le, = thermal conductivity of heater material, B.Th.U/hr ft “F k, = liquid thermal conductivity, B.Th.U/hr “F ft k,” = constant in thermal conductivity formula, Table 3 L/A

(q/--Q,,, = heat flux corresponding to h,, B.Th.U/hr ft2 T = temperature “R TbP = boiling point “F T, = temperature at centre thermocouple OF TC, = thermodynamic critical temp. OR “F T, = temperature of heater surface Tlig = temperature of liquid pool “F l=time hr V = voltage drop across heater V vl = volume fraction more volative component Y = volume of metal in heater f@ X = 2rrp, Cp,,, v/hA z1 = mole fraction of more volatile component z2 = mole fraction of less volatile component j3 = constant in density formula, Table 3 PI = amplitude of rate of energy release in heater B.Th.U/hr y1 = activity coefficient of more volatile component y2 = activity coefficient of less volatile component AT, = temperature drop through heater wall ‘F At = wall temperature minus boiling point “F c = constant in natural convection formula, equation A.10 ‘1 = constant in viscosity equation, Table 4 Y = liquid kinematic viscosity ft2/hr ye = constant in viscosity formula, Table 4 p1 = liquid density Pl ’ = constant in density equation, Table 3 lb/f@ Pm = metal density (I = surface tension, dyn/cm es = constant in surface tension formula, Table 3

= heat losses out end of heater per unit surface of heater B.Th.U/hr ft2

L, = latent heat of vaporization

B.Th.U/lb

L,” = constant in latent heat formula, Table 3 na = heater wall thickness P/A

ft

= power dissipated in heater per unit surface of heater B.Th.U/hr ft2

P, = constant

in vapour pressure formula, Table 8

Pl ’ = vapour pressure

atm

q = rate of energy release in heater, q/A

w -%a,

= heat flux = maximum nucleate boiling respect to changes in At,

B.Th.U/hr B.Th.U/hr

ft2

heat flux with B.Th.U/hr ft2

REFERENCES

PI PI PI

MCADAMS W. H. Heat Transnaissim&p. 391.

McGraw-Hill,

CLARK H. B., STRENGE P. S. and WESTWATER J. W. Progress Symposium Series No. 29, 55 103 (1959). McAD~

W. H. Heat Tramtni.wicm p. 379.

New York

Actiue Sites

1954.

for Nucleate Boiling.

Chemical Engineering

McGraw-Hill, New York 1954.

(‘hem. Engng. Sci. Vol. 16, Nos. 3 and4. Lkeember, 1931.

387