Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems

Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems

Alexandria Engineering Journal (2017) xxx, xxx–xxx H O S T E D BY Alexandria University Alexandria Engineering Journal www.elsevier.com/locate/aej ...

678KB Sizes 73 Downloads 488 Views

Alexandria Engineering Journal (2017) xxx, xxx–xxx

H O S T E D BY

Alexandria University

Alexandria Engineering Journal www.elsevier.com/locate/aej www.sciencedirect.com

ORIGINAL ARTICLE

Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems S.C. Shiralashetti *, S. Kumbinarasaiah Department of Mathematics, Karnatak University, Dharwad 580003, India Received 5 February 2017; revised 10 July 2017; accepted 27 July 2017

KEYWORDS Hermite wavelets; Nonlinear singular initial value problems; Collocation method; Operational matrix

Abstract In this paper, new operational matrix of integration is generated by using Hermite wavelets. By aid of these matrices, Hermite wavelets operational matrix method (HWOMM) is developed for second ordered nonlinear singular initial value problems. Properties of Hermite wavelets are used to convert the differential equations into system of algebraic equations which can be efficiently solved by suitable solvers. Illustrative numerical problems are considered to demonstrate the applicability of the proposed technique and those results are comparing favourably with the exact solutions and errors. Ó 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction Wavelets are localized waves or small wave. Instead of oscillating forever, they drop to zero. Wavelets theory is a newly emerging area in mathematical research field. It has been applied in engineering disciplines; such as signal analysis for wave form representation and segmentations, harmonic analysis and time frequency analysis etc. Wavelets permit the accurate representation of a variety of functions and operators. Wavelets are assumed as basis functions wi;j ðxÞ in continuous time. Special feature of the wavelets basis is that all functions wi;j ðxÞ are constructed from a single mother wavelet wðxÞ which is a small pulse. Usually set of linearly independent

* Corresponding author. E-mail address: [email protected] (S.C. Shiralashetti). Peer review under responsibility of Faculty of Engineering, Alexandria University.

functions created by translation and dilation of mother wavelet. Many practical and physical problems in the field of science and engineering are formulated as initial value problems. The nonlinear singular initial value problems are crucial in many fields of science and engineering. For example gas dynamics, atomic structures, chemical reactions and nuclear physics [1]. In many cases, extracting the analytical solutions for singular initial value problems from analytical methods is always not possible. For such problems we disentomb numerical techniques such as, Galerkin method, Tau method, operation matrix of integration method, collocation method, series solution methods and operational matrix of differentiation etc. Operational matrix of integration with collocation method is one of the most widely used numerical schemes to solve differential equations. This approach is based on converting differential equation into integral equations using operational matrix of integration eliminating the integral operator in order to reduce the problem into system of algebraic equations.

http://dx.doi.org/10.1016/j.aej.2017.07.014 1110-0168 Ó 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014

2

S.C. Shiralashetti, S. Kumbinarasaiah

The purpose of this paper is to develop the new Hermite wavelets operational matrix of integration collocation method as an alternative method to solve nonlinear singular initial value problems of the form (1) for a given set of conditions. Here we bring all solutions of (1) under the Hermite space and present method will contribute good accuracy for linear singular problems. So that, we concentrate only nonlinear problems. That is, we are expressing solutions of nonlinear singular initial value problems in terms of Hermite wavelets basis. Let ða; bÞ  R be an interval and pðxÞ; qðxÞ; rðx; yÞ : ða; bÞ ! R be continuous real valued functions. Throughout this paper we consider the arbitrary nonlinear singular second order equations given by 00

0

y ðxÞ þ pðxÞy ðxÞ þ qðxÞyðxÞ ¼ rðx; yÞ; a < x < b:

ð1Þ

subjected to following initial conditions: yð0Þ ¼ a1 ; y0 ð0Þ ¼ a2 ;

ð2Þ

where a1 ; a2 are known constants. There are some literature available on operational matrix of integration and some other techniques on singular initial value problems. Adomian decomposition method [2], Differential transformation method [3], Haar wavelet collocation method [4], New ultraspherical wavelet collocation method [5], Laguerre wavelets method [6], Physicists Hermite wavelet method [7], Hermite wavelets method for boundary value problem [8], Legendre wavelet method [9], An Accurate Numerical Algorithm [10], Finite Element Methods [11], Haar wavelet series solution [12], Chebyshev wavelet operational matrix of integration [13], The Legendre wavelets operational matrix of integration [14], A Numerical Approach for Solving A Class of The Nonlinear Lane-Emden Type Equations [15], A numerical approach for solving the high order linear singular differential-difference equations [16], An Improved Bessel Collocation Method [17], A Numerical Scheme for Solutions of a class of non-linear differential equations [18], Exponential Collocation Method For Solutions of Singularity Perturbed Delay Differential Equations [19] and also, some methods on solving partial differential equations [20–30]. There are two different approaches for solving differential equations, one approach is based on converting differential equations into integral equations then eliminate the integral operator by operational matrix of integration [31]. Another method is based on the operational matrix of derivative, here we solve the differential equations by converting into system of linear or nonlinear algebraic equations [32,33]. A vast amount of literature are available on operational matrix of integration by Legendre wavelet, Chebyshev wavelet, Laguerre wavelet but there is no literature on Hermite wavelet operational matrix of integration this impetused us to generate operational matrix of integration using Hermite wavelet. The rest of this paper is organized as follows. In Section 2, we introduce the properties of Hermite wavelets. Section 3, function approximation. Section 4, having the procedure for the operational matrix of integration. Section 5, reveals description of the proposed method. Section 6, numerical examples to test the efficiency of proposed method and conclusion is drawn in Section 7.

wavelet. When the dilation parameter a and translation parameter b varies continuously, we have the following family of continuous wavelets:   xb wa;b ðxÞ ¼ jaj1=2 w ; 8 a; b 2 R; a–0: a If we restrict the parameters a and b to discrete values as k a ¼ ak 0 ; b ¼ nb0 a0 ; a0 > 1; b0 > 0: We have the following family of discrete wavelets wk;n ðxÞ ¼ jaj1=2 wðak0 x  nb0 Þ;

where wk;n form a wavelet basis for L2 ðRÞ. In particular, when a0 ¼ 2 and b0 ¼ 1, then wk;n ðxÞ forms an orthonormal basis. Hermite wavelets are defined as [8], ( kþ1 2p2ffiffi n Hm ð2k x  2n þ 1Þ; 2n1 k1 6 x < k1 p 2 wn;m ðxÞ ¼ ð3Þ 0; otherwise where m ¼ 0; 1; . . . ; M  1: Here Hm ðxÞ is Hermite polynomials of degree m with respect to weight function pffiffiffiffiffiffiffiffiffiffiffiffiffi WðxÞ ¼ 1  x2 on the real line R and satisfies the following recurrence formula H0 ðxÞ ¼ 1, H1 ðxÞ ¼ 2x, Hmþ2 ðxÞ ¼ 2xHmþ1 ðxÞ  2ðm þ 1ÞHm ðxÞ; m ¼ 0; 1; 2; . . . :

Wavelets constitute a family of functions constructed from dilation and translation of a single function called mother

ð4Þ

3. Function approximation and convergence analysis We would like to bring a solution function yðxÞ under Hermite space by approximating yðxÞ by elements of Hermite wavelet basis as follows, yðxÞ ¼

1 X 1 X Cn;m wn;m ðxÞ

ð5Þ

n¼1 m¼0

where wn;m ðxÞ is given in Eq. (3). We approximate yðxÞ by truncating the series represented in Eq. (5) as, yðxÞ 

2k1 M1 X X Cn;m wn;m ðxÞ ¼ CT wðxÞ

ð6Þ

n¼1 m¼0

where C and wðxÞ are 2k1 M  1 matrix,

h i CT ¼ C1;0 ;. .. C1;M1 ; C2;0 ;. .. C2;M1 ; ... C2k1;0 ; .. .C2k1 ;M1

ð7Þ

h i wðxÞ ¼ w1;0 ; . . . w1;M1 ; w2;0 ; . . . w2;M1 ; . . . w2k1 ;0 ; . . . w2k1;M1 ð8Þ Theorem 1. A continuous function y(x) in H2 ½0; 1Þ defined on ½0; 1Þ be bounded, then the Hermite wavelets expansion of y(x) converges to it. Proof. Let y(x) be a bounded real valued function on ½0; 1Þ. The Hermite coefficients of continuous functions y(x) is defined as, Z

2. Hermite wavelets

8a; b 2 R; a–0;

1

Cn;m ¼ Z

0

¼ I

yðxÞwn;m dx   kþ1 22 n1 n k yðxÞ pffiffiffi Hm ð2 x  2n þ 1Þdx; where I ¼ k1 ; k1 p 2 2

Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014

Hermite wavelets operational matrix of integration for the numerical solution Z

Put 2k x  2n þ 1 ¼ z, kþ1

22 ¼ pffiffiffi p kþ1

2 2 ¼ pffiffiffi p

2 w1;3 ðxÞdx ¼ pffiffiffi ð16x4  32x3 þ 18x2  2xÞ p   1 1 1 ¼ ; 0; ; 0; ; 0 w6 ðxÞ 8 8 16

0

  z  1 þ 2n Hm ðzÞ2k dz y k 2 1

Z

x

1

Z

  z  1 þ 2n Hm ðzÞdz y k 2 1

Z

1

  2 256 5 320 3 x  128x4 þ x  32x2 þ 2x w1;4 ðxÞdx ¼ pffiffiffi 3 p 5   1 1 1 4 ; 0; 0; ; 0; w ¼ 15 12 20 6

x

0

Using GMVT for integrals, Z 1 kþ1  2 2 w  1 þ 2n ¼ pffiffiffi y Hm ðzÞdz; p 2k 1 Put

R1 1

for some w 2 ð1; 1Þ

Z

x

0

Hm ðzÞdz ¼ h,

 kþ1   2 2  w  1 þ 2n   h jcn;m j ¼  pffiffiffi y   p 2k Since y is bounded, therefore, n;m¼0 Cn;m is absolutely convergent. Hence the Hermite series expansion of y(x) converges uniformly. h 4. Operational matrix of integration (OMI)

  2 512 6 800 3 w1;5 ðxÞdx ¼ pffiffiffi x  512x5 þ 560x4  x þ 50x2  2x 3 p 3   1 1 1 ¼ ;0; 0; 0; ; 0 w6 ðxÞ þ w1;6 ðxÞ 24 16 24

Thus

Z P1

x

 6 ðxÞ w6 ðxÞdx ¼ P66 w6 ðxÞ þ w

2 w1;1 ðxÞ ¼ pffiffiffi ð4x  2Þ; p 2 w1;2 ðxÞ ¼ pffiffiffi ð16x2  16x þ 2Þ; p 2 w1;3 ðxÞ ¼ pffiffiffi ð64x3  96x2 þ 36x  2Þ; p 2 w1;4 ðxÞ ¼ pffiffiffi ð256x4  512x3 þ 320x2  64x þ 2Þ; p 2 w1;5 ðxÞ ¼ pffiffiffi ð1024x5  2560x4 þ 2240x3  800x2 þ 100x  2Þ: p Let w6 ðxÞ ¼ ððw1;0 ðxÞ; w1;1 ðxÞ;w1;2 ðxÞ; w1;3 ðxÞ; w1;4 ðxÞ;w1;5 ðxÞÞÞT . By integrating above basis functions with respect to x from 0 to x and expressing in matrix form, we obtain,

Z

x

0

Z

x

0

Z 0

x

  2 1 1 w1;0 ðxÞdx ¼ pffiffiffi x ¼ ; ; 0; 0; 0; 0 w6 ðxÞ 2 4 p   2 1 1 ; 0; ; 0; 0; 0 w6 ðxÞ w1;1 ðxÞdx ¼ pffiffiffi ð2x2  2xÞ ¼ 4 8 p     2 16 3 1 1 1 x  8x2 þ 2x ¼ ; ; 0; ; 0; 0 w6 ðxÞ w1;2 ðxÞdx ¼ pffiffiffi 3 4 12 p 3

ð9Þ

0

where

2

1 2 6 1 6 4 6 1 6 6 3 6 1 6 8 6 6 1 6 15 6 1 4 24

P66 ¼

In this section, we give the structure of OMI for Hermite wavelets, particularly at k ¼ 1 and M ¼ 6. Here we consider six basis functions on ½0; 1Þ are given by, 2 w1;0 ðxÞ ¼ pffiffiffi ; p

3

Z

0

0

1 8

0 0

0 0

1 4

0

1 12

0

0 0 0

1 8

0

1 16

0 0

1 12

0

0

1 16

3 0 2 7 07 6 7 6 07 6 7 6 7  6 ðxÞ ¼ 6 0 7 and w 6 7 6 1 7 6 20 7 4 7 05

0 0 0 0 0

3 7 7 7 7 7 7 7 7 5

1 w ðxÞ 24 1;6

Again double integration of above six basis is given by,   Z x 2 x2 3 1 1 ; ; ; 0; 0; 0 w6 ðxÞ ¼ w1;0 ðxÞdxdx ¼ pffiffiffi 16 8 32 p 2 0

x

0

Z

x

Z

0

Z

x

Z

x

0

Z

0

    2 2 1 3 1 w1;1 ðxÞdxdx ¼ pffiffiffi x3  x2 ¼ ; ; 0; ; 0; 0 w6 ðxÞ 6 32 96 p 3 x

0

x

Z

0

Z

1 4

x

0

  2 4 4 8 3 2 p ffiffiffi x  x þx w1;2 ðxÞdxdx ¼ 3 p 3   3 1 1 1 ; ; ; 0; ; 0 w6 ðxÞ ¼ 32 12 24 192   2 16 5 x  8x4 þ 6x3  x2 w1;3 ðxÞdxdx ¼ pffiffiffi p 5   1 1 1 1 ; ; 0; ; 0; w ðxÞ ¼ 10 16 64 320 6

  2 128 6 128 5 80 4 32 3 x  x þ x  x þ x2 w1;4 ðxÞdxdx ¼ pffiffiffi 5 3 3 p 15 0 0  1 1 1 1 ¼ ; ; ;0; ;0 w6 ðxÞ 24 60 96 120 x

Z 0

x

Z

x

Z

x

w1;5 ðxÞdxdx   2 512 7 256 6 200 4 50 3 ¼ pffiffiffi x  x þ 112x5  x þ x  x2 3 3 3 p 21   1 1 1 1 1 ¼ ; ; 0; ; 0; w ðxÞ þ w1;6 ðxÞ: 42 96 192 192 6 24 0

Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014

4

S.C. Shiralashetti, S. Kumbinarasaiah

Z 0

ð10Þ

0

where

P066

Z

respect to x from 0 to x together with initial conditions given in (2) and relation (9) and (10) we obtain,

Hence Z x  0 ðxÞ: w6 ðxÞdxdx ¼ P066 w6 ðxÞ þ w 6

x

2

3 16

6 1 6 6 6 3 6 6 32 6 ¼ 6 101 6 6 1 6 24 6 1 4 42

1 8 3 32 1 12 1 16 1 60 1 96

1 32

0

0

1 96

0 0

1 24

0

1 192

0

1 64

0

1 96

0

1 120

0

1 192

0

 0 ðxÞÞ: yðxÞ ¼ a1 þ xa2 þ AT ðP0 wðxÞ þ w

3

2 3 0 7 7 6 7 0 7 6 7 7 6 7 7 6 7 0 7 0 1  6 7 and w6 ðxÞ ¼ 6 7 320 7 7 0 6 7 7 0 7 6 1 7 4 480 w1;6 ðxÞ 5 7 1 5 1 192 w ðxÞ 672 1;7 0 0 0

Similarly if we considered seven basis functions then x

 7 ðxÞ: w7 ðxÞdx ¼ P77 w7 ðxÞ þ w

where

P77 ¼

1 2 6 1 64 6 1 63 6 61 68 6 1 6 15 6 61 6 24 6 1 4 35

1 4

0

0

1 8

0 0

1 4

0

1 12

0 0 0

0 0

1 8

0

1 16

0 0 0 0

0

1 12

0

1 20

0 0

0 0

0 0

1 16

0

0

1 20

3 2 0 07 6 7 6 7 6 07 6 7 6 7 07 6  ðxÞ ¼ and w 6 7 7 6 07 6 7 6 1 7 6 24 7 4 7 5 0

3

0

7 7 7 7 7 7 7 7 7 7 7 5

0 0 0 0 0 1 w ðxÞ 28 1;7

P077

¼

3 16 6 1 66 6 3 6 32 6 61 6 10 6 1 6 24 6 61 6 42 6 1 4 65

1 8 3 32 1 12 1 16 1 60 1 96 1 140

1 32

0

0

1 96

0 0

0 0 0

0 0 0

3

Then we can analyse the unknown vector A by solving this system through the well-known Newton iterative method using Matlab. The approximate solution can be easily recovered by inserting A into the corresponding expression of y(x). 6. Numerical experiments Test Problem 1. Consider the singular initial value problem [6], ð12Þ

yð0Þ ¼ 1; y0 ð0Þ ¼ 0; 2

3

0 7 6 7 7 0 6 7 7 1 1 6 7 7 0 24 192 6 7 7 0 6 7 7 1 0 1 0 0 6 7 7 0 64 320  0 ðxÞ ¼ and w 6 7 7 7 1 1 1 7 6 7 0 120 0 480 96 6 7 7 0 6 7 7 1 1 0 192 0 192 0 7 6 1 7 w ðxÞ 4 672 1;7 5 7 1 1 5 0 0 320 0 280 1 w ðxÞ 896 1;8

In this way we can generate the other matrix by consuming more number of basis functions. So when dealing with the problems, we need to pre-calculate the corresponding opera  0 ðxÞ for different w tional matrix of integration P; P0 and wðxÞ; values of N. 5. Description of the proposed method In this section, we will use above discussed OMI together with collocation method to solve nonlinear singular initial value problems, we assume that, y00 ¼ AT wðxÞ

Now discrete it using the following collocation points xi ¼ 2i1 ; i ¼ 1; 2; . . . ; N thus we get a system of N equations 2N with N unknowns. Here N represents size of an operational matrix of integration and corresponding equation is of the following form,

subjected to the initial conditions

0

2

 AT wðxÞ þ pðxÞða2 þ AT ðPwðxÞ þ wðxÞÞÞ þ qðxÞða1 þ xa2  0 ðxÞÞÞ ¼ rðx; yÞ: þ AT ðP0 wðxÞ þ w

1 y00 ðxÞ þ y0  y3 þ 3y5 ; 0 < x < 1 x

Double integration is, Z xZ x  0 ðxÞ w6 ðxÞdxdx ¼ P077 w7 ðxÞ þ w 7 0

then we get yðxÞ; y0 ðxÞ; y00 ðxÞ are in terms of polynomial basis and their integrals. Now substitute yðxÞ; y0 ðxÞ; y00 ðxÞ are in (1) we get,

 i ÞÞÞ þ qðxi Þða1 þ xi a2 AT wðxi Þ þ pðxi Þða2 þ AT ðPwðxi Þ þ wðx T 0 0  þ A ðP wðxi Þ þ w ðxi ÞÞÞ ¼ rðxi ; yðxi ÞÞ: i ¼ 1; 2; :::; N:

0

2

 y0 ðxÞ ¼ a2 þ AT ðPwðxÞ þ wðxÞÞ:

ð11Þ

where A is unknown vector which should be determined and wðxÞ is the vector defined in (8), Integrate (11) twice with

ð13Þ 1 2

the exact solution is yðxÞ ¼ ð1 þ x2 Þ . Method of implementation for N ¼ 6: We assume that, y00 ¼ AT wðxÞ

ð14Þ

where wðxÞ ¼ w6 ðxÞ ¼ ððw1;0 ðxÞ;w1;1 ðxÞ; w1;2 ðxÞ; w1;3 ðxÞ;w1;4 ðxÞ; w1;5 ðxÞÞÞT & A ¼ ða0 ; a1 ;a2 ;a3 ;a4 ; a5 Þ: Integrate (14) with respect to x from 0 to x together with initial conditions given in (13), we obtain,  y0 ðxÞ ¼ AT ðPwðxÞ þ wðxÞÞ:  0 ðxÞÞ: yðxÞ ¼ 1 þ AT ðP0 wðxÞ þ w Now substitute yðxÞ; y0 ðxÞ; y00 ðxÞ are in (12) and discretize it using the following collocation points xi ¼ 2i1 ; i ¼ 1; 2; . . . ; 6, 12 thus we get 6 system of equations with 6 unknowns. After solving this system by newton iteration method, we get the unknown vector A is, 3 2 a0 ¼ 0:3285 7 6 a1 ¼ 0:2908 7 6 7 6 7 6 a2 ¼ 0:0255 7 A¼6 7 6 a ¼ 0:0303 3 7 6 7 6 5 4 a4 ¼ 0:0118 a5 ¼ 2:1135  104

Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014

Hermite wavelets operational matrix of integration for the numerical solution Table 1

5

Comparison of absolute errors (AE) for the test problem 1, (k = 1).

x

Exact solution

AE at N = 6

AE at N = 7

AE at N = 8

AE at N = 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.99503719020 0.98058067569 0.95782628522 0.92847669088 0.89442719099 0.85749292571 0.81923192051 0.78086880944 0.74329414624

5

6

7

1:8966  108 1:0083  108 1:1329  108 5:5787  109 4:7519  109 9:1742  109 1:0085  109 3:9847  109 4:8067  108

1:8706  10 1:9982  105 1:0719  105 6:5087  106 3:8619  106 9:9962  107 4:1085  106 4:2547  106 9:8647  106

5:0872  10 3:9138  107 3:1663  107 2:2954  107 1:4662  107 6:8963  108 1:9866  109 5:8784  108 1:2314  107

2:5225  10 1:9417  106 8:0068  107 5:4375  107 4:4979  108 5:0408  107 5:1814  107 1:2857  106 7:3953  107

−5

2

x 10

AE at N=6 AE at N=7 AE at N=8 AE at N=9

1.8

Error analysis

1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Fig. 1

Physical interpretation of Absolute error analysis for the test problem 1 for different values of N.

1 Exact solution Present method

0.95

Solution

0.9 0.85 0.8 0.75 0.7 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Fig. 2

Graphical interpretation of Exact solution and Present method solution for the test problem 1.

Substitute these values in yðxÞ, we ge the approximate solution is, yðxÞ ¼ 0:0058x7 þ 0:1344x6  0:4785x5 þ 0:6079x4  0:0566x3  0:4944x2 þ 6:8439  1021 x þ 0:9999: by applying the technique described in Section 5 with different values of N. Table 1 and Fig. 1 represents the comparison between the absolute error of approximate solution with analytical solution. Graphical representation of Exact and present method solution for the test problem 1 is drawn in Fig. 2.

Test Problem 2. Consider the following nonlinear LaneEmden equation [4];   2 0 y00 ðxÞ þ y ðxÞ þ y5 ¼ 0; 0 < x < 1 x subjected to the initial conditions, yð0Þ ¼ 1; y0 ð0Þ ¼ 0;

Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014

6

S.C. Shiralashetti, S. Kumbinarasaiah Table 2

Comparison of absolute errors (AE) for the test problem 2, (k = 1).

x

Exact solution

AE at N = 6

AE at N = 7

AE at N = 8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.99833748845 0.99339926779 0.98532927816 0.97435470369 0.96076892283 0.94491118252 0.92714554082 0.90784129900 0.88735650941

8

8

9

9:9165  10 4:5437  108 5:1208  108 5:0684  108 3:5157  108 7:0668  108 6:7098  108 2:0163  109 1:3919  107

3:6989  10 1:4473  108 2:5323  109 2:5781  109 6:6328  109 8:9403  109 6:9532  109 1:1810  108 6:5729  109

AE at N = 9 3:6640  1011 3:4148  1010 3:6797  1011 3:4785  1011 3:2490  1011 3:3358  1011 3:2694  1011 2:9498  1011 2:8965  1010

4:5191  10 2:4641  109 5:3187  1010 1:1649  1010 1:4761  1010 1:7220  1010 1:8055  1010 1:6746  1010 1:3945  1010

−7

1.4

x 10

AE at N=6 AE at N=7 AE at N=8 AE at N=9

Error analysis

1.2 1 0.8 0.6 0.4 0.2 0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Fig. 3

Physical interpretation of Absolute error analysis for the test problem 2 for different values of N.

1 Exact solution Present method

0.98

Solution

0.96 0.94 0.92 0.9 0.88 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Fig. 4

Graphical interpretation of Exact solution and present method solution for the test problem 2.

 12 2 the exact solution is yðxÞ ¼ 1 þ x3 . We solve this equation by the HWOM method with different values of N. Table 2 and Fig. 3 reflects the comparison between the absolute error of approximate solution with analytical solution for different values of N. Graphical representation of Exact and present method solution is drawn in Fig. 4. Test Problem 3. Consider the singular initial value problem [34];

y00 ðxÞ  2e y ¼ 0; 0 < x < 1

ð15Þ

subjected to the initial conditions yð0Þ ¼ 0; y0 ð0Þ ¼ 0;

ð16Þ

the exact solution is yðxÞ ¼ 2lnðcosxÞ, Method of implementation for N ¼ 6: We assume that, y00 ¼ AT wðxÞ

ð17Þ

Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014

Hermite wavelets operational matrix of integration for the numerical solution

7

Comparison of absolute errors (AE) for the test problem 3, (k = 1).

Table 3 x

Exact solution

AE at N = 6

AE at N = 7

AE at N = 8

AE at N = 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.99833748845 0.99339926779 0.98532927816 0.97435470369 0.96076892283 0.94491118252 0.92714554082 0.90784129900 0.88735650941

5

5

6

2:2974  106 4:5037  106 6:8418  106 9:3196  106 1:2023  105 1:5040  105 1:8503  105 2:2619  105 2:7587  105

2:1447  10 4:3130  105 6:3466  105 8:6888  105 1:1148  104 1:3904  104 1:7177  104 2:0778  104 2:5754  104

6:0285  10 1:2695  104 1:8170  104 2:4653  104 3:1948  104 3:9461  104 4:8481  104 6:0067  104 7:1158  104

7:6580  10 1:5078  105 2:2661  105 3:0932  105 3:9754  105 4:9816  105 6:1115  105 7:4870  105 9:1294  105

−4

8

x 10

AE at N=6 AE at N=7 AE at N=8 AE at N=9

7

Error analysis

6 5 4 3 2 1 0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Fig. 5

Physical interpretation of Absolute error analysis for test problem 3 for different values of N.

1.4 Exact solution Present method solution

1.2

Solution

1 0.8 0.6 0.4 0.2 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Fig. 6

Graphical interpretation of Exact solution and present method solution for the test problem 3.

where wðxÞ ¼ w6 ðxÞ ¼ ððw1;0 ðxÞ; w1;1 ðxÞ; w1;2 ðxÞ; w1;3 ðxÞ; w1;4 ðxÞ; T

w1;5 ðxÞÞÞ and A ¼ ða0 ; a1 ; a2 ; a3 ; a4 ; a5 Þ: Integrate (17) with respect to x from 0 to x together with initial conditions given in (16) we obtain,  y0 ðxÞ ¼ AT ðPwðxÞ þ wðxÞÞ:

 0 ðxÞÞ: yðxÞ ¼ AT ðP0 wðxÞ þ w Now substitute yðxÞ; y0 ðxÞ; y00 ðxÞ are in (15) and discretize it ; i ¼ 1; 2; . . . ; 6 using the following collocation points xi ¼ 2i1 12 thus we get 6 system of equations with 6 unknowns. After solving this system by newton iteration method we get unknown vector A as,

Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014

8

S.C. Shiralashetti, S. Kumbinarasaiah Table 3.1

Comparison of absolute errors (AE) for the test problem 3, (k = 2).

x

Exact solution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.99833748845 0.99339926779 0.98532927816 0.97435470369 0.96076892283 0.94491118252 0.92714554082 0.90784129900 0.88735650941

Table 4

AE at N = 8 (M = 4) 3.2405 6.6123 8.9627 1.2334 1.6237 1.8461 2.6442 8.6431 3.4509

AE at N = 10 (M = 5)

5

10 105 105 104 104 104 104 104 103

3.2507 6.7550 9.4419 1.2846 1.6732 2.0306 2.5172 3.2727 2.1403

AE at N = 12 (M = 6)

5

10 105 105 104 104 104 104 104 104

6.0285 1.2695 1.8170 2.4653 3.1948 3.9461 4.8481 6.0067 7.1158

105 104 104 104 104 104 104 104 104

Comparison of absolute errors (AE) for the test problem 4 (k = 1).

x

Exact solution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01990066170 0.07844142630 0.17235539248 0.29684001023 0.44628710262 0.61496939949 0.79755223991 0.98939248367 1.18665369055

AE at N = 6

AE at N = 7

AE at N = 8

5

6

6

2:2300  10 1:2130  105 6:1607  106 7:8887  106 6:3569  106 1:0604  105 1:0563  105 4:2378  106 1:4494  106

1:4552  10 4:7418  108 1:0713  106 7:2831  107 1:0018  106 1:0623  106 5:1912  107 1:4039  106 1:0590  107

AE at N = 9 3:6589  107 5:4640  108 9:7692  1011 4:2075  108 5:9709  108 6:9569  108 7:4787  108 6:7446  108 1:0572  107

1:2575  10 3:7267  107 3:6764  108 5:0634  108 1:7109  107 1:8601  107 2:3240  107 2:2325  107 2:1741  107

−5

2.5

x 10

AE at N=6 AE at N=7 AE at N=8 AE at N=9

Error analysis

2

1.5

1

0.5

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Physical interpretation of Absolute error analysis for the test problem 4 for different values of N.

Fig. 7

2 6 6 6 6 6 6 A¼6 6 6 6 6 6 4

a0 ¼ 3:0233 a1 ¼ 0:9359 a2 ¼ 0:3929 a3 ¼ 0:1169 a4 ¼ 0:0320

3 7 7 7 7 7 7 7 7 7 7 7 7 5

a5 ¼ 0:0086 Substitute these values in yðxÞ; we ge approximate solution as,

yðxÞ ¼ 0:2377x7  0:5237x6 þ 0:5892x5  0:1508x4 þ 0:0903x3 þ 0:9876x2  2:7984  1019 x þ 2:8555  1021 : by applying the technique described in Section 5 with different values of N. Table 3 and Fig. 5 represents the comparison between the absolute error of approximate solution with analytical solution. Graphical representation of Exact and present method solution for test problem 3 is drawn in Fig. 6. In the present method, for the domain wise different values of k and fixed values of M, we obtain the same accuracy in the solution. This can be observed in the Tables 3.1and 3. For

Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014

Hermite wavelets operational matrix of integration for the numerical solution Table 5

9

Comparison of present and other existing methods [6,34].

x

Exact solution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01990066170 0.07844142630 0.17235539248 0.29684001023 0.44628710262 0.61496939949 0.79755223991 0.98939248367 1.18665369055

AE in [34]

AE in [6] at k = 2 and M = 5 5

AE at N = 9 by present method 3:6589  107 5:4640  108 9:7692  1011 4:2075  108 5:9709  108 6:9569  108 7:4787  108 6:7446  108 1:0572  107

6

2:0000  10 2:4999  105 2:4999  105 1:8999  105 2:4000  105 2:9000  105 2:5999  104 1:4699  104 8:6199  103

1:1903  10 4:0724  107 3:7227  107 1:3771  107 2:1195  107 4:0909  106 7:3090  106 9:8931  106 1:1716  105

0 Exact solution BPOM solution LWM solution Present method at N=9

−0.2

Solution

−0.4 −0.6 −0.8 −1 −1.2 −1.4 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Fig. 8 Graphical interpretation of the Exact solution, Present method solution, BPOM solution [34] and LEM solution [6] for the test problem 4.

k = 1 and M = 6(N = 6), we obtain Four decimal accuracy for the Example 3 which can be seen in the Table 3. Same accuracy can be observed in the case of k = 2 and M = 6 (N = 12) in Table 3.1. Hence, solving differential equations using any one of the continuous polynomial wavelets basis is sufficient no need to use other wavelets, which are having continuous polynomials as basis. Test Problem 4. Consider the following nonlinear LaneEmden initial value problem [6],  y 2 y00 ðxÞ þ y0 ðxÞ þ 4 2e y þ e2 ; 0 < x < 1 x subjected to the initial conditions yð0Þ ¼ 0; y0 ð0Þ ¼ 0; the exact solution is yðxÞ ¼ 2lnð1 þ x2 Þ. We solve this equation by the present method with different values of N. Table 4 and Fig. 7 represents the comparison between the absolute error with exact solution for different values of N. Table 5 presents the comparison between the absolute error(AE) obtained by present method and other existed methods with analytic solutions. Fig. 8 shows graphical interpretation of solutions obtained by present method and other existed methods with analytical solution.

7. Conclusions In this paper, we attempted to introduce operational matrix of integration using Hermite wavelets for solving nonlinear singular initial value problems for different physical conditions which is important for the development of new research in the field of numerical analysis and beneficial for new researchers. The proposed scheme is tested on some examples and the results are quite satisfactory in comparison with the existing numerical solutions. Finally, we summarize the outcomes of this analysis is as follows: 1. The present method gives better accuracy in comparison with the other numerical techniques [6,34] available in literature. 2. This scheme is easy to implement in computer programs and we can extend this scheme for higher order also with slight modification in the present method. 3. This scheme is made easy by generalizing the operational matrix of integration. 4. This operational matrix of integration is newly generated using Hermite wavelets and method is also latest one. 5. This method is applicable for all type of initial value problems.

Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014

10 Acknowledgment It is a pleasure to thank the University Grants Commission (UGC), Govt. of India for the financial support under UGCSAP DRS-III for 2016-2021:F.510/3/DRS-III/2016(SAP-I) Dated: 29th Feb. 2016. References [1] M. Kumar, N. Singh, A collection of computational techniques for solving singular boundary-value problems, Adv. Eng. Softw. 40 (2009) 288–297. [2] A.M. Wazwaz, A new method for solving singular initial value problem in the second order ordinary differential equations, Appl. Math. Comput. 128 (2002) 45–57. [3] V.S. Erturk, Differential transformation method for solving differential equations of Lanr-Emden type, Math. Comput. Appl. 12 (3) (2007) 135–139. [4] S.C. Shiralashetti, A.B. Deshi, P.B. Mutalik Desai, Haar wavelet collocation method for the numerical solution of singular initial value problems, Ain Shams Eng. J. 7 (2016) 663–670. [5] E.H. Doha, W.M. Abd-Elhameed, Y.H. Youssri, New ultraspherical wavelet collocation method for solving 2nth order initial and boundary value problem, J. Egypt. Math. Soc. 24 (2016) 319–327. [6] F. Zhou, X. Xu, Numerical solutions for linear and nonlinear Boundary Value problems using Laguerre wavelets, Adv. Diff. Eq. 1–15 (2016). [7] M. Usman, S.T. Mohyud-Din, Physicists Hermites wavelets method for singular differential equation, Int. J. Adv. Appl. Math. Mech. 1 (2) (2013) 16–29. [8] A. Ayyaz, A.I. Muhammad, T.M. Syed, Hermite wavelets method for boundary value problems, Int. J. Mod. Appl. Phys. 3 (1) (2013) 38–47. [9] S.G. Venkatesh, S.K. Ayaswamy, S.R. Balachandar, Legendre wavelet method for solving initial problem of Bratu-type, Comput. Math. Appl. 63 (2012) 1287–1295. [10] A.K. Nasab, Z.P. Atabakan, A.I. Ismail, An accurate numerical algorithm for solving singular and nonsingular system of initial value problems on large interval, Mediterr. J. Math. 3 (6) (2016) 5033–5051. [11] S.C. Shiralashetti, P.B. Mutalik Desai, A.B. Deshi, Comparison of haar wavelet collocation and finite element methods for solving the typical ordinary differential equations, Int. J. Basic Sci. Appl. Comput. 1 (3) (2015) 1–11. [12] N.M. Bujurke, S.C. Shiralashetti, C.S. Salimath, An application of single-term Haar wavelet series in the solution of nonlinear oscillator equations, J. Comput. Appl. Math. 227 (2009) 234– 244. [13] E. Babolian, F. Fattahzadeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Appl. Math. Comput. 188 (2007) 417–426. [14] M. Razzaghi, S. Yousefi, The Legendre wavelets operational matrix of integration, Int. J. Syst. Sci. 32 (4) (2001) 495–502. [15] Y. Suayip, A numerical approach for solving a class of the nonlinear lane-emden type equations arising in astrophysics, Math. Methods Appl. Sci. 34 (2011) 2218–2230. [16] Y. Suayip, A numerical approach for solving the high-order linear singular differential-difference equations, Comput. Appl. 62 (2011) 2289–2303.

S.C. Shiralashetti, S. Kumbinarasaiah [17] Y. Suayip, T.S. Mehme, An improved Bessel collocation method with a residual error function to solve a class of lane-emden differential equations. Math. Comput. Model. [18] Y. Suayip, A numerical scheme for solutions of a class of nonlinear differential equations, J. Taibah Univ. Sci. (2013). [19] Y. Suayip, Exponential collocation method for solutions of singularly perturbed delay differential equations, Abstr. Appl. Anal. (2013), ID: 493204. [20] T.M. Syed, Y. Ahmet, S. Selin, Numerical soliton solution of the Kaup-Kupershmidt equation, Int. J. Numer. Methods Heat Fluid Flow, Emerald 21 (3) (2011) 272–281. [21] T.M. Syed, Y. Ahmet, A.S. Sefa, Numericalsoliton solutions of the improved Boussinesq equation, Int. J. Numer. Meth. Heat Fluid Flow 21 (7) (2011) 822–827. [22] T.M. Syed, K. Yasir, F. Naeem, Y. Ahmet, Exp-function method for solitary and periodic solutions of Fitzhugh Nagumo equations, Int. J. Numer. Meth. Heat Fluid Flow 22 (3) (2012) 335–341. [23] T.M. Syed, N. Elham, U. Muhammad, A meshless numerical solution of the family of generalized fifth-order Korteweg-de Vries equations, Int. J. Numer. Meth. Heat Fluid Flow 22 (5) (2012) 641–658. [24] M.N. Aslam, M.A. Akbar, T.M. Syed, A novel -expansion method and its application to the Boussinesq equation, Chin. Phys. B 23 (2) (2014). [25] T.M. Syed, A.N. Muhammad, I.N. Khalida, Traveling wave solutions of seventh-order generalized KdV equations using He’s polynomials, Int. J. Nonlinear Sci. Numer. Simul. 10 (2) (2009) 223–229. [26] T.M. Syed, A.N. Muhammad, K.I. Noor, M.M. Hosseini, Variational iteration method for reformulated partial differential equations, Int. J. Nonlinear Sci. Numer. Simul. 11 (2) (2010) 87–92. [27] T.M. Syed, A.N. Muhammad, V. Asif, A.A. Eisa, Exp-function method for traveling wave solutions of nonlinear evolution equations, Appl. Math. Comput. 216 (2010) 477–483. [28] T.M. Syed, A.N. Muhammad, I.N. Khalida, Some relatively new techniques for nonlinear problems, Math. Probl. Eng. (2009) Article ID-234849. [29] T.M. Syed, A.N. Muhammad, V. Asif, Exp-function method for generalized traveling solutions of master partial differential equations, Acta Appl. Math. 104 (2) (2008) 131–137. [30] T.M. Syed, A.N. Muhammad, V. Asif, Exp-function method for generalized traveling solutions of Calogero-Degasperis-Fokas equation, Zeitschrift fu¨r Naturforschung A J. Phys. Sci. 65 (2010) 78–84. [31] S. Yousefi, Legendre wavelet method for solving differential equation of Lane-Emden type, Appl. Math. Comput. 181 (2006) 1417–11422. [32] d.S. Panagiotis, G.M. Spyridon, The operational matrix of differentiation for orthogonal polynomial series, Int. J. Control 44 (2007) 1–15. [33] N.K. Rajeev, A. Raigar, Numerical solution based on operational matrix of differentiation of shifted second kind Chebyshev wavelets for a Stefan problem, Int. J. Math., Comput., Phys., Electr. Comput. Eng. 9 (7) (2015) 374–377. [34] B. Basirat, M.A. Shahdadi, Application of the BPOM for numerical solution of the isothermal gas spheres equations, Ijrras 18 (1) (2014).

Please cite this article in press as: S.C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.07.014