High pressure synthesis of arsenopyrite-type ternary compounds

High pressure synthesis of arsenopyrite-type ternary compounds

Mat. Res. Bull. Vol. I, pp. 3-12, 1966. P e r g a m o n P r e s s , Inc. the United States. Prin ted in HIGH PRESSURE SYNTHESIS OF ARSENOPYRITE-TYPE...

712KB Sizes 20 Downloads 68 Views

Mat. Res. Bull. Vol. I, pp. 3-12, 1966. P e r g a m o n P r e s s , Inc. the United States.

Prin ted in

HIGH PRESSURE SYNTHESIS OF ARSENOPYRITE-TYPE

TERNARY COMPOUNDS

Mario D. Banus and Mary C. Lavine Lincoln Laboratory, * M a s s a c h u s e t t s Institute of Technology Lexington, Massach u setts

(Received July 5th, 1966;

Communicated by J. B. Goodenough)

ABSTRACT

A s e r i e s of t e r n a r y compounds analogous to FeAsS (arsenopyrite) have been p r e p a r e d at a t m o s p h e r i c p r e s s u r e by Hulliger (1, 2) and others (3, 4). They w e r e able to synthesize only 20 of the possible 36 i s o e l e c t r o n i c compounds with the general fo rmu la MXY, w h e r e M i s Fe, R u o r O s ; X i s P, As, S b o r Bi; Y i s S , Se or Te. Four of the m i s s i n g compounds (OsSbSe, OsSbTe, OsBiSe and RuBiSe) have now been synthesized in a t e t r a h e d r a l anvil h i g h - p r e s s u r e unit at 35-50 kbar. The role of high p r e s s u r e is d i s c u s s e d in r e l a t i o n to vapor p r e s s u r e of the e l e m e n t s , size ratio and c o m p r e s s i b i l i t y of the atoms, and stability of the phases The X - r a y powder patterns of OsSbSe, OsSbTe and OsBiSe have been indexed as monoclinic s t r u c t u r e s of the same type adopted byHulliger (2) and the lattice p a r a m e t e r s a r e also consistent. Resistivity m e a s u r e m e n t s on OsSbSe and OsSbTe suggest that they are extrinsic semiconductors.

Introduction A s e r i e s of compounds with the g en eral f o r m u l a s MX2, MXY and MY2 can be synthesized w he r e M is the Group VIIIB metal, X is a Group VB and Y is a Group VIB metal.

The s t r u c t u r e s of these compounds a r e pyrite (C2),

m a r c a s i t e (C18) or a r s e n o p y r i t e (EO 7) depending p r i m a r i l y on the total number of e l e c t r o n s in the compound.

Thus, FeAsS (arsenopyrite) and CoAs 2 (safflorite)

*Operated with support f r o m the U. S. Air F o r c e .

4

A R S E N O P Y R I T E - T Y P E T E R N A R Y COMPOUNDS

Vol. 1, No.1

e a c h with 19 v a l e n c e e l e c t r o n s , a r e n a t u r a l l y o c c u r r i n g e x a m p l e s of c o m p o u n d s h a v i n g the m o n o c l i n i c EO 7 s t r u c t u r e .

The c o m p o u n d s with total n u m b e r of

v a l e n c e e l e c t r o n s of 20 or 21, a s f o r e x a m p l e FeS 2 (pyrite), CoAsS (colbaltite), P t P 2 , RhSe 2 and NiPS all have the p y r i t e C2 or C2' s t r u c t u r e .

Finally, the

c o m p o u n d s with total v a l e n c e e l e c t r o n s equal to 18, F e P 2 , etc. have the m a r casite structure. The t e r n a r y a r s e n o p y r i t e - t y p e c o m p o u n d s have b e e n s t u d i e d by H u l l i g e r (1, 2), H u l l i g e r and M o o s e r (3), and Hahn and K l i n g e r (4).

Of the 34 p o s s i b l e

c o m p o u n d s (not n a t u r a l l y o c c u r r i n g ) l i s t e d in Table 1, t h e y w e r e able to s y n t h e s i z e only 20 by p r o l o n g e d s i n t e r i n g of c o l d - p r e s s e d p o w d e r s at a t m o s p h e r i c pressure. TABLE 1 FePS

4

RuPS

2

OsPS

2

FeAsS

*

RuAsS

2

OsAsS

2

FeSbS

*

RuSbS

2

OsSbS

2

FeBiS

-

RuBiS

-

OsBiS

-

FePSe

4

RuPS

2

OsPSe

2

FeAsSe

4

RuAsSe

2

OsAsSe

2

FeSbSe

4

RuSbSe

2

OsSbSe

§

FeBiSe

-

RuBiSe

-

OsBiSe

§

FePTe

-

RuPTe

-

OsPTe

-

FeAsTe

4

RuAsTe

2

OsAsTe

2

FeSbTe

4

RuSbTe

2

OsSbTe

§

FeBiTe

-

RuBiTe

-

OsBiTe

§

* N a t u r a l l y o c c u r r i n g m i n e r a l s , a r s e n o p y r i t e (FeAsS) and g u d m u n d i t e (FeSbS). §This w o r k . The r e m a i n i n g c o m p o u n d s , p a r t i c u l a r l y t h o s e c o n t a i n i n g Os or Ru, might, h o w e v e r , be a m e n a b l e to s y n t h e s i s u n d e r high p r e s s u r e . S y n t h e s i s u n d e r high p r e s s u r e w a s i n d i c a t e d s i n c e one or m o r e of the f o l l o w i n g c o n s i d e r a t i o n s could apply: 1. The s i z e r a t i o of the a t o m s m i g h t be u n f a v o r a b l e f o r the

Vol. I, No. 1

ARSENOPYRITE-TYPE TERNARY COMPOUNDS

5

d e s i r e d c o m p o u n d at 1 a t m and the c o m p r e s s i b i l i t i e s of the a t o m s could be s u c h that at h i g h e r p r e s s u r e the s i z e r a t i o s would i m p r o v e .

(The s y n t h e s i s of Nb3In (4) and Nb3Bi (5)

a r e e x a m p l e s of t h i s c a s e . ) 2. The v a p o r p r e s s u r e of one c o m p o n e n t in the s y s t e m m i g h t be v e r y high at the s y n t h e s i s t e m p e r a t u r e ,

and v e r y high

p r e s s u r e s would t h e r e f o r e be r e q u i r e d to c o n t a i n it.

(The

p r e p a r a t i o n of C r O 2 by K a f a l a s (6) is an e x c e l l e n t e x a m p l e of t h i s c a s e . ) 3. P r e s s u r e

m i g h t a l t e r the p h a s e d i a g r a m by r a i s i n g the

t e m p e r a t u r e of a p e r i t e c t o i d d e c o m p o s i t i o n or by i n c r e a s ing the s o l u b i l i t y of a c o m p o n e n t to p e r m i t the s y n t h e s i s . E x a m p l e s of t h e s e c a s e s a r e d i f f i c u l t to f u r n i s h b e c a u s e p r o o f r e q u i r e s the d e t e r m i n a t i o n of a p h a s e d i a g r a m u n d e r pressure.

The InSb-Sn (7) s y s t e m and F e - C (8) s y s t e m a r e

c a s e s w h e r e two c o m p o n e n t s y s t e m s have b e e n s t u d i e d u n d e r pressure. T h e r e is, h o w e v e r , the d i s a d v a n t a g e in h i g h - p r e s s u r e s y n t h e s i s that in c o m p o u n d s w h e r e s o l i d - s o l i d d i f f u s i o n is the p r i m a r y m e c h a n i s m , p r e s s u r e s t r o n g l y d e c r e a s e s the d i f f u s i o n r a t e .

In g e n e r a l p r a c t i c e it is not f e a s i b l e to

r u n h i g h - p r e s s u r e e q u i p m e n t f o r a s i n g l e s a m p l e at t e m p e r a t u r e s of 8 0 0 - 1 0 0 0 ° C f o r m o r e than a few d a y s at a t i m e .

D e t e r i o r a t i o n of the h e a t e r a s w e l l as w o r k

load on the e q u i p m e n t a r e s o m e of the p r o b l e m s e n c o u n t e r e d in l o n g - t e r m r u n s . Experimental The s p e c i m e n s t r e a t e d at high p r e s s u r e w e r e all p r e p a r e d in the f o l l o w i n g manner.

C a r e f u l l y w e i g h e d p o w d e r s ( h i g h e s t p u r i t y c o m m e r c i a l l y available) of

the e l e m e n t s w e r e m i x e d and cold p r e s s e d at ~ 7 k b a r . (0.3 in. d i a m e t e r by - 0 . 4

The r e s u l t i n g c y l i n d e r s

in. long) w e r e p l a c e d in b o r o n n i t r i d e c a n s i n s i d e

g r a p h i t e h e a t e r s l e e v e s and t h e n p l a c e d i n s i d e p y r o p h y l i t e t e t r a h e d r a 3 . 0 0 in. on an edge. incorporated.

Suitable p o w e r l e a d s and a s h e a t h e d Cr-A1 t h e r m o c o u p l e w e r e The s a m p l e s w e r e s q u e e z e d in a 2000-ton, t e t r a h e d r a l - a n v i l

p r e s s to 35-45 k b a r ( r o o m t e m p e r a t u r e c a l i b r a t i o n ) p r i o r to r a i s i n g the t e m perature.

6

A R S E N O P Y R I T E - T Y P E T E R N A R Y COMPOUNDS

Vol. 1, No. 1

In s y n t h e s i s u n d e r high p r e s s u r e two h e a t i n g c y c l e s can be u t i l i z e d .

If

the e l e m e n t s , p o s s i b l e i n t e r m e d i a t e s , and final p r o d u c t a r e all s o l i d s at the m a x i m u m t e m p e r a t u r e or a r e all m o l t e n a n d c o m p l e t e l y soluble, t h e n r a p i d h e a t i n g to the s y n t h e s i s t e m p e r a t u r e is p o s s i b l e and p r e f e r a b l e .

If, h o w e v e r ,

s o m e of the e l e m e n t s or i n t e r m e d i a t e s a r e liquid, but the p r o d u c t is solid, slow h e a t i n g with a n n e a l s at i n t e r m e d i a t e t e m p e r a t u r e s m a y be p r e f e r r e d in o r d e r to p r e v e n t the f o r m a t i o n of s u b s t a n t i a l liquid p h a s e s that c a n i s o l a t e the c o m p o n e n t s and d e c r e a s e the i n t e r d i f f u s i o n s u r f a c e .

T h i s is a g g r a v a t e d by the

p r e s e n c e of t e m p e r a t u r e g r a d i e n t s , w h i c h in s p e c i m e n s of t h i s s i z e can a m o u n t to 1 5 - 3 0 o c . In T a b l e 2, the m e l t i n g p o i n t s of the e l e m e n t s at 45 k b a r a r e i n d i c a t e d , w h e r e known, a l o n g w i t h the s l o p e of the d T / d p c u r v e .

It would s e e m (based

TABLE 2

M (8 e l e c t r o n s )

X (5 e l e c t r o n s )

Y (6 e l e c t r o n s )

P (590oc)

S 330°C - P o s

As 940°C - P o s

Se 680oc - Pos

Ru (2450°C)

Sb 590°C ° N e g to 57 k b a r

Te ~ 530oC - P o s

Os (2700oc)

Bi 375°C - P o s above 25 k b a r

Fe 1640°C - P o s

on the e l e m e n t s ) t h a t the M - A s - S e s y s t e m s would have the h i g h e s t m e l t i n g p o i n t s , while M - B i - S m i x t u r e s would have the l o w e s t .

H o w e v e r , the s i t u a t i o n

is c o m p l i c a t e d by the i n t e r m e d i a t e s f o r m e d p r i o r to c o m p l e t e r e a c t i o n .

At

a t m o s p h e r i c p r e s s u r e s the As c h a l c o g e n i d e s have m . p . 's in the 300°C r a n g e , the Sb c o m p o u n d s in the 600°C r a n g e s and the Bi c o m p o u n d s in the 600-700°C range.

The Os and Ru c h a l c o g e n i d e s d e c o m p o s e a r o u n d 600°C.

p r e s s u r e on the above t e m p e r a t u r e s is not known.

The e f f e c t of

U n d e r t h e s e c o n d i t i o n s the

p r e f e r r e d c y c l e would s e e m to be slow h e a t i n g with a p p r o p r i a t e i n t e r m e d i a t e

Vol. 1, No. 1

ARSENOPYRITE-TYPE TERNARY COMPOUNDS

7

anneal temperatures selected by estimation of melting points of the intermediate compounds. The preferred synthesis conditions for the four compounds that were successfully synthesized are listed in Table 3. In most cases more complete reaction could be obtained by recycling as follows: The ingot from the first cycle (generally containing 2 or 3 phases), was ground, repelleted, and repressed with heating times of 6-24 hours.

The second cycle gave information

about the decomposition temperature of the compounds under pressure since samples from cycle I, which contained large amounts of arsenopyrite compound, were converted to the elements when heated above ~ 1100°C for OsSbSe and OsSbTe and ~ 1000°C for OsBiSe. These data set the upper limits for the holding temperatures for the preferred conditions. In all cases, the temperature cycle was the critical parameter as long as the applied pressure was greater than 37 kbar; therefore the pressure was not varied over wide ranges.

TABLE 3

1st Cycle

Compound

Pressure (kbar)

Heat Rate (hrs)

Holding Temp. (°C)

2nd Cycle

Time (hrs)

Heat Rate

Holding Temp. (°C)

Time (hrs)

OsSbSe

45-47

Slow 1-2

9501050

6-8

Slow hold at 550 °

9501000

12 -24

OsSbTe

42 -47

Fast 1/2

9751050

6-8

Fast 1/2

950I000

26-24

OsBiSe

44-47

Slow 2-3

900 ± 20

6-8

Slow

950 ± 25

6-24

RuBiSe

45-46

Slow 1-2

850900

8

The O s - S b - T e m i x t u r e w a s the only t e r n a r y that could be h e a t e d p r o m p t l y to the m a x i m u m t e m p e r a t u r e with s u c c e s s f u l r e s u l t s .

I n c o m p l e t e r e a c t i o n s in

the s u c c e s s f u l p r e p a r a t i o n s gave m i x t u r e s of MY2, X2Y 3 and s o m e of the desired monoclinic compound.

U n d e r all c o n d i t i o n s a t t e m p t e d , the t e r n a r y

ARSENOPYRITE-TYPE TERNARY COMPOUNDS

8

a

Vol. 1. No. 1

b FIG. 1

Two a r e a s f r o m the same ingot of OsSbSe (HPTGR). (a) Bar cut f r o m center of ingot, single phase and uniform. (b) A fragment f r o m the edge showing definite second phase inclusions which has been shown by m i c r o p r o b e analysis to be Os.

mixtures, which w e r e not synthesized successfully, contained only MY2, X2Y 3 and the e l e m e n t s .

At p r e s s u r e s of 35-37 kbar, s amp les containing Bi generally

"blew out" even with slow heating. The extent of r e a c t i o n after various synthesis conditions was d e t e r m i n e d p r i m a r i l y f r o m X - r a y D e b y e - S c h e r r e r powder patterns;

additional information

was obtained f r o m visual and metallographic examination and f r o m e l e c t r o n beam m i c r o p r o b e analysis of polished sections of the ingots.

Samples, whose

powder p a t t e r n s indicated that only the monoclinic phase was p r e s e n t when examined by the optical methods, frequently showed small islands of impurities. These i m p u r i t i e s w e r e usually found at the p e r i p h e r y of the cylindrical ingots, so that bars cut f r o m the center for e l e c t r i c a l m e a s u r e m e n t s appeared to be f r e e of u n r e a c t e d m a t e r i a l s or i n t e r m e d i a t e s .

(See Fig. 1.)

The Knoop m i c r o h a r d n e s s of the t e r n a r y phase ( m e a s u r e d with a Leitz Miniload h a r d n e s s t e s t e r ) was 672 k g / s q m m for OsSbSe and 196 k g / s q mm for OsSbTe. phases.

OsBiSe and RuBiSe w e r e never obtained as apparently pure monoclinic

Vol. 1, No. 1

A R S E N O P Y R I T E - T Y P E TERNARY COMPOUNDS

9

P r o p e r t i e s of the New P h a s e s The s t r u c t u r e , l a t t i c e p a r a m e t e r s , and e l e c t r i c a l p r o p e r t i e s of the new t e r n a r y p h a s e s w e r e studied.

The D e b y e - S c h e r r e r p o w d e r p a t t e r n s w e r e m a d e

in a 114.6 m m N o r e l c o c a m e r a with C u I ~ r a d i a t i o n and e x p o s u r e s of 8-12 h o u r s . The d - v a l u e s and sin2e v a l u e s w e r e c a l c u l a t e d by a p r o g r a m f o r the 7090 c o m p u t e r f r o m the line p o s i t i o n s d e t e r m i n e d with a f i l m - m e a s u r i n g d e v i c e .

The

m a j o r s o u r c e of e r r o r is in the d i f f u s e n e s s of the lines, which set the e r r o r l i m i t s of • 0.03 f o r the l a t t i c e p a r a m e t e r v a l u e s shown in Table 4.

The r e s u l t s

of the X - r a y s t u d y on the t h r e e c o m p o u n d s a r e c o n s i s t e n t with the a s s i g n m e n t of the m o n o c l i n i c a r s e n o p y r i t e s t r u c t u r e a s s t a t e d by Hulliger (2).

The lattice

p a r a m e t e r s a r e a l s o c o n s i s t e n t and in logical s e q u e n c e with his v a l u e s f o r o t h e r m e m b e r s of this s e r i e s .

The d e n s i t y v a l u e s w e r e obtained u s i n g a B e r m a n

b a l a n c e and toluene a s the d i s p l a c e m e n t liquid.

The high d e n s i t y of OsBiSe

(as shown by the high n u m b e r of a t o m s / u n i t cell) is the r e s u l t of s o m e f r e e Os with its d e n s i t y of 2 2 . 5 g / c c .

The s a m p l e s of RuBiSe w e r e n e v e r u n c o n t a m i n a t e d

enough to allow d e t e r m i n a t i o n of the l a t t i c e p a r a m e t e r s . TABLE 4 a

Compound

o

b

o

c

o

8

(deg)

Density (g/ca)

(~)

(/~)

(/~)

OsSbSe

6.38

6.34

6.42

113.4

10.404

11. 855

OsSbTe

6.57

6.62

6.66

113.1

10.963

12. 008

OsBiSe

6.52

6.46

6.57

113.8

11.034

13.2

n

The e l e c t r i c a l p r o p e r t i e s of the t e r n a r y compounds w e r e d e t e r m i n e d on s m a l l r e c t a n g u l a r b a r s cut f r o m the c e n t e r of the ingot p a r a l l e l to the a x i s .

The

r e s u l t s of t h e s e m e a s u r e m e n t s on f o u r s p e c i m e n s that w e r e e s s e n t i a l l y f r e e of u n r e a c t e d m a t e r i a l s a r e shown in Table 5.

The b e s t s p e c i m e n is obviously

OsSbSe (HPTGR) s i n c e its high r e s i s t i v i t y r a t i o i n d i c a t e s the l e a s t a m o u n t of impurities.

A t t e m p t s w e r e m a d e to m e a s u r e the Hall valtage.

In f i e l d s of

6.3 k g a u s s and with c u r r e n t s of up to 10 ma, no Hall v o l t a g e s could be m e a s u r e d down to 5 × 10 -5 uv.

The t h e r m o e l e c t r i c - p o w e r r e s u l t s a r e c o n s i s t e n t with

H u l l i g e r ' s r e s u l t s on o t h e r c o m p o u n d s .

H o w e v e r , all t h e s e e l e c t r i c a l p r o -

10

A R S E N O P Y R I T E - T Y P E T E R N A R Y COMPOUNDS

Vol. 1, No. 1

p e r t i e s a r e s e n s i t i v e to i m p u r i t y l e v e l s and to the n u m b e r of g r a i n b o u n d a r i e s , so t h e y s h o u l d be r e g a r d e d m e r e l y a s i n d i c a t i o n s .

A t t e m p t s w e r e m a d e to

d e t e r m i n e the o p t i c a l a d s o r p t i o n edge to o b t a i n a value of the e n e r g y gap. H o w e v e r , s a m p l e s a s t h i n a s 60 u w e r e c o m p l e t e l y opaque to light with w a v e l e n g t h s f r o m 0 . 5 to 25 u.

H u l l i g e r (2) w a s unable to m e a s u r e e n e r g y gaps

e i t h e r by e l e c t r i c a l or by d i f f u s e r e f l e c t a n c e t e c h n i q u e s f o r O s A s S e and O s A s T e . TABLE 5 P300OK (ohm-cm)

077OK (ohm-cm)

o77OK/P300OK

Type

(uv/°C)

OsSbSe HP7GR

I. 59

3 . 7 6 × 102

237

P

137

OsSbSe HP9GR

1 . 2 4 x I0 - I

i . 18

9.5

P

157

OsSbTe HP7

8 . 2 2 × 10 -2

4 . 5 9 × i0 - I

5.6

P

138

OsSbTe HP10GR

3 . 8 × 10 -2

2 . 2 8 × I0 - I

6.0

P

188

Sample

Discussion It is difficult to u n a m b i g u o u s l y a s s i g n the f u n c t i o n of high p r e s s u r e in the s y n t h e s e s of t h e s e t e r n a r y c o m p o u n d s .

The m o s t p e r t i n e n t e v i d e n c e is f r o m

a s t u d y of the s t a b i l i t y of OsSbSe and O s S b T e w h e n h e a t e d in v a c u u m - s e a l e d q u a r t z c a p s u l e s at c o n d i t i o n s s i m i l a r to t h o s e u s e d by H u l l i g e r to s y n t h e s i z e his compounds.

A f t e r h e a t i n g at 600°C f o r 6 h o u r s , t h e r e w a s no change in

the s a m p l e s that could be d e t e c t e d v i s u a l l y or with X - r a y p o w d e r p a t t e r n s . H o w e v e r , the s a m e s a m p l e s a f t e r 6 h o u r s at 800°C gave a m e t a l l i c m i r r o r and an X - r a y p o w d e r p a t t e r n that w a s p r i m a r i l y Os.

Thus, t h e s e c o m p o u n d s a r e

d e f i n i t e l y not s t a b l e u n d e r the a t m o s p h e r i c p r e s s u r e s y n t h e s i s c o n d i t i o n s . H o w e v e r , we cannot s a y w h e t h e r t h i s i n s t a b i l i t y is c a u s e d by v a p o r p r e s s u r e of the X and Y c o m p o n e n t s or by s i z e r a t i o of the a t o m s . F o r e x a m p l e , c o n s i d e r the d i f f e r e n c e in the m e t a l l i c r a d i i (10) b e t w e e n the Group V(X) a t o m s and the Group VI(Y) a t o m s :

Vol. i, No. 1

ARSENOPYRITE-TYPE TERNARY COMPOUNDS

11

Sb-Se = 0 . 2 2 ~, S t - T e = 0 . 0 2 /~, B i - T e = 0 . 1 4 ~, and Bi-Se = 0 . 3 4 ~ . The Os t e r n a r y c o m p o u n d s of all but B i - T e w e r e s y n t h e s i z e d u n d e r p r e s s u r e , e v e n t h o u g h its s i z e d i f f e r e n c e is i n t e r m e d i a t e in the s e r i e s .

If v a p o r p r e s s u r e

of the X or Y e l e m e n t is the c o n t r o l l i n g f a c t o r , t h e n why can RuSbSe and RuSbTe be m a d e at a t m o s p h e r i c p r e s s u r e while the Os a n a l o g s r e q u i r e ~ 45 k b a r for t h e i r s y n t h e s i s ? An e x p l a n a t i o n m a y be that the u p p e r t e m p e r a t u r e l i m i t of s t a b i l i t y ( p e r i t e c t i c d e c o m p o s i t i o n t e m p e r a t u r e ) of t h e s e c o m p o u n d s is below the 700-900 ° r a n g e n e e d e d to c a r r y out the d i f f u s i o n c o n t r o l l e d s y n t h e s i s at atmospheric pressure.

At h i g h e r p r e s s u r e s ,

this decomposition temperature

is r a i s e d to the 1 0 0 0 - 1 1 0 0 ° C r a n g e and thus the s y n t h e s i s is s u c c e s s f u l . The e l e c t r i c a l p r o p e r t i e s of t h e s e c o m p o u n d s as s y n t h e s i z e d a r e u n u s u a l . T h e y show s e m i c o n d u c t i n g b e h a v i o r s i n c e t h e y have r e l a t i v e l y high r e s i s t i v i t i e s , n e g a t i v e t e m p e r a t u r e c o e f f i c i e n t of r e s i s t i v i t y and high t h e r m o e l e c t r i c p o w e r . H o w e v e r , t h e y do not have m e a s u r a b l e Hall c o e f f i c i e n t s , s u g g e s t i n g that t h e y have v e r y high c a r r i e r c o n c e n t r a t i o n s , e x c e e d i n g 1 0 2 0 / c c b a s e d on a o n e c a r r i e r e q u a t i o n f o r the Hall c o e f f i c i e n t .

The high c a r r i e r c o n c e n t r a t i o n is not

c o n s i s t e n t with the o t h e r e l e c t r i c a l p r o p e r t i e s , w h i c h s u g g e s t s that the o n e c a r r i e r m o d e l d o e s not apply.

Since t h e y have not b e e n p r e p a r e d a s s i n g l e

c r y s t a l s and a r e not i m p u r i t y f r e e , it is not c l e a r w h e t h e r t h e s e e l e c t r i c a l p r o p e r t i e s a r e t h o s e of the c o m p o u n d s t h e m s e l v e s or a r e a r e s u l t of the high i m p r u i t y level. We w i s h to thank Dr. V. S a d a g o p a n of the M. I. T. M a t e r i a l s S c i e n c e C e n t e r for b r i n g i n g t h e s e c o m p o u n d s to our a t t e n t i o n and we a r e g r a t e f u l to M r . T. Stack f o r his a s s i s t a n c e in p r e p a r i n g s a m p l e s , to M r s . M. J. Button f o r r e a d i n g the X - r a y p o w d e r p a t t e r n s and to M i s s M. C. F i n n for the e l e c t r o n beam microbe analyses.

We a l s o thank D r . A. J. S t r a u s s f o r his a d v i c e and

his help with the e l e c t r i c a l m e a s u r e m e n t s . References 1. F. H u l l i g e r , P h y s . L e t t e r s 4, 282 (1963). 2. F. H u l l i g e r , N a t u r e 201, 381 (1964). 3. F. H u l l i g e r and E. M o o s e r , J. P h y s . C h e m . Solids 2___66,429 (1965). 4. H. Hahn and W. K l i n g e r , N a t u r w i s s 52, No. 17, 494 (1965).

12

A R S E N O P Y R I T E - T Y P E T E R N A R Y COMPOUNDS

Vol. 1, No. 1

5. M. D. Banus, T. B. Reed, H. C. C-atos, M. C. Lavine and J. A. Kafalas, J. Phys. Chem. Solids 23, 971 (1962). 6. D. H. Killpatrick, J. Phys. Chem. Solids 2_55, 1213 (1964). 7. D. S. Chapin, J. A. Kafalas and J. M. Honig, J. Phys. Chem. 69, 1402 (1965) 8. M. D. Banus, Susan Nye Vernon and H. C. Gatos, J. Appl. Phys. 36, 864 (1965). 9. S. V. Radcliff, M. Schatz and S. A. Kulin, J. Metals 12, 731 (1960). 10. L. Pauling, The Nature of the Chemical Bond, Third Edition, p. 403. Cornell University P r e s s , Ithaca, New York (1960).