High α-Recursively Enumerable Degrees

High α-Recursively Enumerable Degrees

J.E. Fenstad. R.O. Gandy, G.E. Sacks (Eds.) GENERALIZED RECURSION THEORY I I North-Holland Publishing Company (1978) Q HIGH a-RECURSIVELY ENUMERABLE...

1MB Sizes 0 Downloads 146 Views

J.E. Fenstad. R.O. Gandy, G.E. Sacks (Eds.) GENERALIZED RECURSION THEORY I I North-Holland Publishing Company (1978)

Q

HIGH a-RECURSIVELY ENUMERABLE DEGREES Wolfgang Maass Msthematisches Institut der Universitat Miinchen A degree g

is said to be high if &' = 0"

the jump of 2 and

where &'

is

0 is the degree of the empty set. Thus 0'

is a high degree but in ordinary recursion theory (ORT) there exist as well high recursively enumerable (r.e.)

degrees below

0'

according to a theorem of Sacks 1121. The proof of this result is a very nice application of the infinite injury priority method. It follows from the theorem of Sacks that the notion high is not trivial. Further results show that the notions high and low (

is low if

a' =

0' ) are in fact important for the study of

the fine structure of the r.e. degrees in ORT. The intuitive meaning is that 2 is high if 2 is near to if

2 is near to

0

0'

and 2 is low

in,the upper semilattice of the r.e.

degrees.

Therefore these notions are useful for the study of non-uniformity effects in this structure where one looks for theorems which hold in some regions of this semilattice but not everywhere (see e.g. Lachlan L43). In addition high degrees are interesting for technical reasons. Some results have been proved for high degrees and it is not yet known whether they are true for all r.e. degrees (see e.g. Cooper

tll).

Finally high degrees are a link between the structure of r.e. degrees and the structure of r.e. Martin

(see[l5]):

sets according to a theorem of

A degree contains a maximal r.e.

set if and

only if it is a high r.e. degree. In a-recursion theory for admissible ordinals 2 39

OL

the deeper

WOLFGANG MAASS

240

properties of r.e. degrees and r.e. sets are explored in a general setting and one tries to find out which assumptions are really needed in order to do certain constructions. We refer the reader to the survey papers by Lerman and Shore in this volume for more information. It turned out that in fact several priority arguments can be transferred to u-recursion theory (see e.g. Sacks-Simpson 1141, Shore 1163, Shore 1181). Other results of ORT have been proved for many admissible

u but 'it is still open whether they hold for all

admissible a( e.g. the existence of minimal pairs of a-r.e. degrees 161 ,[21]

and the existence of minimal a-degrees [171,[7]).

Lerman [5] closed the gap between provable existence and provable non-existence in the case of maximal cc-r.e. sets.

For some time one thought that the existence of high tx-r.e. degrees below 0 '

was as well completely settled by Shore c 2 0 3 ,

but an error was found in the proof of Theorem 2.3.

in [ 2 0 ]

* . The

problem was then open again except for z2-admissible u where the existence proof from ORT works and for

d

such that

0'

is the

only non-hyperregular a-r.e. degree where every a-r.e. degree below 0'

is low according to [201 (these are the types ( 1 ) and

( 4 ) in our characterization in $ 3 ).

We close the gap in this paper by proving that high a-r.e. degrees below 0'

exist if and only if u2cf u a w2p u

. This re-

sult was not expected and is different from the result in 1201. We think that the new result is a lucky circumstance for a-recursion theory since it was thought in C201 that the situation is somewhat trivial (every non-hyperregular cL-r.e. degree is high). Now it turns out that inadmissibility (in form of non-hyperregularity) influences the behaviour of the jump of an a-r.e. degree but is *I would like

thank R . A . Shore for informing me about this.

HIGH a-RECURSIVELY ENUMERABLE DEGREES

241

not s o s t r o n g t h a t it overruns everything ( t h i s w i l l become even c l e a r e r i n our forthcoming paper C113 ). The plan o f t h i s paper i s as f o l l o w s : contains some basic d e f i n i t i o n s and f a c t s . In

we construct high ci-r.e.

> o2cfa 8 v2pa

degrees below

0'

f o r t h e case

. We give some motivation f o r t h e construction

s o t h a t t h i s chapter should be readable f o r anyone who has seen bef o r e an i n f i n i t e i n j u r y p r i o r i t y argument i n ORT (e.g.C23]).

construction r e f l e c t s s e v e r a l t y p i c a l f e a t u r e s of

The

a-recursion

theory and uses s t r a t e g i e s which would not work i n ORT. In

$&

0'

i n t h e case o 2 c f o

we prove t h a t t h e r e e x i s t no high w-r.e. 4

w2pa

degrees below

by using some basic p r o p e r t i e s o f

s t r o n g l y inadmissible s t r u c t u r e s . Along t h e way some first r e s u l t s a r e proved about a distinguished degree between which we w r i t e

O3I2.

A summary i s given i n

. Four types o f

0,'

and

0''

admissible o r d i n a l s have

t o be distinguished as f a r as t h e behaviour o f t h e jump o f r.e. grees i s concerned.

for

de-

242

WOLFGANG W S S

$0. P r e l i m i n a r i e s

p

Lowcase greek l e t t e r s a r e always o r d i n a l s , always l i m i t o r d i n a l s and

a i s always admissible i n t h i s paper.

W e consider only s t r u c t u r e s ';G = < Lp,B> r e g u l a r over D

s LR i s

Lp

, i.e.

zn% i f

' d x < (3 ( L r D

may c o n t a i n elements of

For

2,s

t h a t some

w r i t e s rrnp'p

p

ancfa

A set

D

ancflqa

An o r d i n a l

and

D

E.

$6-r.e.

{ K a Lo

I)-finite i f

&
Lo :

f x l < e , x > s U,"3

is

D

I K

C

D

.

zns

C

sets

i s E n % - i f and only i f

e

E (3 )

U,"

if

we w r i t e

for

(i.e.

D =

zn'&

which are given by some

n = 1

of

for

Wes

A ,D c L o

A srLD )

one says t h a t

i s %-reducible t o

A

i f t h e r e i s some index

D

e e (i such t h a t f o r

K c Lg

all

K

sn&i f t h e s e t i s xn$v . A s e t

i s called a (regular) 0-cardinal

for some

is

D

if

tame-

D3

.

.

anpLa,

~r3

For s e t s (written

.

such

zn$function

($-recursive)

K a Lo

d e f i n i t i o n . I n t h e s p e c i a l case (xi
(which

and one

instead of

W e f i x f o r t h e following u n i v e r s a l every s e t

dr

such t h a t some

anpa

b [ b is a (regular) cardinal]

L,.

En formula

d cofinally into

W e say t h a t a s e t

i s called

say t h a t a s e t

f o r the l e a s t

d s (3

s Lo i s c a l l e d

" p o s i t i v e neighborhoods" K C L,,

. We

6 ( i . e . p maps (3 1-1 i n t o b ). We w r i t e

into

I,% ( A ,$).

Lp )

is

B

L p as parameters) over t h e s t r u c t u r e %

f u n c t i o n maps

i n s t e a d of

L

B G LR and

i s d e f i n a b l e by some

for the least

projects

p

where

B

r\

one w r i t e s a n c f d X

1 c (3

A are

and

A

t)

3 H1 H2 8 L B ( E We

d

A

H1 si D

A

H 2 s Lo

-D

)

and KcLp-Ae3H,

H ~ r L ~ ( ( K , 1 , H l , H 2 > 6 WH~1*s D * H 2 C L R - D ) .

H I GH

The index

e

~ 1 -RECURS I VELY

can be communicated by w r i t i n g

One f u r t h e r defines t h a t

[XI

(written

A SwSD

L,,

6

says t h a t a degree

D

r e s t r i c t e d t o single-

i s defined by

A =$D

A asD

and t h e equivalence c l a s s e s a r e c a l l e d 6-deRrees

D **A

c

K

to

).

An equivalence r e l a t i o n

A E

.

A LZD

i s weakly $-reducible

A

i n t h e same way but with t h e s e t s tons

243

ENUMERABLE DEGRE ES

A

. One

has c e r t a i n p r o p e r t i e s i f t h e r e e x i s t a s e t

which has a l l t h e s e p r o p e r t i e s .

We study i n t h i s paper t h e

a-jump

operator

(see Shore c201

f o r a discussion o f t h e d e f i n i t i o n ) : A'

:= C
H1 H2

i s t h e jump o f a s e t write

instead o f

We

L, ( c

E

we^

). Since we have

A

4e

H2 c I.,-

A

i n a - r e c u r s i o n theory

A S L ,

WeL&

H1 5 A

A)

(we always

D + A'

ss D f

t h i s d e f i n i t i o n gives r i s e t o t h e d e f i n i t i o n of t h e u-jump

c w ~ 'f o r

operator

We w r i t e s t e a d of

(0')'

bility)

U2La =~

"1

for the

0

6

At

w-degree o f t h e empty s e t and

A

in-

0"

-

. Observe t h a t UlLU 0' and ( u s i n g the a d m i s s i 0" . Furthermore we have f o r r e g u l a r s e t s A t h a t . E

One says t h a t an u-r.e. otherwise

.

2

at-degrees

set

A

i s complete i f

A

0

;

0'

i s c a l l e d incomplete.

We o f t e n use without f u r t h e r mentioning t h e r e g u l a r s e t theorem

of Sacks which says t h a t every a - r . e .

regular

a-r.e.

For a s e t

set A

(see [13],

c L,

[22],[81

one w r i t e s

such t h a t a c o f i n a l function

f :

a-reducible t o

A

rcf A = u

A

. The s e t

, otherwise

A

rcf A

degree contains a

f o r proofs).

f o r the least

b + o e x i s t s which

6

ot

i s weakly

i s c a l l e d hyperregular i f

i s c a l l e d non-hyperremlar.

d

2 44

WOLFGANG MAASS

Observe t h a t we have f o r r e g u l a r ticular

r c f A = o l c f ' L a t A ' a , i n par-

A

i s non-hyperregular i f f

A

Hyperregularity i s

i s inadmissible.



a p r o p e r t y of de-

-contrary t o regularity-

g r e e s r a t h e r t h a n of s i n g l e r e p r e s e n t a t i v s : gree then

i s t h e same f o r every

rcf A

& i s an a-de-

if

A E &

.

Simpson proved i n h i s t h e s i s t 2 2 1 t h a t f o r any

r = rcf

have t h . a t

u - c a r d i n a l and

A

f o r some eC-r.e.

v2cfLu8

= c2cf u

.

A

yc

Q

we

is a regular

iff

The f o l l o w i n g Lemma combines of Shore c19]

i n b ) Simpson's r e s u l t w i t h Theorem 2.1.

. The proofs

z2 p r o j e c t i o n

of a ) and c ) a r e s t r a i g h t f o r w a r d ( c o n s i d e r a

from x

i n t o a2por f o r c ) ). Lemma 1 :

a)

0'

b)

There e x i s t s an incomplete non-hyperregular

either

i s a non-hyperregular

c)

such t h a t

*

o2cfLOLw = u2cfcr

w2pa < x

and

(we w r i t e

w2cfu

zn'&s e t

i n s t e a d of

Jn,p

d-r.e.

OL

. degree

<

iff

and t h e r e i s a

02cfLuw = o 2 c f

d

.

f o r every r e g u l a r a - c a r d i n a l

x

x .

F i n a l l y d e f i n e f o r any s t r u c t u r e

: = p 6 + ( %a(

u2cfa < u

< w2pu

or-cardinal K a o 2 p a such t h a t

We have

f,,P

or w2cfa

0 2 p a 6 w 2 c f o ~ < cu

regular

a-degree i f f

M L 6

b = e x i s t s such t h a t

M 6 Ln)

jn Lg ). PP

According t o J e n s e n ' s Uniformization Theorem C21 we have 9n*fi

pnla

= o n p (3

f o r every

n > 0

and every l i m i t o r d i n a l (3.

We w i l l o f t e n use without f u r t h e r mentioning t h e e q u a l i t i e s = unpa

for

n = 1,2

which a r e e a s i e r t o show because

uniformization is t r i v i a l f o r admissible a

.

z2 -

We r e f e r t h e r e a d e r t o D w l i n [2) f o r a l l d e t a i l s concerning constructibility.

2 45

H I G H a-RECURSIVELY ENUMERABLE DEGREES

C o n s t r u c t i o n o f h i g h a-r.e.

$1.

degrees

A t f i r s t we s k e t c h t h e c o n s t r u c t i o n of i n c o m p l e t e h i g h r . e .

sets i n ORT. The o r i g i n a l p r o o f i s due t o S a c k s c123. A d d i t i o n a l i d e a s o f L a c h l a n and S o a r e a r e u s e d i n t h e v e r y p e r s p i c u o u s v e r s i o n o f t h e c o n s t r u c t i o n as i t i s p r e s e n t e d i n S o a r e l 2 3 1 (we r e f e r t h e r e a d e r t o t h i s p a p e r f o r more m o t i v a t i o n and d e t a i l s c o n c e r n i n g t h e p r o o f i n ORT ). I n order t o b r i n g t h e requirement

A’

E

i n t h e r e a c h of

0’’

a r e c u r s i v e c o n s t r u c t i o n we a s s o c i a t e w i t h a f i x e d Z‘* set S

a r.e.

0”

*

< e , y > c BS where

3yvz

set

V y’

which i s d e f i n e d by

BS 5

y 3 z i+(e,y’,z)

r2 d e f i n i t i o n

is a fixed

+(- ,y,z)

Then w e have f o r e v e r y

e IQ.

I-S(e)

I

i s enough t o i n s u r e t h a t f o r a l l

e

6

= lim

Y+W lim

of

S

over

.

and i t

BS(
A(
w

L ,

.

l i m B( ) = l i m B ( < e , y > ) Y4w Y*Q Pe i s a r e q u i r e m e n t which i s h a r d t o s a t i s f y i f e 4 S since i n

.

t h i s c a s e we have t o p u t a l l b u t f i n i t e l y many e l e m e n t s o f EIy a u f

into

.

A

A c o n f l i c t a r i s e s b e c a u s e w e have t o s a t i s f y as w e l l f o r a l l

e ew

: i C = +e(A)

Ne

requirements ween

Ct(x)

Ne

and

where

C

0’

i s a f i x e d r.e.

s e t . The

a r e s a t i s f i e d by p r e s e r v i n g a d i s a g r e e m e n t b e t f o r a s u i t a b l e argument

+e,t(At,~)

x

and by

f o r c i n g t h e a p p e a r a n c e o f s u c h a d i s a g r e e m e n t ( r e s p e c t i v e l y o f an argument

x

such t h a t

+,(A,x)?

)

Ct(x)

and

w e l l a g r e e m e n t s between

of a n i n i t i a l segment possible

y

of

o

on t h e way o f p r e s e r v i n g as +e,t(At,~)

x

out

which i s c h o s e n as l o n g as

( r s w ) .(We h a v e w r i t t e n O e ( A , * )

which i s p a r t i a l l y r e c u r s i v e i n

for all

A

with index

f o r the function e.)

WOLFGANG MAASS

246

This strategy of preservation in order to get

'I

C se A

is on

first sight contrary to intuition. But if we preserve -as soon as it appears during the construction- agreement between Ct(x)

$ e,t (At,x)

for every

and

x a y we actually try to make C t p re-

C = C l w is not recursive we must then have y " a

cursive. Since

and therefore i+e(A,r) We write

=

C(r)

.

Ie for the injury set of

all elements x

that are put into e' < e

tive requirement Pel with computation in A

Ne which is the set of

A

-as demanded by some posi-

-

although they destroy a

which should be preserved in order to satisfy

. Then we can be a little more exact in our description of the

Ne

preservation strategy and say that although we try to make recursive we only succeed in making

Clr recursive in

r
before). But we can still get the wanted conclusion if I,

ment above. Since

I,

C $ 1,

is recursive in for every

e ao

ment where one shows that for every lim A(te,y,)

Y*Q

e'+ e

A

= lim

Y '*

yew3

B()

for every

e

Cry

(8

as

even

C # Ie for the argu-

is infinite since we need only

we can prove

Ie

f 6 A I e' < e h y c u l during the inductive argu6 o

'I

C se A

(we use here that

C

and

#

fte',y> c B I

e ).

Observe that in writing

C ( g ) etc. we have followed the usual

convention to identify a set with its characteristic function. The construction from ORT works as well for

z2 admissible

el

(Shore c.203). But there are several reasons why this construction does not work for the other admissible u

. We discuss five of

these problems in the following and we simultaneously try to motivate the new features of the subsequent construction for the case Q

>w2cfo

fi

w2pa

.

Assume s a t we succeed in constructing the set A

in such

247

H IGH a- RECURS IVELY ENUMERABLE DEGREES

a way t h a t

Ve

GO(

(A(e) = * B s ( e) )

( d e f i n e f o r any s e t means t h a t

M1

-

M : ~ ( e ):= and

M2 E L,

-

with M n ((el

-

M2

3

yeV Y a ye(- < e , y ) c A)

f o r some f i x e d p a r a p e t e r way q u e s t i o n s

c Stt

ItK

p

e cor

c a n ' t be tame-

P,e,Ye'

e2cfu < a

*

.

A')

6

{ye\ e

if

6

of w i t n e s s e s . S i n c e

K f

i s not

u

we need t h e

A'

r2 admissible

(see

we c a n h a r d l y e x p e c t t h a t t h i s bound e x i s t s f o r a l l a - f i n i t e

$2.)

such t h a t

K

e 6 S

t o questions about

r2 L,

if

i f we want t o r e d u c e i n t h e same

e x i s t e n c e of a bound f o r t h e s e t S c 0''

as b e f o r e

M~ = * M *

;

S 6, A '

that

3 ye(i

. But

LJ

x

BS

M, E: L = ) .

T h i s d o e s n ' t imply i n g e n e r a l t h a t

W e have o f c o u r s e f o r e v e r y

and

S

K G S

.

We overcome t h i s d i f f i c u l t y by u s i n g i n a p o s i t i v e way t h a t a i s not

t 2a d m i s s i b l e . F o r t h e s e s e t s a n d i n t h e case

-r.e.

%I

t h e r e e x i s t non-hype rre gula r

a

> w 2 c f a >, 0 2 p a

OL

t h e r e e x i s t e ve n

incomplete non-hyperregular

a-r.e.

But for n o n - h y p e r r e g u l a r

we c a n a v o i d t h e s e a r c h f o r w i t n e s s e s

Take a c o f i n a l f u n c t i o n

ye :

a-recursive i n

e

vx

Q

S

f*

[pf

I

rcf A

A

.

I

ref

for

p

z

A

b

y

A

i < e , z > c A)

*

which i m p l i e s t h a t f o r e v e r y a - f i n i t e

W e say

It

At

C

=-recursive

respectively

It

which i s weakly

CAI

(plxrcfAxK

Convention:

Q

Then we have

we have

K s S -

*

f : rcf A

r c f A 3 y z(y = f ( x )

6

f o r some f i x e d p a r a m e t e r K

A

sets a c c o r d i n g t o Shore C193.

'I

. i n t t and

"weakly c t - r e c u r s i v e i n "

4wfftt as u s u a l . But t h e r e i s a pro-

blem w i t h t h i s i n t e r p r e t a t i o n , seeL91.

11

For t h e considered

happen t h a t

0"

u where

d o e s n o t c o n t a i n a regular

t o r113 t h i s o c c u r s i f and o n l y i f

~ 2 p a it can

a > w2cfa

I,

L,

v3cfa < e3p u

set. According We w i l l con-

.

2 48

WOLFGANG MAASS

s t r u c t i n L111 a n

ci

where

cr 3 cf u

a3pu

<

w2pu

I

cr2cfor

G

a.

T h i s example i s t h e m o s t - d i f f i c u l t one w i t h r e s p e c t t o o u r cons t r u c t i o n of i n co mp l et e h i g h cc-r.e. contain a regular

t 2s e t

degrees since

and we have w 2pcl <

t h e d e f i n i t i o n of t h e tame

z2 p r o j e c t u m

does not

0"

t a 2 p u ( s e e C63 f o r

t v 2 p u ).

I n consequence o f t h e p r e c e d i n g t h e p l a n f o r o u r c o n s t r u c -

2

t i o n i s as f o l l o w s : We t a k e a f i x e d i n com ple te n o n - h y p e r r e g u l a r a-r.e.

set

and make s u r e t h a t

D

n o n - h y p e r r e g u l a r. A(e)

= * Bs(e)

requirement A(e)

. As

Pe

.

Further f o r

A(')

e > 0

=*

D

i n o r d e r t o make

A

we want t o have t h a t

b e f o r e we s e t up f o r e v e r y

e

s . u

a positive

which t r i e s t o s a t i s f y t h i s c o n d i t i o n c o n c e r n i n g

It i s c r u c i a l f o r t h e i n f i n i t e i n j u r y argument t h a t t h e s e t

o f t h o s e e l e m e n t s which s h o u l d be p u t i n t o

A

i n order t o s a t i s f y

a l l r e q u i r e m e n t s o u t o f a n i n i t i a l segment o f t h e p r i o r i t y l i s t i s

n o t t o o c o m p l i c at ed . According t o p o i n t 2 ) t h i s f o r c e s u s t o make o u r p r i o r i t y l i s t no l o n g e r t h a n o 2 p a sets BS n K

of

K L

be c a use o n l y f o r c i - f i n i t e

a-cardinality l e s s than v 2 p u

Lu is a-recursive.

it is guaranteed t h a t

It i s n o t e a s y t o work w i t h s u c h a

short p r i o r i t y list i n an i n f i n i t e i n j u r y construction since t h e o l - r e c u r s i v e a p p r o x i mat i o n t o t h i s l i s t i s v e r y weak i f 0 2 p a < e2cfu

. We i n t r o d u c e

a c l a u s e b ) i n t h e c o n s t r u c t i o n which makes

it p o s s i b l e t o c o n t r o l i n many s i t u a t i o n s t h o s e unwanted i n j u r i e s which a r e m e r e l y due t o bad g u e s s i n g o f p r i o r i t i e s . We w a n t t o p r o v e by i n d u c t i o n on t h e p r i o r i t y f o r every

e

case t h a t

p(e)

we have

=*

. There

that

i s a problem i n t h e

i s a l i m i t o r d i n a l since t h e i n d u c t i o n h y p o t h e s i s

d o e s n ' t imply t h e n t h a t p(i) < p(e))

A(e)

p(e)

u { A(i)

I p(i)

< p ( e ) ) =* U tB(i)

1

and we c a n ' t c o n t r o l t h e d e g r e e of t h e i n j u r y set

249

HIGH LRECURSIVELY ENUMERABLE DEGREES Ie

. We use the fact that this situation is only possible

a2cf OL > w

since o2cf a 5 u2p

OL

. a2cf a >

u

if

implies that there

are enough fixpoint stages in the construction so that it is in fact not necessary to determine the degree of the injury set

Ie

.

5) There is a problem with the preservation strategy of Sacks in the case that there are non-hyperregular injury sets 1, is non-hyper(which will occur in our construction since )'(A regular). If we want to preserve then agreements C(x) = be(A,x) for

x

part of

p

these computations may altogether use an unbounded

A

even if

8

< a

. Since this would endanger the positive

requirements of lower priority we have to be much more careful with preservations. For this sake we introduce "e-fixpoints" in the

. In the case

case e 2 c f o ~? w rcf

I)

o2cfu = u

we divide

o(

into

many blocks as in Shore El81 (doing the same thing in the

case a2cf OL

5

a2pa > w

would be troublesome because of limit

points in the priority list).

Theorem 1 :

Assume that u > e2cf ci k 02por

are u-r.e. sets such that

C (OD

and

then there exists an a-r.e. set A and

A' =u 0"

D

C

and

D

is non-hyperregular

such that

.

. If

D

6,

A

,C

#,A

The rest of this chapter is devoted to the proof of this theorem. After some preparations we will describe the construction

of the set A Lemmata 3 , 4 , 5

for the case v2cf a > that this set

A

w

. We will show in the

has the properties we want. The

construction for the case a2cfu =

o

is rather close to the con-

struction in OR1 and will be discussed briefly afterwards.

250

WOLFGANG MAASS

W e f i x f o r t h e following r e g u l a r a - r . e . that

and

C 4, D

(Dw)w<

is- non-hyperregular.

D

a r e i n the following fixed

~

sets

(C,, ,)

z u such

C,D

and

oL

a-recursive enumerations of

these s e t s .

t, L,

Take a

’-! such t h a t

A. formula Define the

set

Ot-r.e.

set

such t h a t

S cot

OL

I

5

.

a s follows :

oc

t ( l , y > & B : ~ 4( ( ( 3 = 0 h y e D ) v ( ( 3 > 0

LaI= Vy’

and f i x a

0”

6

S tr L a b 3 y v x Y((3,y,x)

(3

B s

S

A

y 3 x 1WP,gt,x)))

Then we have f o r (3 > 0 : f3

E

+ I~yIa B l =pd( L a k Vx’f’(p,J,x))

S

lfi6 s

4

Iyl
6

BI =

.

OL

Fix an a-recursive enumeration

of

(Bu)w.

and

u

f o r the

B

following. F o r any s e t

and any

x

6

L,

as an abbreviation f o r

M

fi

(fxl

A,

M

.

u

Lemma 2 : Assume t h a t n a l i t y l e s s than e 2 c f a s e t such t h a t

i s an

K

. Further assume t h a t

a define a

cro

for

Rg f

0

x

W

z2 function W ( X )n

LO

and we have

a-cardi-

6 K

. Then

of

W

. For given

f : K * a by

= ~ ( ~ LO ) n

u fW(X)\ x c

I n t h e following we w i l l w r i t e where

~~

A

is an oL-r.e.

i s regular.

Proof : Pix an enumeration f ( x ) :=/*v(w,

at-finite s e t of

i s r e g u l a r f o r every

~ w ( ~x )6 IK ]

<

.

La)

I

w i l l be t h e s e t of elements which have been put i n t o

before stage

u

we w i l l use i n t h e following

.

?here e x i s t s a bound

K3

x c W

i s a fixed

r\

0

.

for

e,r

x,

Lo c W

, L

d e f i n i t i o n of

HIGH *RECURSIVELY

For t h e considered enumerations at stage

"K

La

~r

3 H'

e

-

a-r.e. and

(Al)-

sets

and

A

t h e r e e x i s t s a computation o f

C"

with negative neighborhood

Case i ) :

at

P

W

H'

A

e9ff

and t h e i r

C

we w i l l say t h a t

(CT)-

u

L,(

25 1

ENUMERABLE DEGREES

.A

P

> r2cfa 8 02pu

if

H H

A

5

-

L,

.

As)

c2cfa >

and

for

"C Qe A"

.

(3

The next d e f i n i t i o n is t h e f i x p o i n t device which was mentioned i n point 5 ) of t h e motivation.

A i s an

e-fixpoint at s t a g e

f o r every

7

there i s a

<

(3 I A

: C)

such t h a t

+I

i s a stage

u < 'h such t h a t at stage

t i o n of

"C

se A"

borhood

H

and we have

for

-

lltf

-

H s La

AP

We say that t h i s e-fixpoint CAn A

+ Cfi

n

The " r e s t r a i n t function"

- C"

with negative neigh-

i s i n a c t i v e a t stage (3

.

A

.

and t h e r e

t h e r e e x i s t s a computa-

cr

c , L

C,,

r s z t < ;5

r :a

Q

+

if

w i l l play a similar

at

r o l e a s i n Soare C231 and i s defined by cases : There e x i s t s a stage

Case 1):

i n a c t i v e e-fixpoint at a l l s t a g e s i n Take t h e l e a s t such

u . Define

1

such t h a t some

0-1 (3

C a , @ ] :=

r(e,p)

ft

I

<

.

+PI

w s t

t o be t h e l e a s t

i s an

Q

X <

Q

which i s an i n a c t i v e e-fixpoint at a l l s t a g e s i n Lff,(l]. Case 2 ) :

p

Define

r(e,p)

at

otherwise. W e f i x an 1-1

onto u for

e c

see t h a t

y

t o be t h e union o f a l l e-fixpoints

.

X 2 L,

function

. Using the assumption

g

r (y

which maps cr2poc p a r t i a l l y

w i l l be t h e p r i o r i t y o f t h e requirements

g"(e)

a(

g

n dom g)

< a 2 p o ~ where

B ( < U ) :=

a2pu

4

u

{

it i s easy t o

u2cfor

i s or-finite and

I g"(e)

B('r) < iy

Pe,Ne

h,D

f

.

f o r every

252

WOLFGANG MAASS

a - r e c u r s i v e approximation f u n c t i o n g ' ( * )

We f u r t h e r need a n

( o f two a r g u m e n t s ) w i t h - a - r e c u r s i v e domain which h a s t h e p r o p e r t y that for all y < w2pa f o r all

x

E

y

n dom g

t h e r e e x i s t s an o r d i n a l and a l l t E rr

we have

such t h a t

'ty

gT(x)

g(x)

.

I n a d d i t i o n we want t o have t h a t

3 Wo V a > , uo(

(1)

g(x)J

(2)

V limits A

and t h a t

f*

<

ol(gl(x)

g"(*)

gQ(x)S )

and

* 3 e0 c 1 V o (r0G Q a

J

i s 1-1 for e v e r y

.

w 4 u

X + g"(x) 3 1)

Because o f t h e d i s t i n g u i s h e d r o l e o f t h e r e q u i r e m e n t f u r t h e r need t h a t

g(0)

2

0

and

gQ(0)

E

Po

for all

0

The d e f i n i t i o n o f an a p p r o x i m a t i o n f u n c t i o n

g'(.)

we

IY <

a

.

w i t h these

properties i s routine. Observe t h a t i n g e n e r a l we c a n ' t g e t t h e f o l l o w i n g p r o p e r t y which one would r e a l l y l i k e t o have :

vx

< (r2pc43uovz d

y

v0

5 uo( g O ( z )

g(z) )

E

( s e e t h e p o i n t s 2 ) and 3 ) ).

Construction : A t stage

u we c o n s i d e r e v e r y

f o r some

z ce2pa

If

E

i s n o t a l r e a d y a n element of

<(J,y'

at stage

.

'(3,~'

$+, Ab

such t h a t g Q ( z ) S P

we p u t


into

if

u

a)

( p , ~ )3

b)

qp,y, I z

r(gQ(zt),v) for all

( z + l ) n dom g r

.

End o f c o n s t r u c t i o n .

for all T

u

z ' e ( z + l ) n dom gQ

such t h a t n o t

and

( z + l ) n dom gQ 5

A

H I GH a- RECURS1 VELY ENUMERABLE DEGREES

For a n e g a t i v e requirement boundedly many s t a g e s

t h e r e a r e i n g e n e r a l un-

Ne

where some p o s i t i v e requirement

Q

t r u l y lower p r i o r i t y ( i . e . injure

25 3

g-'(e)

5

Pel

g - ' ( e l ) ) t h i n k s t h a t i t may

because of t h e weak approximation p r o p e r t y o f

Ne

of

g'(0)

.

The following Lemma shows t h a t i n some s p e c i a l s i t u a t i o n s t h e s e unwanted i n j u r i e s w i l l not occur because of c l a u s e b ) i n t h e construction. I n t h e following we always w r i t e

\dca i V x B

that

dom g (g"(x)

0

Lemma 3 : Assume t h a t

y n dom gQ = element

Q

,p,6>

dom g

+,d> < r(gv(z),e) 8'

a

y

n dom

g

and

, rr

and

y

z d

n dom g

such t h a t

A

then there e x i s t s a g(z')

=

Q

,

s, z

. If

at s t a g e


.

(3

5

such

r

.

= g(x))

< w2pa

i s put i n t o

for the least

rr

Q

such t h a t

z

Proof : According t o t h e c o n s t r u c t i o n t h e r e e x i s t s a such t h a t at s t a g e

gr(z')srJ T

f u r t h e r have

we have z' < z

. Since

c l a u s e b ) does not r e s t r a i n

( z l + l ) n dom g7 c ( z ' + l ) n dom gQ because

e r ( g r ( z ) , T )

not r e s t r a i n e d by c l a u s e a ) a t s t a g e t follows t h a t

( z l + l ) n dom g'

=

. Since

gyp ( ( z ' + l ) n dom g ) = gE ( ( z l + l ) n dom g ) have t h a t

z' e dom g

and

g ( z ' ) o g'(z')

2

and

8'

<(J,&>

. We

r&d> i s

r I U a Yr

( z l + l ) n dom g

an

C

and

it

and

. I n p a r t i c u l a r we

0

.

The following Lemma w i l l s o l v e t h e problem which w a s described i n p o i n t 3) of t h e motivation : g-l(e)

o f some n e g a t i v e requirement

have problems t o c o n t r o l i n j u r y s e t 1, 0

I n t h e c a s e where t h e p r i o r i t y

. Lemma 4

U

N~

i s a l i m i t o r d i n a l we

I g - ' ( i ) < g"(e)

3

and t h e

gives a s u f f i c i e n t condition f o r a stage

t h a t some computation which e x i s t s a t s t a g e

u w i l l not be de-

s t r o y e d l a t e r . I t i s important t h a t t h i s c o n d i t i o n can be expressed

254

WOLFGANG MAASS

by using j u s t

U f B(i) I g - ' ( i )

g - ' ( i ) < g"(e)

3

, not

3

g"(e)

<

. A fi-xpoint argument

U f A(i) I

i n Lemma 5 w i l l show t h a t

t h i s condition w i l l be met by an unbounded s e t o f stages. u2por

The p r o p e r t i e s o f imply t h a t f o r every )u' t h a t f o r every

3 53 1( X

3 A( A

z e

u2por

<

8n

t h e r e e x i s t s a stage

i s an i n a c t i v e g ( z ) - f i x p o i n t a t a l l s t a g e s

8n

dom gff =

x

sup f r ( $ ( z ) , u ) \ z

,

dom g

z

r ( g ( z ) , Z ) >/ r ( g ( z ) , u )

x < r(g(z),V)

= B('X)

r\ 0

dom g )

z



8

By Lemma 3

x

where

Q

)

r )

t 5 2

+

.

P'

.

.

x < o. with

such t h a t

x = f o r some

and no element

at stage

A

d

Q

.

%Q

with

x < r(g(z),

z ' e dom g

Uo)

and

. Therefore we have

Q

n

= B:t)

:

Q

A

d (zl+l)

8''

put i n t o

x

.

z' < z

>c d

. We consider two cases was not put i n t o at s t a g e u since x < r ( g ( z * ' ) , w ) n dom g . By o u r induction hypothesis we have

r(g(z"),c)

a

Uo

t h e r e i s some where

x c B(48) n

3

at stage

V

n dom g

Assume f o r a c o n t r a d i c t i o n t h a t some A

Q

x < U

at stage

A

Q

and f o r every stage t

and no element

i s put i n t o

n

i s put i n t o

x n dom g



Proof : Induction on i s put i n t o

such

ey

is a stage such t h a t

0 2 Yy'

BPY)

68 n

Then we have f o r every

f o r t h e l e a s t such

v8'

Lemma 4 : Assume t h a t

g(z')=

Ia

i s an i n a c t i v e g(z)-fixpoint at a l l s t a g e s

8n

im2cfoc

dom g

I n the following we w r i t e

4

and the assumption 02p Q

6

r ( g ( z t l ) , u o ) = r ( g q O ( z l t ) , Qo) a t stage

A

such t h a t

2.

0'

>"x

x

w i l l not be

either.

Qo

w a s not put i n t o

and

A

and not

a t stage

U

since there e x i s t s

U'GQ

( z l + l ) n dom g f f c ( z ' + l ) fi dom gQ'

.

:

HIGH a-RECURSIVELY ENUMERABLE DEGREES

Since

( z t + l ) n dom g"

at s t a g e

s ( z ' + l ) n dom guO

3

x i s not put i n t o

r(g(z),r) I r(g(z),o)

f o r all

. Assume t h a t t h e r e a minimal s t a g e > . By t h e preceding no element is

Q

fro

such t h a t

I

r(g(z),co) < r(g(z),w)

w i l l be put i n t o r(g(s),Vo)

A

at some s t a g e

r(g(z),a)

4

where

t

w

5

y < r(g(z),.)

r c

i s d e f i n e d according t o c a s e 2 ) . Since

r(g(z),a) no element 5 wo :

y < r(g(z),uo)

w i l l be put i n t o

Otherwise assume t h a t

r(g(z),rO)

u1

A

> y

and

0' r(g(z),uo)

y

r

whereas

r ( g ( z ) , a o ) < cr at any s t a g e

i s t h e minimal such

i s defined according t o case 1 ) we have

= r(g(z),uo)

Q

i s t h e r e f o r e only p o s s i b l e i f

is defined according t o c a s e 1 ) of t h e d e f i n i t i o n o f

r

A

uo because o f c l a u s e b ) i n t h e c o n s t r u c t i o n .

It remains t o prove t h a t C '

255

c a n ' t be put i n t o

A

r(g

r

. Since

Q

l(z),o,)

at s t a g e

@ ,

as

it w a s shown i n t h e f i r s t p a r t of t h i s proof. Thus we have proved t h a t some X

i s an i n a c t i v e g ( z ) - f i x p o i n t at a l l s t a g e s i n

w0

[@,,OC) whereas t h e r e i s no i n a c t i v e g ( z ) - f i x p o i n t at s t a g e

Since we have

Txt ,C

definition of for all z LU Remark:

If

Q

stage

'L

au

r(g(z),r) a r ( g ( z ) , o )

u s a t i s f i e s t h e assumptions o f Lemma 4

x < sup f r ( g ( z ) , w )

ment

.

t h i s gives a contradiction t o the

and we have proved t h a t

.

Q

Iz

6 f

r\

dom g

. Therefore t h e s e s t a g e s

3

0

i s put i n t o

t h e n no e l e A

at any

play a r o l e i n t h i s proof

which i s similar t o t h e r o l e of " t r u e s t a g e s " ( s e e Soare1233) in t h e proof i n ORI. Lemma 5 :

a) b)

l c

S

~

=*

A

For every

e B a we have

and

.

Proof : For convenience we prove a ) and b) simultaneously by

256

MAASS

WOLFGANG

. Assume f o r t h e f o l l o w i n g t h a t

i n d u c t i o n on g"(e)

and t h a t a ) and b) a r e t r u e f o r a l l

el

g-'(e)

such t h a t

= z

g"(el)

.

< z

Observe t h a t t h i s a s s u m p t i o n d o e s i n g e n e r a l n o t imply t h a t

u

(A(e')

a3cfa

I g-'(e')

, which

z

5

u

=*

z1

<

f B ( e t ) I g-'(e')

< z J

from

A(et)

Lemma 2

i s regular :

=*

3

i f we have

i s o f c o u r s e p o s s i b l e ( s e e p o i n t 3 ) of t h e

m o t i v a t i o n ) . But we g e t t h e i n f o r m a t i o n t h a t g"(e')

z

<

B(e')

Since every

t h a t every

I

B(")

i s r e g u l a r we g e t

i s r e g u l a r as w e l l . Then

A(e')

u

implies that

I

U

g-l(e') < z 3

is regular. This

i s t h e o n l y fact which w e u s e from o u r i n d u c t i o n h y p o t h e s i s s o t h a t i n t h e case

elpa =

we d o n ' t need an i n d u c t i o n a t a l l ( t h i s i s

Q

r a t h e r s u r p r i s i n g i f compared w i t h t h e s i t u a t i o n i n ORT For

we write

z+l

J:=

f o r t h e set o f t h o s e s t a g e s

M

u

i s unbounded i n

M

~ A ( ~ g ' -) l (I e ' ) For

-

an <

13 z, n An =

dom g

A(' %

z

by u s i n g t h e r e g u l a r i t y o f

OL

.

I

a define

An

A(")n

pt > hn

:=

gz'(y)

6 i(

.

)

t 1

2 := n

H

sup

An

[An\ n is

B LJ

Z2 L,

3

. It

1,

.

X

some 'c

c

c(

IN

with

c(

We have

1

<

for the

i s constant i n

A

B('X)

An+'

a0

> rr*

a(

since the function

that

2e M

and <

U

define then

.

a - f i n i t e set of a l l

rn i s a n i n a c t i v e g ( z ' ) - f i x p o i n t

(Cr,a) := ft'\ r

dom g h )

f o l l o w s from p r o p e r t y ( 2 ) o f t h e a p p o x i -

m a t i n g f u n c t i o n and Lemma 3 We w r i t e

<

:=

an = B ( v ) ~ an

and t h e f a c t t h a t

)

A(")

B (((z+l) n

s e t s it i s e a s y t o s e e t h a t

are r e g u l a r u - r . e .

e x i s t s . For every g i v en

(V y

B:x)~

A

By u s i n g p r o p e r t y ( 1 ) o f g o (a A(")

0-

are s a t i s f i e d . W e w a r t t o prove

where t h e a s s u m p t i o n s o f Lemma 4 that

, seet231).

s

rt c

Q

3

kr0,a) f o r e v e r y

) z'

.

in

zt L z

Cr,a)

such

f o r some

Then we have t h a t r ( g ( z

r IN

hat

11

*)

a c c o r d i n g t o Lemma 4 1

HIGH &RECURSIVELY

where

ro i s t h e l e a s t element o f

show

sup C r ( g ( z ' ) , e ) I

i n order t o prove t h a t

z' E ( z + l )

dom g l

n

<

M

r e

. Therefore

M

i t i s enough t o

- IN)]

z ' € ((z+l) n dom g

A

sup { r ( g ( z * ) , v ) I

.

a

25 7

ENUMERABLE DEGREES

Q C

M

<

A

Thus assume f o r a c o n t r a d i c t i o n t h a t

Vc

-

< a 3 u e M ~ Z E' ( ( z + I ) n dom g

This implies t h a t f o r every

-

K P L,

C

3

c-)

K

Q

The p a r t

-

u c M 3 z ' e ( ( z + l ) n dom g

(sup K < r(g(zt),w)

IN)

we assume t h a t

It+''

s a t i s f y t h e r i g h t s i d e . By Lemma 4

. Therefore t h e r e i s at

r(g(zt),v) f i x p o i n t at

such t h a t

we have t h a t

which means t h a t

Q

t h e r e i s no stage a t stage

A

that

y

L

'c

Cc+l

and

2

X

C, n 1 = C A n

. Therefore t h e r e i s no

- C,

we have proved t h a t

y

s i n c e otherwise some

active g(e')-fixpoint i n

1

%

= C n A

.

1 y

k

and

At

A

By Lemma 4

t %

since

c

MIt

can be expressed

would be an in'12'

6

which shows t h a t

IN

a;

a;+l

:= p z > X;((the

C,

1; = C n A;

n

c OL

we define

A

A;+,

4

u

B(<') . But . Thus we have proved g 3 .

A

zt

Q

( z + l ) n dom

'c

.

< a

C S: A

by

same as i n t h e d e f i n i t i o n o f ( a t stage

-C

C sa B ( * I )

I n order t o prove a ) assume f o r a c o n t r a d i c t i o n t h a t

For

. Thus

K c L,

a-recursively i n B(
S := s u p f r ( g ( z ' ) , a ) I r e M

that

auch

e

The equivalence which w a s j u s t proved implies t h a t t h i s i s absurd because we have

I

1 i s put i n t o

c

X

, contradicting

[%,=)

Cw n

since

r

i s not an i n a c t i v e g ( z t ) -

such t h a t an element

au

is

r(g(zt),e)

some g ( z ' ) - f i x p o i n t

Q

sup K <

do

Q,z',K

defined according t o case 2 ) of t h e d e f i n i t i o n of

c IN

.

C,)

K c La-

A

of t h i s equivalence i s obvious from our

it+tt

assumptions. For a proof of

72'

.

IN)('E < r ( g ( z t ) , v ) )

L,

Q

An+,)

A

t h e r e e x i s t s a computation of

.

258

WOLFGANG M A S S

"C

-C

for

A"

6:

such t h a t

H

s

5

26 c

- C"

A'

:= sup

- A)) .

L,

We have again t h a t given

L,

1n

since the function

ci

n c r A;

. Now it

i s a g ( z ) - f i x p o i n t at

i s defined f o r some

definition of

c o

is

This implies t h a t

Q 6

f o r every

u

z2 d e f i n a b l e

F o r t h e p r o o f o f b) we choose

have

A(e)

-

-

r1 =

g e t h e r shows t h a t

A(e)

D = B(O) =4 A(')

S QUA'

C,

( u s e Lemma 4 )

A

Sz

hyperregular and

0

E

S n

v

x < rcf A

i s now very easy. We g e t

from Lemma 5

x < rcf A have

K

36 >

A

S n

x

rcf A

f ( x ) (7<&6> p e

OL

x

K

c A*

Q

La-

UZLa &A1 $2.)

this

S"

can be w r i t t e n a s a

i C

cqA

i s non-

D

Q

A) 0

6.

.

"K s L a -

n2 formula.

S1I

. CJ .

S )

such t h a t f o r a l l

Concerning t h e computation f o r

"K

and

x

Then we

we observe t h a t

Since we have

( s e e t h e first p a r t of t h e proof o f Theorem 2 b) i n

r2f a c t

It

which i s weakly

o(

f ( x ) (7C&d> E. A ) 6
[PI

.

i m p l i e s t h a t f o r every p c u

(we may assume without loss o f g e n e r a l i t y t h a t There i s a parameter

> S

. I n o r d e r t o show

f : rcf A +

). Lemma 5 b)

36 >

a.

.

=*

D r,A

7

.

.

1' 6 M

S <

such t h a t

i s non-hyperregular s i n c e

(A

A

B M

W

we f i x a c o f i n a l f u n c t i o n

a-recursive i n

and

= A(e) o;+l n w1 Further we 1 by t h e d e f i n i t i o n of S which t o -

v1

bq A

G1

A(e) n

The proof o f Theorem 1 and

and

according t o case 1 ) of t h e

M

which i s absurd s i n c e we have proved j u s t before t h a t

that

M

Q

f o r a l l these stages

r(g(z), I f ) =

follows from Lemma 4

H

c a n l t be t h e case t h a t

because t h i s c o n t r a d i c t s

r

f

2 6 >'trf it i s obvious t h a t A'

i f we s t a r t with some

r(g(a),u)

with negative neighborhood

can be expressed &-recursively i n

A'

.

259

HIGH a-RECURSIVELY ENUMERABLE DEGREES Case i i ) : a > w 2 c f a = The proof of Theorem 1

.

= w

U ~ D S

i s simpler i n t h i s c a s e s i n c e t h e

problem at l i m i t s of t h e p r i o r i t y l i s t d o e s n ' t occur ( s e e point 4 ) of t h e motivation). The c o n s t r u c t i o n i s c l o s e r t o t h e one i n ORT I 2 3 1 but we have t o be aware o f t h e o t h e r p o i n t s i n t h e motivation a n d t h e f a c t t h a t we c a n ' t use t h e r e g u l a r i t y of

as it i s done

A

i n ORT ( " t r u e s t a g e s " ) . According t o point 5 )

of t h e motivation we f i x a s t r i c t l y

increasing cofinal function recursive i n

B(O)

fw(X)J

3 %6 Q

If

:@

f : r c f D + a which i s weakly

with an index

. We d e f i n e t h e n

e

3 y 3 H ( E W

we go t o t h e l e a s t such

fQ(x) 1

e*c

r sw

minimal ( w i t h r e s p e c t t o a f i x e d c a n o n i c a l

4- o f Lot) say t h a t

such t h a t

$

f'(x)

and

E We,-

fi

A

A

H

5

a-

- A?)).

(01 I L,

and choose tx,$,$,

A 1 L,

well ordering

.

- A?)

c L,

We t h e n

i s t h e n e g a t i v e neighborhood of t h i s

computation. F u r t h e r we f i x a Z2 L, and

maps

g

approximation

3u

Vn<

w

that

g"(*)

all

cr

.

1-1 onto

w

v

g'(*)

m

,c

n

to

vc

function

. We have

ci

g

g

where (gr(m)

i s 1-1 f o r every

dom g ' ( * ) =

I

dom ,g

g(m))

OL I

. We

For all

x

e,

rr

a oc choose

l(e,u)

There i s a s t a g e neighborhood

at s t a g e

v

(Cw&

l(e,w)

~

require further

g(0)

C

go(0)

and

a

s rcf

D

and

w

Analogously as i n Soare C231 we d e f i n e f u n c t i o n s r e l a t i v e t o f i x e d enumerations

= u

i n t h i s case a very n i c e

and t h a t

u

such t h a t

=

for

0

1 and

' ,.

r

maximal such t h a t f o r

the following holds : %

cu

such t h a t

fr(x) 4

and t h e negative

$Iof t h i s computation s a t i s f i e s

t h e r e e x i s t s a computation o f

k

5

"C -.",A1'

L,

- A,

for

and

260

WOLFGANG MAASS

:= f T ( x )

llKx,r

satisfies

H C'

that

-

(we then w r i t e

A,

u ( e , x , a ) := p i ( ; s r I

w i t h negative neighborhood

C"

f o r t h e minimal such CI

H ey )

A

H )

that

)

Q

If we then have f o r t h i s

and

f o r t h e minimal such

.

y < u(e,x,a)

.

F i n a l l y we demand ( f o r any

H

we then demand in t h e case

is a successor stage t h a t no

at stage u-1

A

-

c L,

H s L,

and

S Q

For

- C,

w a s put i n t o

CG n f Q ( x ) = C,

l(e,o)

that

n fa(x)

l(e,o) < rcf D

. and

a l l t h e conditions in t h e d e f i n i t i o n a r e satisf i e d except t h e last one ( i . e . C? n f w ( x ) = C, n f G ( x ) ) we s a y

for

that

x = l(e,u) e

i s i n a c t i v e at s t a g e

r(e,cr) :=

Q

and define

x I l(e,u)I

.

sup Cu(e,x,e) I x < l ( e , u ) 3

.

I

sup Cu(e,x,w)

Otherwise we define r ( e , o ) :=

It is convenient t o choose t h e universal enumeration

i n such a way t h a t f o r all

r

Wo

.

so t h a t we have

=

(We)e
l(0,w) = r ( 0 , a ) = 0

Construction : A t stage

o

c Rg gv(.)

i n t o

we consider every

. If

A

<(3,y)

such t h a t

E

c ( l , r > i s not already an element o f

at stage

< ~ ,> r2 r(gQ(m), u )

w

A,

if

for all m 6 n

where

gQ(n) *

p

End o f construction.

The claims o f Theorem 1 following LemmK

.

follow as in case i ) from t h e

we put

.

H I G H +RECURSIVELY

n e o we have

Lemma 6 : For every , ( g ( n ) ) =*,(g(n))

a)

Proof: Induction on since

+

Wo =

that

u

that

A(
that

vU

Tn :=

i c ,uo I r

into

:=

8 e0

I

Vm

5

I :=

m

{

d

g(e) < n )

n (gv(m)

u-1

n 130.

6

Then t h e r e i s a stage Q

a el V m

6

=

D

m 6 n

A

Q

c Tn j

C s$~) A

<

t h e following

i s regular. Choose

i s i n a c t i v e at u

Qo

such

v0

and define

g(m))

Tn ( g(m)

v1 2

n = 0

and t h e induction hypothesis

.

I

i s put

)I

3

.

.

'

m e ( n + l ) - I and assume t h a t s u p ( l(g(m),o)

y

= y n Atn)

such t h a t

sup f r ( g ( m ) , w ) l

r e Tn3

= rcf D

which implies t h e c o n t r a d i c t i o n

. Thus we have shown t h a t

A(g(n)) =* ,(g(n)) b)

. Assume f o r

y tl A ( 4 n )

(by t h e d e f i n i t i o n of r c f D) C

0

such t h a t

Then we have

OL.

=

=

I ( r(g(m),r) = r(g(m),T))

Take f u r t h e r any

c Tn3

B

b) are t r i v i a l for

i s a successor stage and an element

at stage

A('n)

Define

Q

gQ(0)

W e get from t h e p r o p e r t i e s of

a)

V

. a ) and

n

and f o r a l l u

.

n > 0

and

.

b) i C ~ g , ' ~A)

26 1

ENUMERABLE DEGREES

sup f r(g(m),w) I

which i s used f o r t h e proof of

Q

as usual.

implies t h a t

sup t l ( g ( n ) , u ) I u L Tn)

= rcf D

which i s absurd according t o t h e preceding.

The proof of Theorem 1 i s now f i n i s h e d . W e have proved Theorem 1

i n order t o get t h e following c o r o l l a r y :

Corollary : Assume t h a t incomplete high a-r.e.

u 2 c f a )v2poc

degrees.

. Then t h e r e e x i s t

262

WOLFGANG M A S S

Proof of the corollary: The case Shore C203

. For the other admissible

non-hyperregular a-r.e. sets D

OL

OL

= o2cfo~ is proved in

there exist incomplete

if o2cfa >, U 2 p a

according to

Shore [ I 9 3 (see also E l l ] for another proof of this fact). Apply Theorem 1

$2.

D and an u-r.e. set C

to this set

0'

.

0312

The depree For those

6

ci

where incomplete non-hyperregular a-r.e.

degrees exist there exists a distinguished a-degree between 0' and

for which we write

0"

0312

. We will show in the following

and in t 1 1 3 that there is a close connection between O 3 I 2

and the

jump of non-hyperregular a-r.e. degrees. Lemma 7 :

rx

Assume

is such that incomplete non-hyperregular 0312

a-r.e. degrees exist. Then there is an a-degree 03/2 cg

a)

01

b)

0312 is the greatest

0, L, C)

set and

D

such that

01'

A2

0312

L,

degree

(i.e. 0312 contains a

for every A ~ L , set D

0312 is the greatest tame- z, L, degree (i.e. 0312 contains

a set

S

such that { K c L-1 K

D B,03/2

Remark:

*

If a is

A, Lu degree and

for the

OL

0312

0"

1

is

z, L

o1

and we have

D with this property )

for every set

swa

d) u 2 ' a

S

6,

I,

for the set U 2 L a ~ O fand t any 8 , admissible then 0 '

is the greatest

is the greatest tamez, L

degree. Thus

of the Lemma they meet together in the middle, one

coming from below, the other coming from above.

H I GH

8-

P r o o f : $:= tL,,C) set

missib1e.A S

missible

r,

0

i s A2L,

xl$,).

and

r2 L,)

(tame-

i s ina d-

i f and o n l y i f

Friedman [ 3 ] obse rve d t h a t f o r inad-

A l Lp

a greatest

(3

between

w i t h C c 0' r e g u l a r and cl-r.e.

S B L,

A 1 '& (tame-

is

263

RECURSIVELY ENUMERABLE DEGREES

P-degree e x i s t s which l i e s s t r i c t l y

and which i s a n u p p e r bound f o r t h e tame-

0'

d e g r e e s . T h i s r e s u l t c a n ' t be g e n e r a l i z e d t o a l l ina d-

Lo

m i s s i b l e s t r u c t u r e s c L ,D) even i f D i s r e g u l a r o v e r L o : b and regular i s The s t r u c t u r e f+ = < L L,C > w i t h C I 0' a:-r.e. i n a d m i s s i b l e (we h av e

nu

A,$-

is the greatest

w = o l cf s x L u < w l p S

degree

. But

. A cco r d i n g t o Lemma

01

=

u2pw

but

)

0'

% = < Lp,B> where

w e h ave o 2 p a < at f o r t h o s e

1

where i n c o m p l e t e n o n - h y p er r eg u l ar

d we have u - l p at

= ?:t

F r i ed m a n' s argument works as

w e l l f o r those inadmissible s t r u c t u r e s

0 1 p ~ t l )< (3

:w

w-r.e.

degrees e x i s t . Since

5 =

f o r the considered s t r u c t u r e

t h e r e i s no problem w i t h t h e a d d i t i o n a l assum ption i n t h i s c a s e . Take a r

I

Al&

and d e f i n e

C v M

:=

set if

S

c L,

set

out of t h e g r e a t e s t

2x I x

E C

that

S

i s (weakly) $ - r e c u r s i v e

a-recursive i n

in

03'2

2 contains a

I n o r d e r t o p r o v e c ) i t remains t o show t h a t $ s e t . I n t h e case e 2 c f a z -2pw

Theorem 1

i n C91

.

If we have u 2 c f o t

s t r o n g l y i n a d m i s s i b l e and tamegree

0

zl &

4

may o r may n o t e x i s t f o r t h e s e

f i n e s t r u c t u r e of

t h i s f o l l o w s from

0 2 p ac

then

&

s i t u a t i o n where i n co mp l et e n o n - h y p er r eg u l a r

x

&

r2p

01

a

is

s e t s which a r e n o t of de-

, de pe nding

& as it i s shown i n 52 o f [ g ]

we h a v e an & - c a r d i n a l

i f and o n l y

by u s i n g t h e c o r r e s -

.

E

M

. T h e r e f o r e we c a n prove

C v M

ponding p r o p e r t i e s of t h e &-degree

El

set

1 u f 2 x + 1 I x c M 3 . Then we have f o r e v e r y

a ) and b ) f o r t h e s o d e f i n e d oc-degree

tame-

%-degree

Al$

t o be t h e &- d eg r ee of t h e A 2 , L

03/2

i s (weakly)

S

M c ct

s u ch t h a t

a-r.e.

on t h e

. However

i n our

degrees e x i s t

rr2cfLaw

= o2cf g

264

WOLFGANG MAASS

. Therefore we can apply the construction of and get tame- ,F,% set of degree ; . Lemma 5 in Property d) follows from Theorem 2 in C91 . according to Lemma 1 L9]

4

The greatest 4, L ,

Remark :

z2L,

and the greatest tame-

degree can be determined for the other admissible

well. The results might be useful for the study of

0~

r2 L,

as

de-

grees. For u with u2cfa < u 2 p a = oc we have that the greatest

d2 L,

degree is equal to

degree is equal to

0'

places compared with

and the greatest tame-

0"

(thus these two degrees have switched their

z2admissible at ).

For the other ac with the property that

0'

is the only

non-hyperregular x-r.e. degree we have that v2cf OL and in this case there is a greatest ween

0'

and

A,

L

4

u2p u s

Q

degree strictly bet-

whereas the greatest tame- Z, degree is either

0"

equal to the greatest A , degree

is equal to

r2 ,L

(if e2cfLa(e2por) = o2cfs )

or

(otherwise) as one can see by using Lemma 1

0'

and arguments of $ 2 in C93

.

For all a which are not 1, admissible we have that the greatest

r

I.,

A 2 L,

degree

for every

2 has the property that U2L"

Swag

+b

w-degree a _ .

The following rather technical Lemma will be the heart of the proof of Theorem 2

'. It generalizes an observation of Shore

(Lemma 3.3 inc181) which also has important applications in (3recursion theory (see Lemma 3

, $2

in L91

1.

HIGH a-RECURSIVELY ENUMERABLE DEGREES

Lemma 8 :

265

$= c L p , B ,

Consider a structure

and a limit 9i rL ordinal I -r (I such that ulcf (3 < g and vlcf a 9 1,P 1,P (see $0. for definitions).

*

J

If Dc- L A is regular over L A and [ K {K

L21K 5 LA

6

Proof:

C,

XI% then

D3 is

D3 is Zl& as well.

The same trick as in Shore C181 is used. F i x a

y

definition

-

L iK

E

*

of the set f K c LA[ K c D 3

zl3

a cofinal

zl%

function p : vlcf X + I and a cofinal Z,% function .L %% & q : ulcf p + (3 Define a set M S ulcf a r d c f (J by

.

bM

:t)

VX

nl$

c Lp(y)

(X 6

D +
B'

q(d)*Lq(d)

t3

K ( x E. K A ~ ( K )

Then we have in fact M o L o and thus get a of f K L LxIK

K QL

x

A

- D 3 as follows : - D c) 3 ~ & ( < 8 , 6 >M€A

'

17).

zl d

definition

Lx

K 5 L1

K S L

P(y1

*

Ls(d) A

< Lq(~)~Ls(6)n B ) k C V x E K i a K ' ( x 6 K ' A V ( K ' ) ) J ) .

Theorem 2 : Assume that ff2cf ci * - 2 p u

and 2 is an in-

complete ci-r.e. degree. Then we have a)

@'

b)

= 0'

if 2 is hyperregular (Shore)

= 0 3 ' 2

if 2 i s non-hyperregular

Proof : a) i s contained in Shore f201 immediately from Lemma 8 : at-r.e. and regular, 2 := where

A

b)

6s

Q,

Choose D

6

2'

is a-r.e. and regular

Assume that A

6

*

.

. .

and

It follows

< L,,C > with C 6 0' regular and Z1 < Lu,A > :=

2 is al-r.e., incomplete, regular and

non-hyperregular. Then we have

o(

olcf<~*A'a

~lp<~a~~'a

according to Shore Cl8] (this fact follows immediately from Lemma 8

1- For

=

:= vlcf
function g X,

266

WOLFGANG MAASS

which a X

maps

3

Z2 formula

f s

vy

+9

. Take any s e t

1-1 onto 'Ic

OL

3

y

v z ~ < x , y , z ) over

Zl@(XyyyZ) H

[el

1 $ ( x Y ~ , z ))

f o r some f i x e d index

3

3

I n order t o get ( t h i s implies

A'

showing t h a t i s a 1-1

r2L,

is

:= f [ A 1 ]

. Since

where

f :

1

:= ~ l p < ~ * ~ ~ and ' o r D :=

with

C

E

a-r.e.

0'

= u2cfa

( t a k e a c o f i n a l Z2 L,

Q

We do t h i s by

+ ~lp*~,,~'-

t o the structure

.

?iThe assumptions of t h e Lemma a r e

sr

u l c f 9rb

u 2 p 0 ~= fl,ol

function

u2cf

6

q :o ~ c f+ a a ; f

,

= alp'LQyA'a

i s bounded f o r every

A"

i s r e g u l a r over

{K

e L~

IK

.

Q

OL

<

y1 %

E

XI

Therefore

EK

~y <

La

is 6

rJlcf'La*A>o( t h e r e f o r e

1

),

A" i s

(because

z1

LA I K s L2

which implies t h a t

-

(since

is

f-lCRg f

rl (La,A> A&

3 i s Zl'&

n2 L,

.

)

YQ

is then

q

because according t o Shore L18] we have

cofinal i n

p,'L-9A'

i s obviously

A'

and r e g u l a r ,

all satisfied i n t h i s situation :

u l c f SGOL

i s A, L ,

A'

r2L,

is

A'

Zl < L q y A > map. We apply Lemma 8

:= tL,,C>

Lemma 8

i n t 2 0 1 ) . We g e t t h e n

by Lemma 7 b )

03/2

$a

.ik

We have

A

( i t i s t h i s fact

we show t h a t

A'

O3I2

it i s enough t o show t h a t

Z 2 L,

(g(f) = y

from Lemma 7 d ) .

A'

dq

Z

S CWa A '

which i s a c t u a l l y proved i n Theorem 2.3.

03/'

Then we have

Ix3 s A'

x tt

. T h i s implies

e

.

L,

VyPE

which i s defined by

S

n

and

glcf'La*A'a

1.

according t o

t l

26 7

HIGH a - R E C U R S I V E L Y ENUMERABLE DEGREES

$ 3 . Summarp Two factors determine the results about the jump of u-r.e. degrees : the relative size of u2cfcc

and W2poc

and

the existence of incomplete non-hyperregular u-r.e. degrees. Therefore we distinguish four different types of admissible ordinals oc :

( I I a2cfor

%

w2pw

a n d there exist

"0 incomplete non-hyper-

regular u-r.e. degrees which are

(these are exactly those

(2) o2cfa

3 v2pa

I, admissible)

and there exist incomplete non-hyperregular

a-r.e. degrees (these are exactly those

&

rr2cfoc < 02por

OL

which satisfy

o(

> a-2cfa 8 u 2 p u )

and there exist incomplete non-hyperregular

a-r.e. degrees

&

u2cfa

0 - 2 ~ and ~ there exist "0 incomplete non-hyper-

regular at-r.e. degrees , For the types (2) and ( 3 ) there exists the distinguished degree 03/2

between 0 '

been described in Lemma 7 For

that

a

@'

.

0''

at of type ( 4 ) we have

or-r.e. degree For

and

with the properties that have

p' = 0'

for every incomplete

& (Shore [20]).

a of type ( 3 ) we have for incomplete a-r.e. degrees k = 0'

if

is hyperregular respectively 2' = O 3 l 2

is non-hyperregular according to Theorem 2 For

.

if

a of type ( 1 ) and (2) there exist incomplete o(-r.e.

degrees & such that for type ( 1 )

1.

a'

= 0''

according to $1. (see Shore c2OJ

WOLFGANG MASS

268

In particular we have thus shown the following : Corollary:

Assume that

is admissible. Then there exist

~~

high incomplete a-r.e. degrees if and only if U2cfa

a2pa

.

We will continue the study of type ( 1 ) and ( 2 ) in c111. It turns out that ( 2 ) is the most interesting type as far as results about the jump of u-r.e. degrees are concerned.

FtEFERENCES : C1’J S.B.

Cooper, Minimal pairs and high recursively enumerable

degrees, J.Symb.Logic 39 ( 1 9 7 4 ) , 655-660 L23

K.J. Devlin, Aspects of constructibility, Springer Lecture

Note 354 (1973) [3]

S.D. Friedman,

[4]

A.H. Lachlan, A recursively enumerable degree which w i l l not

(3-Recursion Theory, to appear

split over all lesser ones, Ann.Math.Logic 9 (1975), 307-365

151 M. Lemnan, Maximal a-r.e. sets, Trans.Am.Math.Soc.

188

(19741, 341-386 r.63

M.Lerman and G.E. Sacks, Some minimal pairs of &-recursively

enumerable degrees, Ann.Math.Logic [7]

W. Maass,

4 (19721, 415-422

On minimal pairs and minimal degrees in higher

recursion theory, Arch.math.Logik 1 8 ( 1 9 7 7 ) , 169-186

[81 W. Maass, The uniform regular set theorem in at-recursion theory, to appear in J.Symb.Logic W. Maass, Inadmissibility, tame RE sets and the admissible

[9]

collapse, to appear in Ann.Math.Logic I101

W.

Maass, Fine structure theory of the constructible

universe in oc-

and p-recursion theory, to appear in the

269

HIGH a-RECURSIVELY ENUMERABLE DEGREES

Proceedings of "Definability in Set Theory" (Oberwolfach 19771, Springer Lecture Note [ll]

W. Maass, On

OL-

and

0-recursively enumerable degrees,

in preparation

[123

G.E. Sacks, Recursive enumerability and the jump operator,

Trans.Am.Math.Soc.

1133

G.E.

108 (1963), 223-239

Sacks, Post's problem, admissible ordinals and

regularity, Trans.Am.Math.Soc.

L143 Ann.

[15]

(1966), 1-23

G.E. Sacks and S.G. Simpson, The ct-finite injury method, Math.Logic 4 (1972), 323-367 J.R. Shoenfield, Degrees of Unsolvability, North Holland/

American Elsevier, Amsterdam/New York

116'1 R.A.

(1971)

Shore, Splitting an a-recursively enumerable set,

Trans.Am.Math.Soc. 204 (1975), 65-77

LIT] R.A. Shore,Minimal 4-degrees,Ann.Math.Logic ClSl

R.A.

4( 1972),393-414

Shore, The recursively enumerable u-degrees are dense,

Ann.Nath.Logic 9 (1976), 123-155

[191

R.A.

Shore, The irregular and non-hyperregular K-r.e.

degrees, Israel J.Math. 22, No.1,(1975),

28-41

f201 R.A. Shore, On the jump of an a-recursively enumerable set, Trans. Am.Math.Soc.

C211

217 (1976), 351-363

R.A. Shore, Some more minimal pairs of u-recursively

enumerable degrees, to appear

t223

S.G.

Simpson, Admissible ordinals and recursion theory,

Ph.d.dissertation, M.I.T.

[23]

(1971)

R.I. Soare, The infinite injury priority method, J.Symb.

Logic 41 (19761, 513-529