JOURNAL
OF MOLECULAR
SPECTROSCOPY
81, 122-138 (1980)
High-Resolution Infrared Spectrum of the 859- and 1711 -cm-l Bands of Carbonyl Sulfide (0CS)l ARTHUR G. MAKI, WM. BRUCE OLSON, Molecular
Spectrosropy National
ROBERT L. SAMS
AND
Divisiorz, Center for Thermodyt~attzics atld Molecular Bureau oj’Standards. Washington, D. C. 20234
Scietlce.
The V, and ZV, bands of OCS have been measured using grating spectrometers and a tunable diode laser spectrometer. Preliminary wavenumbers for OCS absorption lines useful for calibrating tunable laser systems are given for the wavenumber intervals 825 to 885 cm-’ and 1665 to 1737 cm-‘. Measurements and an analysis are given for the bands 10°0-OO”0, 11’0-01’0, 20°0-OO”0, 21’0-01’0, and 30°0-lo”0 of the 1cO’2C3’S isotopic species and for the 20°0-OOnO band of the 160’3C32S and 16012C34S species. given for these bands.
Effective
band
constants
are
I. INTRODUCTION
Tunable infrared laser sources such as diode lasers can be calibrated most easily and cheaply by using well-measured absorption spectra of convenient gases such as carbonyl sulfide (OCS). Because of the limited tuning range of a single laser mode t-0.5-2 cm-‘) it is necessary to have absorption wavenumber standards with a spacing of the order of 0.5 cm-’ and extra observable lines to provide distinctive features for recognition of the narrow spectral region covered by a mode so that the calibration lines are correctly identified. Since we have recently needed to calibrate diode laser spectra of nitric acid in the regions near 860 and 1710 cm-‘, we have measured the spectrum of the 859 and 1711 cm-’ bands of OCS for wavenumber calibration in these regions. Prior to this work no direct high-resolution measurements had been made on the V, band although the constants of V, have been determined by Fayt (I) from many hot-band measurements. The 2u, band was measured by Allen et al. (2), but both resolution and calibration procedures have improved considerably since their work was done. Microwave measurements (3-5) have given rotational constants for the v1 and 2~3 states as well as for many of the other states involved in the present work. The present measurements principally give improved band centers, improved centrifugal distortion constants, and in some cases new or improved rotational constants for the various levels involved. 11.EXPERIMENTAL
DETAILS
The infrared measurements were made on two grating instruments and a tunable diode laser spectrometer. The grating measurements of the 171 l-cm-’ band (here ’ The U. S. Government’s right to retain a nonexclusive royalty-free covering this paper. for governmental purposes, is acknowledged. 0022-2852/80/050122-17$02.00/O
122
license
in and to the copyright
v, AND 2v, BANDS OF OCS
123
called the 2v1 band) were made on the NBS evacuated Littrow-type grating spectrometer which has a focal length of 2.35 m. The effective slit width measured from the spectra (full width at half-height) was slightly less than 0.03 cm-‘. The grating spectra were recorded with an absorption pathlength of 13 m and a pressure of about 0.3 Torr (40 Pa). The spectra of the 171 l-cm-’ band were calibrated by means of visible thorium emission lines (6) recorded simultaneously with the infrared spectrum but in higher orders on the grating. The spectra also had some lowpressure H,O lines (from HZ0 impurity in the absorption cell) whose measurements could be compared with the values calculated by Camy-Peyret and Flaud (7). The spectrum of the 859-cm-’ band (here called the v1 band) was recorded on an evacuated Ebert spectrometer with a 3.81-m focal length. The major components of this new instrument were transferred to NBS from the Wright-Patterson Air Force Base thanks to the kind support provided by Dr. Herman Scott. The fore optics and exit optics systems were redesigned by one of the authors (W.B.O.) and the instrument assembled at NBS. The monochromator had a grating with a ruled width of 408 mm, groove height of 204 mm, blaze angle of 65”, and a spacing of 31.6 grooves/mm. The resolution of the spectrum (taken in single pass mode) was about 0.04 cm-’ but the signal to noise was much inferior to that obtained for the 171 I-cm-’ band. Because of the less favorable signal to noise, no effort was made to assign and analyze the weaker absorption bands beyond the first hot band in this region. The Ebert spectrometer was calibrated by measuring lines of the 1-O band of CO in higher orders on the grating. In order to place calibration lines at frequent intervals on each run, a circular variable filter (used as an order sorter) was driven by a synchronous motor to switch between the order appropriate for calibration and the order for the OCS spectrum. An absorption cell interchanging mechanism allowed us to replace the sample cell with the calibration cell many times during a run. The sample and calibration absorption cells were 61 cm long and the OCS spectrum was recorded at a pressure of about 0.5 Tot-r (65 Pa). The CO measurements reported by Guelachvili (8) were used for the wavenumber calibration. The tunable diode laser spectrometer was built by Terry Todd and one of the authors (W.B.O.) and it has been described in Ref. (9). The diode spectra were only obtained in the 171 l-cm-l region and were calibrated using the results of the grating measurements for the 20°0-OOOOtransitions of OCS (given in Table III). Because of this method of calibration, the diode spectra only provided measurements of the hot bands and isotopic transitions with respect to the 20°0-00’0 transitions of the most abundant isotopic species. Interpolation between calibration lines was effected by means of a pattern of fringes produced by passing a portion of the laser radiation through a solid germanium etalon. Either of two etalons could be used, one being 2.5 cm long and the other 7.5 cm long, providing fringe spacings of about 0.049 and 0.016 cm-‘, respectively. By means of a beam splitter, two detectors, and a dual-pen recorder, the fringe pattern was recorded simultaneously with the OCS spectrum. Thermal drift in the etalon was a problem, but it was minimized by placing the etalon in a thermal isolating housing and by recording each spectrum in less than 3 min. In nearly all cases the thermal drift was less than 0.002 cm-’ in 0.4 cm-’ (the interval between calibration points). Due to frequency jitter in the laser output the linewidths observed with the diode system were
124
MAKI, OLSON,
AND SAMS
slightly larger (-50%) than the Doppler widths of the OCS lines (80 MHz). The diode spectra were taken using a pressure of 1 to 2 Torr OCS (133 to 266 Pa) in a 40-cm-long absorption cell. III. ASSIGNMENT
AND ANALYSIS
Using previous infrared and microwave measurements the assignment of most of the transitions was quite straightforward. The intensities of the bands were generally consistent with the expected population of molecules in the lower state. An exception was the 30°0-loo0 band, which seemed too strong when only the Boltzmann factor was considered. However, in addition to the Boltzmann factor the intensities of AvI = 2 transitions will (to a certain approximation) depend on (u’; + l)(u; + 2). This added factor of 3 brings the estimated intensity for the 30°0-loo0 transitions into much better agreement with the observed intensities although the observed intensities still seem a little high. This type of vibrational dependence also explains a large part of the high intensity observed by Buckley et al. (10) for the OCS “hot“ band 1310-0110. Many of the lines of the weaker bands were overlapped by strong transitions and it was often difficult to find enough clear transitions to be confident of the assignment. For example, we expect that the transitions of 1s012C33S should be nearly as strong as the transitions for 1s013C32S, yet we have not reported an analysis for 16012C33Ssince only a few transitions, that we believe are due to 1s012C33S, were observed in the clear. In the analysis the microwave measurements given in Refs. (4,_5) were combined with the infrared measurements in order to obtain the best set of constants for both upper and lower states. Two exceptions to this procedure were the use of the microwave-determined values (taken from Ref. (4)) of the ground-state constants (B, and Do) and the l-type doubling constants for the 01’0 state. The infrared data determined the band centers, certain rotational B values, and most centrifugal distortion constants, while the microwave data, if there were any for a particular vibrational state, largely determined the rotational B, values for that state. Each infrared band was fit separately (but with the appropriate microwave data) except the 30°0-loo0 and 10°O-OOOO bands, which were fit simultaneously in order to get the best constants for the loo0 state. The data were fit to the usual linear molecule energy level expressions T=G,+B,J(J+
I)--D,,[J(J+
t)-/2]2rt_0.5L[qrJ(J+ =
v”bs
7”
-
T”,
l)-j_+12(J+
l)‘],
(1) 12)
and VO
=
G;. - G;,
(3)
where the last term of Eq. (1) has the upper (positive) sign for thef levels and the lower (negative) sign for the e levels of a x state of OCS, and L = + 1 for all 7~ levels. The data were weighted inversely proportional to the square of their estimated uncertainty. The uncertainties of the microwave data were taken equal to the uncertainties given in Refs. (4, 5). The data for each infrared band were all given an uncertainty equal to the rms deviation for that band.
12.5
v, AND Zv, BANDS OF OCS TABLE la Rovibrational Constants (cm-‘) Determined for Carbonyl Sulfide (1601*C32S) lo"o-oooo R.M.S. OEV.
~8 B" ABX104
11'0-01'0
0.0014
2o"o-OOOO
0.0027
0.0010
852.0362(10) 1710.9763(3)
858.9677(3)b
[0.20285675]c 0.20320985(4) -6.04872(51:
-5.5234(44)
0.0014 '697.6071(4)
3o"o-looo 0.0014 1697.0248(5)
[0.20285675] 0.203209860(34) 0.202251880(51) -12.20875(348) -11.18547(431) -12.45616(490)
O"XiO8
L4.342301
4.4146(62)
:4.342301
bOXlO'O
9.81(124)
[lO.OO]
19.638(672)
2.286(S)XlO-4
q'
21'0-01'0
4.4162(74) 26.73(73)
4.4404(124) 20.62(74)
Z.4443(56)XlO‘4 5.43(116)x10-'0
Y'
TABLE lb Rovibrational
R.M.S. OEV. "B
Constants (cm-‘) Determined for 16012C3JSand 160’3C”zS
16012C34S
16013C32S
2o"o-ooqo
2o"o-ooqo
0.0013 1688.75B6(5)b
0.0017 1701.7910(7)
0.19789829(19)
0.202204052(36)
aBX104
-11.9217(80)
-12.1020(49)
O"Xl08
4.370(145)
8"
dDxlo'"
13.05(276)
4.3330(97) 21.48(613)
a) To allow for the unceytainty in the absolute frequency measurement, an additional uncertainty of to.002 cm- and to.0035 cm-' should be added to the uncertainty of the band centers ne% 850 cm-' and no0 cm-l respectively. b) Twice the standard deviation in the last digits is given in parentheses following each value. c)
Values enclosed by square brackets were fixed during the least-squares analys?s.
IV. RESULTS AND DISCUSSION
The constants resulting from the analysis of these measurements are given in Table I. The constants are all given with enough significant figures to allow one to calculate transitions to within the accuracy of the data when the correlation coefficients are properly taken into account. Our measured value for the band center of v1 is exactly the same as that determined by Fayt (I). The centrifugal distortion term for V, is also the same as that given by Fayt although the accuracy of our value is somewhat better. In this case, however, both the B and D values for the v1 state are primarily determined by the microwave measurements. The band center for the “hot” band 1l’O-0110 is about 0.05 cm-’ lower than that estimated by Fayt (II ), and the center of the 2u, band is about 0.13 cm-’ below that measured over 20 years ago by Allen et al. (2). In Tables II and III we give the calculated wavenumbers and relative intensities for the lines of the bands measured in this work. Tables II and III also contain a
126
MAKI, OLSON, AND SAMS TABLE II
Wavenumbers
(cm-‘) and Relative Intensities of Spectral Line of OCS From 825 to 885 cm-’
cALcuLATED’
WAVENmBER IEST.UNC.)b
o-cc
TRANSITION VIBd ROT.
I
A
P(74)
::
P(59) P(73) P(58) ~(72) P(57) P(71)
::
P(56) P(7D)
Ii
$i2i
:
P(6B) P(53) P(67)
i 0 A
:: .t 0 A D A D A i D i? A B” i D B C A D B C A D B k D 8 cD A
t# P(51) P(65) P(50) P(64) P(49) P(63) P(48) P(62) P(47) P(61) P(46) P(6D) P(45) P(45) P(45) P(59) P(44) P(44) P(44) P(58) P(43) P(43) P(43) F[Z] ~(42) ~(42) P(56) P(41) P(41) ;I::{ q::;
c” 1 c” : 8
CALCULKd WAVmlMBE (EST.UNC.)
SAND
825.1065(15) ~~::%:~1::~ 825.7191(32) 826.0599(13) 826.2118(31) 826.5348(12) 826.7034(29) 827.0085(11) 827.1937(27) 827.4810 11) 827.6829 25) 827.9523(10) 828.1708(24) 828.4224( 9) 828.6576(22) 828.8912( 9) 829.1432( 21) 829.3589( 8) 829.6276(20) 829.8253( 7) 830.1107(18) 830.2906( 7) 830.5927(17) 830.7546( 6) 831.0736(16) 831.2174( 6) 831.5532(15) 831.6790( 6) 832.0316(14) 832.1394( 5) 832.5088(13) 832.5986( 5) 832.6588(15) 832.6728(15) 832.9849(12) 833.0566( 5) 833.1137(14) 833.1266(14) 833.4597(U) 833.5134( 5) 833.5674(14) 833.5793( 14) 833.9334(10) 833.9690( 4) 834.0201(13) 834.0310(13) 834.4059( 9) 834.4233( 4) 834.4716(13) 834.4815(13) 834.8765( 4) 834.8772( 9) 834.92X(13) 834.9311(13) 835.3285( 4) 835.3473( 8) 835.3715(12) 835.3795(12) 835.7792( 4) 835.8162( 7) 835.8197( 12)
e BBL. INTENSITY
P(40) P(39) P(54) P(39) P(39) P(38) P(53) U38)
0.0036 0.0210 0.0040 0.0239 0.0044 0.0273 0.0049 0.0310 0.0053 0.0351 0.0059 0.0398 0.0064 0.0449 0.0070 0.0506 0.0076 0.0569 0.0083 0.0638 0.0090 0.0714 0.0098 0.0798 0.0105 0.0890 0.0113 0.0989 0.0122 0.1098 0.0131 0.1216 0.0140 0.0351 0.0351 0.1344 0.0149 0.0375 0.0374 0.1481 0.0159 0.0399 0.0398 0.1629 0.0169 0.0424 0.0423 0.1788 U.0178 0.0449 0.0448 0.0189 0.1958 0.0475 0.0474 0.0199 0.2140 0.0500 0.0499 0.0209 0.2332 0.0526
0-C'
%
TRANSITION VIBd ROT. BAND
835.8269(12) 836.2287( 4) 836.2669(12) 836.2733(12) 836.2840( 7) 836.6771 4) 836.7129 11) 836.7186(11) 836.7505( 6) 837.1242( 4) 837.1579(11) 837.1628(11) B37.2159( 6) 837.5701( 4) 837.6018111) 837.6059illj 837.6801( 5) 838.0148( 4) 838.0445(11) 838.0480(11) 838.1430( 5) 838.4583( 4) 838.4862(10) 838.4890(10) 838.6049( 51 838.90061 4j 838.9267(10) 838.9290(10) 839.0655( 4) 839.3417( 4) 839.3662(10) 839.3679(10) 839.5249t 4)
F ;I:;; A
i
[
839.9831( 840.2202( 840.2418(10) 840.2424(10) 840.4402( 840.6576( 840.6780(10) 840.6781(10) 840.8961( 841.0939( 841.1128[1Oj 841.1131(10) 841.35081 841.5289(‘ 841.5463( 841.5470( 841.8043( 841.9627( 841.9788( 841.9799( B42.2566( 842.39531 842.41021 842.4116( 842.7077( 842.8266(
4j
C
;I::; P(36) P(36)
i B C A D B c
P(35) P(35) P(50) P(34) P(34) P(34j
A D
F[Zii
F A D F A D F A D
F A
g:]
P(33) PC331 P(48) ~(32) F{%] Pt47) Pi31 j P(31) P(31) P(46) P(30) P(30) P(3D) PI451
0.0023
4) [-0.00061
pi28j
4) 4)
P(43) ;I;:; P(27) p(42j
3) 41
3) 4j 9) 9) 3) 4) 9) 9) 3) 4) 9j 9) 3) 4)
P(26) P(26) P(26) P(41) ~(25) ~(25) P(25)
pjaoj ~(24) ~(24) PC241
[-O.OOlS] [-0.00181
p(39j [0.0014]
[;.;;;;I
c B
i
0
~(23) ~(23) ~(23) P(38) P(22)
BBL' INTENSITY
0.0525 0.0219 0.0551 0.0550 0.2537 0.0229 0.0576 0.0576 0.2752 0.0238 0.0601 0.0600 0.2980 0.0248 0.0625 0.0624 0.3218 0.0257 0.0648 0.0647 0.3467 0.0266 0.0670 0.0669 0.3727 0.0274 0.0691 0.0690 0.3997 0.0281 0.0710 0.0709 0.4276 0.0288 0.0728 0.0727 0.4563 0.0294 0.0743 0.0743 0.4857 0.0300 0.0757 0.0756 0.5158 0.0304 0.0768 0.0768 0.5464 0.0308 0.0776 0.0777 0.5773 0.0310 0.0782 0.0783 0.6084 0.0311 0.0786 0.0786 0.6395 0.0311
column giving 0 - C, the difference between the observed and the calculated wavenumbers, so that the reader can obtain the values actually measured. Since the tables are intended to be used to calibrate tunable laser spectra, the calculated
v, AND 25 BANDS OF OCS TABLE
CALCULATEDa WAVBNLMBBR (EST.LlNC.)b &342.8405( 842.84231 843.1576( 843.2568( 843.2698( 843.2718( 843.6064( 843.6858( 843.6980(
0-C'
9) rO.00091 9j [O.OOOSj 3) -0.0001 4) 9) [-0.0015] 9) [-0.00151 3) -0.0012 4) 9) [-0.00163
844.1135( 844.1252( 844.X76( 844.5003( 844.5400( 844.5512( 844.5538(
4) 9) [O.OOOO] 9) [O.OOOO] 3) -0.0000 4) 9) [-O.OOOS] 9) [-0.00041
844.9762(
9)
845.3895( 845.4OOlt 845.40301 845.8123( 845.8230( 845.8259( 845.8324( 846.2339( 846.2447( 846.2477( 846.2740( 846.6544( 846.6654(
3) 91 9j 4) 9) 9) 3) 5) 9) 9) 3) 5) 91
TRANSITION VIBd ROT. BAND C 8 A
P(22) Pi22j P(37)
: B A
$ii;/
!
f 8 A
P(l9) P(l9) P(l9) P(34)
: 8
;I:!] ;I';;
;
P(17)
8 :
P(15)
i 0
q::]
ii
P(l4) P(14) U14)
A 0 C
;I:!] Pf13)
847.0880(9) [-0.00111 B 847.1537(3) 0.0010 A 847.4916(5) 847.5036191 r-O.00291 o C 847.506419j [-0.0029j 8 847.5917(3) -0.0011 A 847.9083(5) 847.9210(9) [-0.00211 c" 847.9238(9) [-0.00213 6 848.0286(3) 0.0000 A 848.3239(
5j
848.3374(9) [-O.OOll] ! 848.3401(9) [-0.00111 B A 848.4643(3) 848.7382(5) 848.7527(9) [-0.00161 c" 848.7552191 r-O.00161 B 848.898813j - 0.0002- A 849.1513(5) 0 849.1669f9) r-O.00311 C 849.1692(‘ 9j c-0.003lj 8 849.3321t3) -0.0009 A 849.56321
P(36) P(20) P(20)
5j
849.5801(9) [0.0014] : 849.5821(9) [0.00143 B A 849.7642(3) 849.9738(5) 849.9921(9) [-0.0006] : 849.9939(9) [-0.0006] B 850.1951(3) -0.0001 A
P(l2) P(28) PpKl Pillj k'[2;{ P(l0) P(l0) P(26) pi
9j
P( 9) P( 9) ~(25) P( 8) Pi24j
pi
6j
P(22) P( 5) P( 5) P( 5) P(21)
II-Conrinued
RELI) INTENSITI
0.0786 0.0786 0.6704 0.0310 0.0783 0.0783 0.7010 0.0308 0.0777 0.0777 0.7309 0.0304 0.0767 0.0767 0.7601 0.0299 0.0754 0.0754 0.7881 0.0292 0.0737 0.0737 0.0284 0.8149 0.0717 0.0717 0.0275 0.0693 0.0693 0.8401 0.0264 0.0665 0.0666 0.8636 0.0252 0.0634 0.0635 0.8849 0.0238 0.0600 0.0600 0.9040 0.0224 0.0562 0.0562 0.9205 0.0208 0.0521 0.0521 0.9342 0.0191 0.0477 0.0477 0.9449 0.0172 0.0430 0.0430 0.9523 0.0153 0.0381 0.0381 0.9562
0.0133 0.0328 0.0328 0.9565 0.0112 0.0273 0.0273 0.9530
127
cALCULmDa WAVBNUUBB % (EST.IIRC.)
0-C'
TRANSITION VIBd ROT. BAND
850.3832( 850.4031(
850.4046( 850.6248( 850.7914( 850.8130( 850.8142( 851.0533(‘ 851.1984( 851.2218( 851.22261 851.4807( 851.60411
851.90681 852.3317( 852.4119( 852.7555( 852.8140( 852.8452( 852.8462( 853.1780( 853.2148( 853.2481( 853.24951 853.59941 853.6143( B53.6498( 853.6518( B54.0127( 854.0196i 854.0504( 854.0530( 854.4098( 854.4385( 854.4498( 854.4531( 854.8056( 854.8482( 854.8520( 854.8563( 855.2002( 855.2454t 855.24991
855.2728( 855.59361
0
[-0.00191
c-yY.N;1
Li A D
[-0.00153 C [-0.00151 B A Ll
[-0.00661 C f-O.00661 B -0.0011
A
-0.0009
l! A
-0.0013 0.0010
0.0005
i D B C A 0 B C A D F D A F i B C 0 B C A D B
k D
855.6414(‘
855.6467( 855.6882( 855.9857( 856.0364( 856.0424( 856.1023( 856.3766( 856.4302( 856.4370( 856.5153( 856.7663( 856.8229( 856.8305( 856.9270( 857.1547( 857.2144f 857.22291
857.3376( 857.5418( 857.6048( 857.6142( 857.7469( 857.9277( 857.9941('
F A D B C A D B C A D B C A D B
P 4) Pt 4) PC4) P(20) P( 3) P( 3) P( 3) P(19) P( 2) P( 2) P( 2) P(18) P( 1) P(l7) P(l6) R( 0) P(15) R( 1) R( 1) R( 1) P(14) R( 2) R( 2) R( 2) P(l3) R( 3) R( 3) R( 3) R( 4) P(12) R( 4) R( 4) R( 5) P(11) R( 5) R( 5) R( 6) R( 6) R( 6) P(l0) R( 7) R( 7) R( 7) P( 9) R( 8) R( 8) R( 8) P( 8) R( 9) R( 9) ;I ;; R(l0) R(l0) R(10) P( 6) R(11) R(11) R(l1) P( 5) I$::] R(l2) P( 4) R(13) R(l3) R(l3) P( 3) g:;
e BBL. INTENSITY
0.0091 0.0216 0.0216 0.9454 0.0069 0.0155 0.0155 0.9338 0.0046 0.0087 0.0087 0.9180 0.0023 0.8979 0.8735 0.0023 0.8448 .0.0046 0.0088 0.0088 0.8118 0.0069 0.0155 0.0155 0.7746 0.0091 0.0217 0.0217 0.0113 0.7334 0.0276 0.0276 0.0135 0.6881 0.0332 0.0332 0.0155 0.0386 0.0386 0.6391 0.0175 0.0437 0.0437 0.5865 0.0194 0.0486 0.0486 0.5305 0.0212 0.0532 0.0532 0.4715 0.0229 0.0575 0.0574 0.4097 0.0244 0.0614 0.0614 0.3454 0.0258 0.0651 0.0651 0.2790 0.0271 0.0684 0.0684 0.2109 0.0283 0.0714
128
MAKI, OLSON, TABLE
CALCuLATEDa WAVENUMBB % (EST.UNC.)
9) 3) 4) 9) 9) 3j 4) 9) 9) 4) 9) 9) 3) 4j 9) 9) 3) 4) 9j 859.9387( 9) 860.1776( 3) 860.2168( 4) 860.3057( 9) 860.3222( 9) 860.5784( 3) 860.5939( 4) 860.6869( 9) 860.7046( 9) B60.9697( 4) 860.9781( 3) 861.0670( 9) 861.0859( 9) 861.3443(‘ 4j 861.3765( 3) 861.4460( 9) 861.4661( 9) 861.7176( 4) 861.7737( 3) 861.8238(10) 861.8451110) 862.0897( 4j 862.1697( 3) 862.2004(10) 862.2230(10) 862.4605( 4) 862.5645( 3) 862.5759(10) 862.5998(10) 862.8300( 4j 862.9502(10) 862.9581( 3) 862.9755(10) 863.1983( 4) 863.3234ilOj 863.3501(10) 863.3504( 3) 863.5652( 4) 863.6954(10) 863.7235(10) 863.7416( 3) 863.9309( 4) 864.0662(10) 864.0958(10) 864.1315( 3) 864.2953( 4) 864.4359(11) 864.4669(11)
o-cc
TRANSITION VIB'i ROT. P&ND
C A 0 B
858.0044( 858.1550( 858.3124( 858.3822( 858.39351 858.56201 858.6957( 858.7692( 858.7814( 859.0779( 859.1550( 859.1683( 859.3722( 859.4588(‘ 859.5397( 859.5540( 859.7755( 859.8384f 859.92331
R(14) g1:;
L
i:::;
n
P( 1) !I::; R(l6) Iiyi:] R(17) R( 0)
R(l8) R( 1) R(l9) R(l9)
i1l29j
R(20) R(20) R(20) :;2;; R(21) R(2lj R(22) R( 4)
-0.0026 [-0.00383 C-O.00381
M
0.0018 [-0.00173 [-0.00171
~(23) ~(23) ~(24) R( 6) ~(24) ~(24) ~(25) R( 7) ~(25)
-0.0014 [-0.00191 [-0.00191 -0.0012
L$65{ 0.0034
R( 8) M R(27j
-0.0000
~(27) R( 9) ~(27) R(28) Ri2Bj Rf281 R(lOj
0.0007
R(29) R(29) R(29) R(11J
0.0000
%i R(30j -0.0003 II B 0.0001
A 0
:I::;
R(31) R(31)
:I::,'
II-Continued
RBL" INTENSITY
0.0713 0.1414 0.0293 0.0740 0.0739 0.0710 0.0302 0.0762 0.0762 0.0309 0.0781 0.0781 0.0711 0.0315 0.0796 0.0796 0.1420 0.0320 0.0808 0.0807 0.2121 0.0323 0.0816 0.0816 0.2812 0.0325 0.0821 0.0820 0.0325 0.3488 0.0822 0.0822 0.0325 0.4145 0.0820 0.0820 0.0323 0.4780 0.0816 0.0815 0.0320 0.5389 0.08DB 0.0808 0.0316 0.5969 0.0798 0.0797 0.0311 0.0785 0.6517 0.0784 0.0305 0.0770 0.0769 0.7030 0.0298 0.0753 0.0752 0.7507 0.0291 0.0734 0.0733 0.7945 0.0283 0.0713 0.0713 0.8342 0.0274
AND SAMS
CALCULATED' WAVENUMBB % (EST.UNC.)
0-C'
864.8044(U) 864.8370(11) 864.9076( 3) -0.0002 865.0204( 4) 865.1717(11) 865.2059(11) 0.0020 865.2938( 3j 865.3809( 4) 865.5379(U) 865.5736(U) 0.0008 865.6788( 3) 865.7402( 4) 865.9029(12) 865.9402(12) 0.0006 866.06251 3j 866.0982( 4) 866.2667(12) 866.3057(12) 0.0017 866.4450( 3) 866.4550(' 4j 866.6293(12) 866.6700(12) 866.8104( 4) 866.8263( 3) 0.0016 866.99OBi13j 867.0332(13) 867.1645( 4) 867.2064( 3) 0.0006 867.3510(13) 867.3952(13) 867.5174( 4) 867.5852( 3) 867.7101(13) 867.7561(13) 867.8689( 4) 867.9628( 3) 0.0019 868.0680(14) 868.1159(14) 868.2192( 4) 868.33911 31 0.0001 868.4247(14j 868.4744(14) 868.5681( 5) 0.0003 868.71421 3j 868.7802(14) 868.8319(14) 868.9158( 5) 869.0881( 3) 869.1345(15) 869.1881(15) 869.2621( 5) 869.4607( 3) 0.0015 869.4877(15) 869.5433(15) 869.6072( 5) 869.8320( 3) -0.0000 869.9509( 6) 870.2021( 3) -0.0001 870.2933( 6) 870.5710( 3) -0.0005 870.6344( 6) 870.9386( 3) 0.0003 870.9742( 7) 871.3050( 3) 0.0005 871.3127( 7) 871.6499( 8) 871.6701( 3) -0.0028 871.9857( 9) 572.0339( 3) -0.0002
TRANSITION VIBd ROT.
REL? INTENSITY
BAND
CB~~~~;
A
i::;;
0.0691 0.0690 0.8698 0.0265 0.0668 0.0667 0.9011 0.0255 0.0643 0.0643 0.9281 0.0245 0.0618 0.0617 0.9507 0.0235 0.0592 0.0592 0.9690 0.0225 0.0566 0.0565 0.0214 0.9829 0.0540 0.0539 0.0204 0.9927 0.0513 0.0512 0.0193 0.9983 0.0486 0.0486 0.0183 1.0000 0.0460 0.0459 0.0173 0.9978 0.0434 0.0433 0.0162 0.9920 0.0409 0.0408 0.0153 0.9827 0.0384 0.0383 0.0143 0.9702 0.0359 0.0358 0.0134 0.9546 0.0125 0.9363 0.0116 0.9155 0.0107 0.8923 0.0100 0.8672 0.0092 0.0085 0.8404 0.0078 0.8120
g”31 Iii::;
R(34) R(34) R(16) R(35) R(35) Lg:/ R(36) R(36) R(36) R(lB) R(37) R(37) R(37/ R(3B) R(l9) R(38) M R(20j R(39) R(39) Lx1 R(40j D A B C D A 8 C D A B
R(40) R(41) R(22) R(41) R(41) R(42j ~(23) :I:;,' Rf431 Ri24j R(43) R(43)
Ri44j
~(25) R(44) R(44) R(45) R(26) R(45) R(45) R(46)
A
~(32) R(53) R(33)
v, AND 25 BANDS OF OCS TABLE cALclnArtua
o-c=
0.0071 0.7824 0.0065
877.4902(27) 877.6828( 6) 877.80181291
0.0020
0.7518 0.0060 0.7204 0.0054 0.6885
878.0250(7j 878.1120(31) 878.3659(7) 0.0002 878.4209(33) 878.7054(8) -0.0030
0.0049 0.6563 0.0045 0.6240 0.0041 0.5917 0.0037 0.5597 0.0033 0.5281 0.0030 0.0027 0.4970 0.0024 0.4667
879.0437(9) -0.0004 878.7284(35) 879.3807(9) -0.0001 879.7164(10) 880.0507(11) 880.3838(12) 880.7156(13) 881.0460(14) 881.3751(15) 881.7029(16) 882.0294(17) 882.3546(18) 882.6784(20) &33.0009(21) %33.3221(22)
t
R(62) R(63) R(m R(65 R(66)
R(45)
0.0021 0.4371 0.0019
E$%{$
i
:[a
i[Z{
0.0017 0.4084 0.3806 0.0015 0.3540
884.9079 31) 88415934 I29) 885.2210(32) 885.5328(34) 685.8433(36)
A" R I71) i %{ ~(72)
0
A
R(35j
872.9852(11) 873.1179(3) -0.0009 873.3157(U) 873.4767(3) 0.0030 873.6449(12j 873.9728 873.8342 I131 3) -0.0000
0 ;
R(56) ;13;]
A 0 0 A
Rf37) R(58j it\;31
0.0018 i 874.2993(14) 874.5455(3) 874.6245(15) 874.8992(4) 0.0004 i 874.9483(16) 875.2516(4) 0.0002 i74.i90iim3j
875.6028(4) -0.0015 A 875.9117(20) 875.9527(4) -0.0003 : 876.2301(21) 876.3013( 5) 876.5471(23)
: 0
876.8628(24) 0 876.6486( 5) -0.0008 A 876.9946(5) 0.0005 A 877.1772(26) 877.3394(6) -0.0006 i Wavenumbers
b)
'+e statistical
parentheses. statistlcal
givw
in cm
R(54)
R(j9j
$:;
R(63) R!"! R(43)
$Ei
:I::;
OllfO,
and
R(70) R(49) R1711
A
;[;;I
i D A
R(51) R(73)
: A A
A A A
R(54) R(55)
0.0013
0.3284 0.0012 0.3039 0.0010 0.2806 0.0009 0.2585 O.OW8 0.2376 0.2179 0.1994 0.1820 0.1658 0.1507 0.1366 0.1236 0.1116 0.1005 0.0904 0.0811 0.0725 0.0648 0.0577 0.0513 0.0455 0.0403 0.0356 0.0314 0.0276 0.0243
uncertainty
in the
last
digits
(twice
the standard
deviation)
is qiven
in
-1 An additional systematic uncertainty of 0.0035 cm should he added to the uncertainty to allow for the absolute uncertainty of the calibration (see text).
The vibrationa
160'zC32S
D A 5
-I
c) 3-C stands for the observed minus calculated values. were obtained from the unsplit averages of the l-doublet measurements made using the diode laser spectrometer. d)
TSANSITxOR REL! Vd hCT. IMZHSITY SAND
CALCuLATSu* IwwiG?m\ (SST.DtK.)
872.3202( 9) 8?2.3965( 3) 872.6534(101 872.X78( 3j
a)
II-Continued
TRANSITION R!d I?n!ENSIlY VIBd WT. MND
0-C'
WAtmiunSE % (asT.mc.)
129
nolecule
bands as
are
follows:
designated
by code
letters.
A for the transition
Square brackets enclose O-C values that transitions. Asterisks (*) indicate A through
10°O-00'0,
D stand
for transitions
of tke
and 4 for 11 'erl-01'eo, c for ll'fO-
", for ?o"o-looo.
e) The relative intensities are estimated magnitude estimate of the line intensltles
values that are intended to give (see text for explanation!.
only
an order
of
wavenumbers are given for all the strong lines (and some weak lines in the case of the 1700-cm-’ region) ordered by increasing wavenumbers. We recommend, ho,z2ever, that only the IOOO-OOOO and 2000-OOOOtransitions be usedfor
calibration.
The other transitions are given in the tables primarily to aid in orienting the user to a particular spectral region by means of pattern recognition. For the higher-J rotational transitions in the R branch the simplicity and regularity of the spectrum makes such pattern recognition techniques impossible so it is recommended that users rely on other molecular absorption features, such as NH, or H,O, to further aid in identifying the OCS transitions. The relative intensities given in Tables II and III were calculated using the expression Ire, = SCN exp(-EIkT),
where C is the isotopic concentration
(4)
for the species involved, N is a normalizing
130
MAKI, OLSON, AND SAMS TABLE III
Wavenumbers
(cm-l) and Relative Intensities of Spectral Lines of OCS From 1655 to 1737 cm-’
CALCULATED’ o-c= . yztYzS>
.
1655.5590(17) 1655.5891(U) 1655.7293(H) 1655.8837(49j 1656.1555(16) 1656.1963(11) 1656.3218(17) 1656.4408(46) 1656.7497(15) 1656.8008(10) 1656.9119(15) 1656.9955(441 i657.3415(14j 1657.4029(10) 1657.4997(14) 1657.5479(4lj 1657.9308(13) 1658.0023( 9) 1658.0852(13) 1658.0978(38) 1658.5179(12) 1658.5992( 9) 1658.6454(36) 1658.6683(12) 1659.1025(11 j 1659.1906(34) 1659.1935( 8) 1659.2491(U) 1659.6848(11) 1659.7335(31) 1659.7853( 8) 1659.8276(10) 1660.2647(10) 1660.2739(29) 1660.3746( 8) 1660.4037(10) 1660.8120(28) 1660.8423( 9) 1660.9613( 8) 1660.9775( 9) 1661.3476(26) 1661.4175( 9) 1661.5454( 7) 1661.5490( 8) 1661.8810(24) 1661.9904( 8) 1662.1182( 81
TRANSITION VIB$ ROT. PAND 6 II
c
i 0 : B : E 8 0 C E : C k F C 8 E F B E F B E D C E B F E B
7j 7) 7) .7) 7) 7)
pi84j P(Bl) P(B3) P(6B) P(B2) P(B0) P(B2) F[Z] P(79) P(B1) P(66) P(B0) P(7B) P(B0) P(65) P(79) P(77) P(64) P(79) P(7B) P(63) P(76) P(7B) P(77) P(62) P(75) P(77) P(76) P(61) P(74) P(76) ;I;:; P(73) P(75) P(59)
;I::; ;I::; P(71) ;I::]
k E B C
;I:021
F
P(55) P(70) P(70) P(6B) P(54) P(69)
P(56) P(71) F&i{
F D E B
0.0005 0.0004 0.0005 0.0022 0.0006 0.0005 0.0005 0.0025 0.0006 0.0005 0.0006 0.0028 0.0007 0.0006 0.0007 0.0031 0.0009 0.0007 0.0009 0.0035 0.0010 0.0008 0.0039 0.0010 0.0011 0.0043 0.0009 0.0011 0.0013 0.0048 0.00’10 0.0013 0.0015 0.0053 0.0012 0.0015 0.0059 0.0017 0.0013 0.0017 0.0065 0.0020 0.0015 0.0019 0.0071 0.0022 0.0022 0.0017 0.0078 0.0025 0.0025 0.0020 0.0086 0.0029 0.0029 0.0022 0.0094 0.0033 0.0032 0.0025 0.0102 0.0037
;;iz;
;I::; F E B i E B
1663.2497( 1663.2826( 1663.4666(19) 1663.6949( 1663.8119( 1663.8566( 1663.9905(18) 1664.2583(
x:1
raLF INTENSITY
CALCULATED* WA&%NUHBE % (SST.WC.) 1664.3719( 1664.4281( 1664.5119(17j 1664.6835(20) 1664.8195( 1664.9296( 1664.9970( 1665.0310(16) 1665.3079(18) 1665.3783( 1665.4850( 1665.5477(15) 1665.5634( 1665.9298(17) 1665.93481 1666.0381( 1666.0620(14) 1666.1273( 1666.4890( 1666.5491(16) 1666.5740(13) 1666.5889( 1666.6887( 1667.0408( 1667.0835(12) 1667.1375( 1667.1659(15) 1667.2475( 1667.5903( 1667.5908(11) 1667.6837( 1667.7802(14) 1667.8039( 1668.0956(10) 1668.1375( X68.2277( 1668.3577( 1668.3919(13) 1668.5981(10) 1668.68241
o-c=
7) 7)
7) 6) 7)
6) 6)
TRANSITION VIBd ROT. SAND
6j 6)
Fx;1 p(53j
:
P(90)
B C cl E A
$681
F E D
7) 6)
L E C
6) 7) 6)
B" F A D B
6) 6) 6)
: A D
6) 6)
Li C D A E B
6) 6) 6)
6)
ii A k C F A
1670.3032( 1670.3811( 1670.5478( 1670.5843( 1670.8138( 1670.8388( 1670.9137( 1671.0750(
6) 6) 6) 7) 9) 6) 6) 7)
-0.0030 -0.0004
0.0014
0.0037 0.0028 0.0111 0.0022 0.0041 0.0041 0.0032 0.0120 0.0026 0.0047 0.0046 0.0130 0.0035 0.0031 0.0052 0.0052 0.0141 0.0039 0.0059 0.0036 0.0151 0.0058 0.0044 0.0065 0.0163 0.0065 0.0043 0.0049 0.0073 0.0175 0.0073 0.0050 0.0054 0.0187 0.0081 0.0081 0.0060 0.0058 0.0199 0.0090 0.0090 0.0066 0.0068 0.0212 0.0100 0.0099 0.0073 0.0226 0.0078 0.0110 0.0110 0.0080 0.0239 0.0091 0.0122 0.0121 0.0088 0.0253 0.0105 0.0134 0.0133 0.0267
C D
c" E D A
7)
SEL? XXTEEISITI
F D E A 8 C D E i c E
P(66) ~(52) P(B9) !g:j P(51) P(65) P(B) P(66) P(66) P(50) P(64) Py86:; P(49) P(65) P(63) P(64) g,' P(B6) P(62) P(63) P(47) P(63) P(B5) P(61) P(46) P(62) P(621 P(60) P(B4) P(45) P(61) P(61) P(59) P(83) P(44) P(60) P(60) P(5B) P(43) P(B2) P(59) P(59) g::{ P(fJl) P(58) P!!BJ P(56) P(41) ,PM P(57) P(40)
term that gives the strongest transition (in a given region) an intensity of 1.0, and the last term is the standard Boltzmann exponential. S is the product of the HGnl-London line strength and a vibrational term such that S =f(u)(.J”
- /2)/J,
(5)
131
v, AND Zv, BANDS OF OCS TABLE CALCULATED* WAVENUMBER (EST.LINC.)b 1671.0890( 1671.3722l 1671.4130( 1671.4442( 1671.5633( 1671.6278( 1671.9032( 1671.9723( 1672.0097( 1672.04921 i672.1640( 1672.4319( 1672.4983( 1672.5327( 1672.6039( 1672.6977( 1672.9584( 1673.0139( 1673.0219( 1673.1955( 1673.2290( 1673.4825( 1673.4927( 1673.5434f 1673.75771 1673.7847( 1673.9691( 1674.0044(’ 1674.0626( 1674.2840( 1674.3714( 1674.4432(
6) 6) 9j 6) 7) 6) 6) 6) 8) 6) 6j 6) 6) 6) 7) 5) Sj 5) 6) 7) 5) 5) 5) 61 5j 6) 5) 5j 6) 5) 5) 5)
1674.5239( 1674.5795( 1674.8077( 1674.9149( 1674.9556f i675.0412i 1675.0942(
5) 6) 5) 4) 51 5j 5)
1675.3289( 1675.3843( 1675.5373( 1675.5562( 1675.60671 1675.8477( 1675.8513( 1676.0689( 1676.1166I 1676.11701 1676.31591 i676.3640(‘
5) 4) 5) 5) 5j 5) 4) 5) 41 5j 4) 4j
1676.5793( 5) 1676.625Of 5) 1676.69331 4j 1676.7781( 4) 1676.8777 4) 1677.0875 5) 1677.1308( 5) 1677.2380( 4) 1677.2676( 4) 1677.3890( 4) 1677.5616(36) 1677.5933( 5) 1677.6344( 5) 1677.69551 41 1677.83931 3j 1677.8978( 4) 1678.0892(33) 1678.0969(‘ 5j 1678.1357( 5) 1678.1507( 4) 1678.4041( 4) 1678.4086( 3) 1678.5982( 4)
I
0-C’
TRANSITION VIBd ROT. BAND
0.0013
-0.0002 0.0032 0.0011 -0.0020 0.0017 0.0001 -;.;Q;
A c E D B C A E D
0.0018
c” E
.
0.0002
0.0016 0.0003
0.0010 0.0004 0.0009
B E c A D B E C 0
P(79) P(56) P(39) P(54) P(55) P(55)
p(53j P(54) P(54) P(37)
P(53) P(36) P(53) P(76) P(5l) P(52) P(35) P(52) Pisoj
E P(5l)
0.0019 -0.0001 -0.0003 0.0021
II A
0.0007 o.0012
6 c
0.0026 0.0029 -0.0004 0.0007 0.0020
0 E A B c
0.0036 0.0003
0.0021 0.0004
0 E A B c 0 E B A
-0.ooc4 0.0016 0.0025 0.0020 0.0028 0.0010
0 B c A E
0.0014
0.0016 0.0028 0.0017 0.0026 0.0007 0.0019 0.0011 0.0010 0.0007 0.0001
E
0 B c E A D F B
A D F B c
A B
P(51) P(49) P(74) P(33) P(5O) P(50) P(4B)
P(49j P(49) P(47) P(3l) P(721 P(48) P(48) ;I$ P(47) P(71)
pi47j
P(29) P(45j P(46) P(46) P(7O) P(2B) P(44) P(45) P(45) P(27) P(69) P(43) ~(52) P(44)
P(68j
P(43) P(43) PiZ5) P(41)
III-Continued
Ret’ INTENSITY
CALCULATED’ WAVSNUHBER (EST.WC.)b
0.0096 0.0147 11.0121 0.0146 0.0280 0.0105 0.0161 0.0160 0.0139 0.0294 0.0115 U.0176 0.0175 0.0308 0.0160 0.0125 0.0192 0.0321 0.0191 0.0183 0.0135 0.0208 u.0334 0.0208 0.0146 U.OZlU 0.0347 0.0226 0.0225 O.Ul5tl 0.0239 0.0359 0.0245 0.0244 0.0170 0.0371 0.0273 0.0264 0.0264 0.0183 0.0382 0.0310 0.0285 0.0284 0.0196 0.0392 0.0306 0.0351 0.0306 0.0401 0.0210 0.0328 0.0328 0.0398 0.0409 0.0224 0.0351 Il.0351 0.0416 0.0449 0.0238 o.uo29 0.0375 0.0374 0.0422 0.0506 0.0253 0.0031 0.0399 0.0398 0.0426 0.0268 0.0569 0.0424
1678.6034( 1678.6144(30) 1678.6348( 1678.9079( 1678.9755( 1679.0538( 1679.0972( 1679.1317( 1679.1371IZB)
o-cc
E F c
4) 5) 4) 3) 4) 4) 5)
TRANSITION VIBd ROT. BAND
0.0007 0.0008 0.0005 0.0026 0.0019
i679.4092( 4j 0.0020 1679.5019( 4) 0.0012 0.0014 1679.5398( 3) 0.0038 1679.5940( 4) 1679.6264( 4) 1679.6574(Z) 0.0023 1679.9080( 4) 1679.9476( 4) 0.0004 1680.0884( 4) 1680.1017( 3) 1680.1189( 4) 1680.1753(23) 1680.3909( 4) 168U.4044( 31 0.0049 1680.5806( 4j 1680.6092( 4) 0.0007 1680.6611( 3) 0.0034 1680.6908(21) 0.0006 1680.8318( 4) 0.0020 1680.8982( 3) 1681.0706( 4) 1681.0972( 4) 1681.2038(19) 0.0003 1681.2180( 3) -0.0003 1681.2704( 4) 0.0014 1681.3896( 3) 1681.5582( 4) 1681.5830( 4) 0.0013 1681.7066( 4) 1681.7144(17) 0.0008 1681.7725( 3) 1681.8785( 3) 0.0015 [-0.0003] 1682.0436( 4) 1682.0667( 4) [-;.;;;;I 1682.1404( 5) -0:0013 1682.X26(15) 0.0011 1682.3245( 3) 0.0014 1682.3649( 3) 1682.5268( 4) 1682.5481( 4) 1682.5718( 5) 1682.7284(14) 1682.8489( 3) 1682.8741( 3) 1683.0009( 5) 1683.0076( 4) 1683.02731 4) 1683.2317ilZj 0.0017 1683.3303( 3) 1683.4211( 3) 1683.4276( 5) 1683.4862t 3) 1683.50431 4j 1683.7326(11) 1683.8093( 3) 0.0006 1683.8520( 5) 1683.9625( 3) 1683.9658( 3) 1683.9791( 4) i684.23ililoj 0.0021 1684.2739( 5) 1684.2858( 3) 1684.4366( 3) 1684.4517( 4) 1684.5079( 3)
i i C F u E A B C F 0 E B A C F E D B ii F E II B C F A E 0 E C E F A 0 B : F A 0 B i F 0 A E B C F D A E B C F z B A C F E D B k
~(24) P(50) P(42) P(40) P(66) P(23) P(41) P(41) P(49) P(39) P(22) P(65) P(4O) P(40) P(48) P(38) P(2l) P(39) P(64) P(39) P(47) P(20) P(37) P(38) P(3B) P(63) P(46) P(l9) P(36) P(37) P(37) P(45) P(62) F'(la) P(35) P(36) P(36) P(l7) P(44) P(61) P(34) P(35) P(35) P(16) P(43) P(6o) P(33) P(34) P(34) P(15) P(42) ~(32) P(59) P(l4) P(33) P(33) P(41) P(31) P(58) P(l3) ~(32) P(32) P(40) P(30) P(12) P(31) ;I::; P(39) P(llI P(29) P(3O) P(30) P(56)
REL: INTENSITY
0.0429 0.0034 0.0423 0.0283 0.0638 0.0430 0.0449 0.0448 0.0036 0.0298 0.0430 0.0714 0.0475 0.0474 0.0039 0.0313 0.0428 0.0500 0.0798 0.0499 0.0042 0.0424 0.0328 0.0526 0.0525 0.0890 0.0045 0.0418 0.0343 0.0551 0.0550 0.0048 0.0989 0.0411 0.0358 0.0576 0.0576 0.0402 0.0051 0.1098 0.0372 0.0601 0.0600 0.0390 0.0055 0.1216 0.0385 0.0625 0.0624 0.0377 0.0058 0.0398 0.1344 0.0362 0.0648 0.0647 0.0062 0.0411 0.1481 0.0346 0.0670 0.0669 0.0065 0.0422 0.0327 0.0691 0.1629 0.0690 0.0068 0.0307 0.0432 0.0710 0.0709 0.1788
MAKI, OLSON,
132
TABLE CALCULATEDa UAvmlmBE % (EST.~C.) 1684.69351 1684.7272( 1684.7598( 1684.9084( 1684.9221( 1685.0476( 1685.1107( 1685.2209( 1685.2313( X85.3779( 1685.3902( 1685.5256( 1685.5849( 1685.7003( 1685.7121( 1685.8452( 1685.8562f
1685.93801
1686.1197( 1686.1669( 1686.2010( 1686.3102t 1686.3200( 1686.3481( 1686.6310( 1686.6521( 1686.6874( 1686.7558( 1686.7730( 1686.78161 1687.0926( 1687.1611( 1687.1714( 1687.1820( 1687.2335( 1687.2410( 1687.5517( 1687.5641( 1687.65301 1687.6917( 1687.6982( 1687.7094( 1687.9646( 1688.0084( 1688.1322( 1688.1477( 1688.1532( 1688.2344( 1688.3628( 1688.4626( 1688.6014( 1688.6060( 1688.6089( 1688.7570( 1688.9142( 1689.0528( 1689.0566( 1689.0833( 1689.1520( 1689.2771( 1689.3635( 1689.5020( 1689.5050( 1689.5430( 1689.5552( 1689.7948( 1689.8102( 1689.9317( 1689.9490( 1689.9512( 1690.0248( 1690.2544( 1690.3100( 1690.3179(
51 9j 3) 3) 3) 3) 5) 8) 3) 3) 3) 5) 3) 3) 7) 3) 3)
O-C=
TRANSITION VIB$ ROT. BAND
-0.0002
E
0.0002
P(101 P(3Bj P(2B) ;I:;,’
EkZ3 0:0004 -0.0010
P(55) P( 9) P(37)
-0.0009 [0.0007]
;g
[;.;;;;I
PPIY
-0:0006 0.0034
A II
pi54j
i
pi
[0.0003] ro.00031 :0.00080.0007 -0.0003
CB
Pf271
E 5j A 3) 0 3) 7) 31 3j 5) 3) 3) 6) 6) 3) 31 3j 6) 6) 3) 3) [0.0003] 3) co”.~o”~;l 3) 6) F 6j 3) B 3) C A 3) E 6) 0.0010 D 4) 0.0003 F 5) 3) B 3) k 3) -0.0001 E 6) D 4) -0.0003 3) B 4) C F 5) A 3) -0.0004 4) 0.0008 4) 4) 51 6j 3) 0.0013 4) -0.0006 4) [O.OOOS] 4) [0.0008] 6) 5) -0.0031 3) 4) 6) 4) [-0.00053 4) [-0.00053 5) 0.0017 4) 0.0007 A 3) 0.0009 6) E
b
~(25) P(35) P(26) P(26) ;12:] ~(52) q345{ ;I::; g2:i P(331
Pi32j
e BEL. INTENSITY 0.0285 0.0072 0.0442 0.0728 0.0727 0.1958 0.0261 0.0075 0.0450 0.0743 0.0743 0.0236 0.2140 0.0456 0.0079 0.0757 0.0756 0.0210 0.2332 0.0461 0.0082 0.0768 0.0768 0.0182 0.0465 0.2537 0.0085 0.0154 0.0777 0.0776 0.0467 0.0124 0.0089 0.2752 0.0783 0.0782 0.0467 0.0094 0.0092
x1
K%:
pi5oj
@3;
P( 21 0:0465
pi22j
P(49) ;12:; P(21) P(21) P(3O) P(4B) P(lY) P(20) P(20) P(2Y) R( 0) XI p(i9j
P(19) R( 1) P(28)
%,': ;:;;;; 0:0032 0.0461 0.0783 0.0783 0.0097 0.3467 0.0456 0.0777 0.0777 0.0099 :-z: 0:0440 0.0767 0.0767 0.0063
P(46) P(17) R( 2)
x;:: 0:043e 0.0094
~(27) P(16) P(45) R( 3)
:-i::: 0:0103 0.0426 0.4276 0.0125
;[;;I
AND SAMS
III-Continued CALCULATEDa WAvmuuBB % (F;ST.UNC.) 1690.3936( 1690.3952( 1690.4919( 1690.6962( 1690.7018( 1690.8228( 1690.8360( 1690.8370( 1690.9566( 1691.0833( 1691.1355( 1691.2762( 1691.2766( 1691.3331( 1691.4189( 1691.4624(
4) 41 6j 4) 5) 3) 4) 4) 6) 5) 4) 4) 4) 2) 6) 5)
1691.X41( 1691.8391( 1691.8410( 1691.8788( 1692.0066( 1692.1492( 1692.1497( 1692.2133( 1692.3363( 1692.3465( 1692.4385( 1692.5823( 1692.5831( 1692.5852( 1692.7914( 1692.8495( 1692.8679( 1692.9548( 1693.0131( 1693.0142( 1693.2440( 1693.2947( 1693.3219( 1693.3501( 1693.4417( 1693.4431( 1693.6866( 1693.6943( 1693.7191( 1693.8483( 1693.8682( 1693.8697( 1694.0489( 1694.1411( 1694.1422( 1694.2924( 1694.2940( 1694.3440( 1694.4088( 1694.5605( 1694.5876( 1694.7144( 1694.7161( 1694.7663( 1694.8373( 1694.9774( 1695.0306( 1695.1214( 1695.1343( 1695.1359( 1695.3282( 1695.3919( 1695.4712( 1695.4741( 1695.5519( 1695.5534(
4) 5) 21
0-C'
TRANSITION VIB$ ROT.
f-0.0006] r-o.00061 0.0007‘ -0.0012’
B c F II
;/:$i
i ;
;I::\ ;[;l;
-0:0013* -0.0002’ [-O.OW23* [-O.OOO2]* -0.0002 0.0003+ -0.0017
E 0 8 C A F E
R(
[0.0004]*
B E A
-
[O.OOOl]* C;.;;,“$
0.0004 0.0010* -0.0017
E
5)
;I::; P(15) P(43) ~(24)
z4:1
p(23j
;I::{
Eu”%$ -0:0031
P(l3) R( B) P(22) P(41) P(11)
-0.0003 0.0006’
x1
Ri 9j 0.0001 0.0036
P(21) D E C 8 F
P(4O) P(lO) R(l0) P(ll) P(l1) F[‘$
-0.0016
;I::;
p&;;
P(lO) P(l0) R(12) P(19) P( 8) P(3B) ;I
i;
0.0007
R(l3) P( 7) P(lB) P( 8) PI 8)
0.0006 0.0015
Rpg
pi37j
P(l7) P( 7) P( 7) Rt15) pi36j P( 5) P(16) Lq’i,’ -0.0009 -0.0013 4) 4) 4)
BEL' INTENSITY
SAND
[-O.OOOZJ L-O.00021
:: 0 F ; B
P( 6) P(35) P( 4) P(l5) R(17) PI 5) P( 5)
0.0737 0.0737 0.0105 0.0412 0.0155 0.4563 0.0717 0.0717 0.0106 0.0184 0.0396 0.0693 0.0693 0.4857 0.0107 0.0212 0.0378 0.0665 0.0666 0.0240 0.5158 0.0107 0.0358 0.0634 0.0635 0.0266 0.0107 0.5464 0.0336 0.0600 0.0600 0.0290 0.0107 0.5773 0.0312 0.0313 0.0562 0.0562 0.0106 0.0286 0.0334 0.6084 0.0521 0.0521 0.0354 0.0105 0.0259 0.6395 0.0477 0.0477 0.0372 0.0230 0.0103 0.0430 0.0430 0.6704 0.0388 0.0200 0.0101 0.0381 0.0381 0.0402 0.7010 0.0168 0.0098 0.0415 0.0328 0.0328 0.7309 0.0136 0.0095 0.0425 0.0273 0.0273
133
v, AND 2v, BANDS OF OCS TABLE CALCULATED' WAVFXUHEER (EST.LINC.)b 1695.8039( 1695X66( 1695.8243( 1695.9094( 1695.9674f 1695.96871 1696.1722( 1696.21331 1696.30261 1696.3452( 1696.3806( 1696.3817( 1696.5177( 1696.6203( 1696.7786( 1696.7861( 1696.7916( 1696.7924( 1696.86U7( 1697.2013( 1697.2096( X97.2672( 1697.4269( 1697.5395( 1697.6382( 1697.7459( 1697.8264( 1697.8753( 1698.0643( 1698.2087( 1698.2222( 1698.2234( 1698.4127( 1698.4138( 1698.4881( 1698.5397( 1698.6179( 1698.6960( 1698.8121( 1698.81381 1698.86821 1598.9094( 1699.0100( 1699.16741 1699.1943( 1699.2092( 1699.2116( 1699.3283( 1699.3995( 1699.5179( 1699.6041( 1699.6072( 1699.6364( 1699.7448( 1699.7865( 1699.8392( 1699.9967( 1700.0006( 1700.1029( 1700.1580( 1700.1589( 1700.1711( 1700.3870( 1700.3917( 1700.4744( 1700.5531c i7OU.5671( 1700.57U5( 1700.7?50( 1700.7807( 1700.7883( 17OU.9327( 1700.9798( 1701.0287i
o-cc
TRANSITION VIBd ROT. BAND 0 A E
6) 4) :I
[-0.0007]
c~;.~~~;l
5) 6) 2)
41
4) 4) 4) 7) 2) 51 41
:; 5)
4j i; :; 4) 4)
P(34) R(18)
piidj
P( 4) P( 4) R(19) P( 2) P(33) P(13) P( 3) P( 3) R(2o) P( 1) P(l2) P/321 P( 2j
-0.0010 -0.0001
2)
P( 3)
P( 2) R(21)
-0.0017 0.0013
x1 7i31j
0.0004
P(lO)
P(30) R( 1) ~(24) P( 9) lR(25) pi29j
R( 2) R( 1) A( 1)
[-0.0003] [-0.00031 0.0003
P( 81
p;]
5) PI231
ni 2j
[0.0006]
R( 2)
4) 4) 7) 51
~(27) P( 7) RI 41
2j 4) 4) 4) 7) iI 4) 4) 2)
4j
A E B -0.0008 U.OOtl6 -0.0002
-0.0000 -0.0006 0.0021 -0.0014 [-0.00061
2)
4) 7) 4)
4j
[-0.0002]
4) [-0.0002) 4) 41
2i 7) 41 41 4) 4) 71
2i
-0.0019
0.0103 0.7601 0.0434 0.0091 0.0216 0.0216 0.0440 U.0069 U.7881 0.0087 0.0155 0.0155 0.0445 0.0035 0.0082 0.8149 0.0087 0.0087 0.0448 0.0449 0.0077 0.8401 0.0035 0.0449 0.0072 0.8636 0.0069 Il.0447 U.OU66 0.0443 II.8849 0.0103 0.0088 0.0088 0.0059 0.0438 u.0137 0.9040 0.0155 0.0155 0.0432 0.0053 0.0170 5.9205 0.0424 Il.0217 0.0217 0.0046 0.0202 0.0415 0.0276 0.0276 0.9342 0.0039 0.0233 0.0405 u.0332 U.0332 0.9449 0.0394 0.0031 0.0263 0.0386 0.0386 U.0383 0.0291 0.9523 0.0024 0.0437 0.0437 O.U370 0.0318 0.0016 0.9562
L&Y{
0.0032 O.OOOY -0.0023 -0.0013 0.0030
:I
i{
BBLf! INTENSITY
pi27j
R(28) IR( 3) R( 3) P( 6)
0
i
E B C
R( 4)
P( 5) 2( 6) 2f30) iI :; P(E5) 2131) P( 4) iI 6 '; RI ii) Ri32j R( 8) P(24)
PC 3)
0.0009
R( 7) R( 7) R(33) R( 9)
0.0003
LJ2:;
III-Continued CALCULATEDa WAVBIIDMBER (BST.UNC.)~ 1701.0998( 1701.1607( 1701.1674( 1701.3097( 1701.3866f 1701.4089( 1701.4880( 1701.5442( 1701.5520( 1701.68421 1701.7155( 1701.9253( 1701.9343( i7u1.9448( 1702.0196( 1702.05621 1702.1930( 1702.3042( 1702.3144( 1702.3214( 1702.39921 1702.4257( 1702.5926f 1702.6206(‘ 1702.6808( 1702.6922( 1702.7927( 1702.8512( 1702.9174( 1702.9897( 1703.0551( 1703.0679( 1703.1572( 1703.2118( 1703.3007( 1703.3844( 1703.4272( 1703.4413( 1703.5037( 1703.51')2( 17U3.7478( 1703.7767( 1703.7932( 1703.7969( 1703.8124( 1703.8786( 1704.0802( 1704.1643( 1704.1666( 1704.1814( 1704.1925( 1704.2356( 1704.3647( 17U4.5295( 1704.5481( 1704.5540( 1704.5900( 1704.6347( 1704.6467( 1704.8923( 1704.9126( 1704.9263( 17U4.9390( 17114.9419( 1705.0745( 1705.2034( 1705.2529( 1705.2748( 1705.2912( 1705.3216( 1705.4781( 1705.5119( 1705.6111( 1705.6348(
o-cc
4) -0.0004 4) 4) 4) -0.0009 7) 5j -0.0012 2) 0.0003 4) [-O.OOll] 4) [-O.OOll] 4) U.0010 5j -0.0022 4) 4)
2j
5) -0.0014 4j -0.00% 7) 4) 4) 51 zj 0.0012 4) 71 5j -0.0003 4) [-0.00041 4) [-0.0004] 4) -0.ou12 3) O.OOUO 5) u.oouz 7) 4) -0.0005* 4) -0,0029* 4) -0.0005* 5) -0.0002* 3) -O.OOUl 7) 4) -0.0014* 4) -0.0017* 5) -0.OOU9' 4) -0.0011' 3) -0.OOU4 I) 5) 4) -0.0007' 4) -0.0003* 4) -O.OOUl* 5) -O.oolu* 4) -0.0004* 7) 4) -o.uou4* 3) 4) o.u002* 5) -U.OOlb 4) [0.0044] 4) [0.00441 7) 4) -0.0004 3) U.0012 5) 4) -0.0007* 4) -U.O004* 5) -0.0010’ 7) 3) -u.o005* 3) -0.0003 5) -O.OOOl* 3) -0.0007* 4) -0.UOll’ 3) -U.O015’ 7) -0.0003* 6) U.oOU8* 3) -0.0007 3) -0.0003* 3)
TRANSITION VIBd ROT. BAND E 0 C 0 F E A d C 0 E : A E D F c” E A 0 F E B C u A E F a C D C A F 6 c E 0 A F i 3 C D C B F c A 0 E B C F rJ A ; C E
R(34) R( 8) R( 8) Kp!lZ R(35j P(22) R( 9) xi Ri36j R(l0) R(lO) phi Rf371 RilZj R( 0) R(11) R(11) Rf38) Pi2oj R(13) R( II R(39j R(12) R(l2) R(l4) P(lY) R(40) R( 2) R(13) R(13) R(15) R(41) P(18) R( 3) R(l4) R(14) trIZ{ P(17) R( 4) R(43) R(15) R(15) R(17) R(44) R(16) R( 5) ti(16) P(l6) R(lB) R(45) R(17) R(17) RR;,:] P(15) R(46) R(18) ,?(18) !I”:;
5 A E u C u F E A B C
R(LO) P(14) R(4d) R(lV) R(lY) R(21) R( 81 R(49) P(13) R(20) R(20)
RELF INTENSITY u.0357 U.0486 0.0486 0.0343 U.0008 0.0344 0.9565 U.O53? 0.0532 U.03GG o.033u 0.0575 0.0574 0.9530 U.0316 0.0387 0.0008 0.0614 0.0614 U.O3U? 0.9454 0.0407 0.0016 0.0288 0.0651 0.0651 0.0424 0.9338 0.0273 0.0024 0.0684 0.0684 0.0440 0.025Y U.9180 o.uu32 0.0714 0.0713 O.U245 0.0453 0.897'1 0.003Y 0.0231 0.074u 0.073Y 0.0464 0.0217 0.0762 0.0046 O.U762 0.8735 0.0473 O.OZU4 0.0781 0.0781 0.0054 0.0480 U.8448 0.0191 0.0796 0.0796 0.0178 0.0060 O.U485 0.11118 0.0166 u.oaoii 11.0807 0.0487 O.dU67 11.0155 U.7746 0.0816 O.Otllb:
MAKI, OLSON,
134
TABLE
CALCULATED= WAVENDXBER (EsT.LINC.)~ 1705.6381( 1705.7018( 1705.7502( 1705.9468( 1705.9670( 1705.9824( 1705.9926( 1706.0199(
3) 7) 6) 3) 3) 3j 3) 6)
:E%:I !I 1706.3206( 3) 1706.3241 3) 1706.3481( 3j 1706.3794( 3) 1706.4548( 6) 1706.5519( 7j 1706.6634( 3) 1706.672U( 3) 1706.7014( 3) 1706.8094( 3) 1706.8141( 8) 1706.8276( 6) 1707.0001( 3) 1707.021(1( 3) 1707.0524( 3) 1707.0738( 9) 1707.1980( 6j 1707.2371( 3) 1707.3311( 9) 1707.3342( 3) 1707.3676C 31 1707.40111 3j 1707.5660( 6) 1707.5858(10) 1707.6623( 3) 1707.6659( 3) 1707.712OI 3) 1707.7476( 3j 1707.8381(11) 1707.9315( 6) 1707.9949( 3) 1708.0541( 3) 1708.0851( 3j i7oB.u878(iz) 1708.0919( 3) 1708.2946( 6) 1708.3215( 3) 1708.3351(14) 1708.3938( 3) 1708.4339( 4) 1708.5054( 3) 1708.5798(15) 1708.6455( 3) 1708.6552( 6) 1708.7312( 3) 1708.7736( 4) 1708.822li17j 1708.9233( 3) 1708.9669( 3) 1709.0134( 6) 1709.(3618(18) 1709.0663( 3) 1709.1110( 4) 1709.2858( 3) 1709.2990(20) 1709.33881 3) 1709.3691(‘ 6j 1709.3990( 4) 1709.4462( 4) 1709.5337(22) 1709.6021( 3)
o-cc
TRANSITION VIBd ROT. BAND
R(22) R( 9)
0.0011* 0.0001*
X(50)
P(l2) R(21) R(23) R(21) R(51)
-0.0001* 0.0005* 0.0006* -0.0028 0.0026
I
-0.0022 -0.0027
0.0006
0.0014
-0.0022 -0.0023
F
B 0 C A F E
0
B C A E F 0 5 C
E
F A E 0 B C F
E
-0.0004 -0.0017 -O.OOUl 0.0005* 0.0000’ -0.0001* -0.0003*
i).ooo1* -0.0007’ 0.0005* 0.0004* -0.OOU6 o.oooa* 0.0001* 0.0011’ -0.0005* 0.001tl* -0.0007 -0.0012 -0.0017 -0.0014 -0.0006 -0.0002 -0.0006 -0.0021 -0.0004 -0.0014
A D B
!I::{ i?(Z) R(24) R(22) P(l1) R(l1) R(53) R(25) R(23) R(23) P(lO) R(54) R(l2) R(26) ~(24) R(z4) R(55) R(13) P( 9) R(56) R(27) R(25) X(25) R(14) R(57) P( B) R(2B) R(26) R(26) R(5B) R(15) R(29) R(27) P( 7) R(59) R(27) d(16) R(30) R(6D) X(28) R(28) P( 6) R(61) R(31) a(171 lR(29) R(29) R(62) P( 5) R(32) R(la) R(63) 2(30) :I:!,' R(64) P( 4) R(l9) R(31) X(31) R(65) R(34)
RELI! INTENSITY
AND SAMS
III-Conrinued
CALCULATEDa WAVENDXBER
o-cc
(EST.UNC.)b 0.0488 0.0073 0.0143 0.7334 0.0821 U.0487 0.0820 0.0133 0.0079 u.0123 0.0822 0.0484 0.0822 0.6881 0.0084 0.0113 0.04YO O.U&WJ 0.0820 0.6391 0.0104 0.0089 0.0474 ll.0816 0.0815 0.0095 0.0093 0.5065 U.0087 0.0466 U.0808 0.0808 0.0097 0.0080 0.5305 0.0458 0.0798 0.0797 0.0073 0.0101 0.0447 0.0785 U.4715 0.0066 0.0784 0.0104 0.0436 0.0060 11.0770 0.0769 0.4097 0.0054 0.0424 0.0107 0.0753 U.0752 0.0049 0.3454 0.0411 0.0109 0.0044 0.0734 0.0733 0.0397 O.UO40 0.2791) 0.0110 0.0713 0.0713 0.0036 d.0383
TRANSITION VIBd ROT.
17OY.7224( 6) 1709.7294( 4) 1709.7518( 3) 1709.7653(24) ::z:g q -0.0012 1709.9954(25) 1710.0575( 4) 171U.O732( 6) -0.0009 1710.1097( 4) 0.0001 1710.1624( 3) 1710.2225(28) 1710.22711 4) 1710.3832(‘ 4j 1710.4216( 6) 1710.4381( 4) 1710.4471(31) -0.0017 1710.5357( 4) 1710.5706( 3) -0.0009 -0.0014 1710.7066( 4) 1710.7641f 4) 1710.76751 6j -0.0014 1710.8418( 4) -0.0014 1711.0276( 4) 1711.0879( 4) 1711.1110( 6) -0.oor1 1711.1453( 4) 1711.3463( 4) 0.0005 1711.3796( 3) 1711.4094( 4) 1711.4462( 4) 1711.452(1( 5) -0.0023 1711.6626( 4) 1711.7285( 4) 1711.7445( 4) 1711.7804( 3) 0.0011 1711.7905c 5) 1711.9766( 4j -0.0008 1712.0403( 4) 1712.0454( 5) 1712.1265( 5) 0.0009 1712.1788( 3) -0.0008 1712.2882( 4) -0.0006 1712.3335( 4) 1712.3600( 51 1712.46Uli 5j 0.0019 1712.5747( 3) 0.0029 1712.5975( 5) 1712.6241( 5) 1712.6723( 5) 0.0005 1712.7912( 5) U.O018* 1712.9043( 5) o.o01a* 1712.9121( 5) u.o017* 1712.9682( 3) 0.0025* 1712.9822( 5) 1713.1199( 6) -0.0008’ 1713.1975( 5) -0.0009’ -o.oooa* 1713.2089( 5) -0.0010* 1713.2899( 5) 1713.3593( 3) -0.0005 1713.4460( 6) 0.0001+ 1713.4803( 5) -o.oou2* 1713.5110( 5) -0.UUO3’ 1713.5952( 5) -0.0007* 1713.7479( 31 1713.7605( 5j 1713.7697( 6) 1713.8108( 5) -0.0017 1713.8982( 5) -0.0013 1714.0381( 5) 1714.0909( 7)
RELF INTENSITY
SAND
R(66j %I R(67) R(33) R(21) R(33) P( 2) R(68) R(361 R(34) R(22) R(34) R(69) R(37) PI 1) R(35) R(35) ~(23) R(38) R(36) X(36) ~(24) R(39) :{‘:I ;143g ~(25) R(33)
F A
3
F A B D C i 0 z F D k? A F D B C A 0 F 0
R(38) R(41) R( 1) R(26) R(39) R(42) R(39) ~(27) R( 21 A(40) R(43) R(40) R(2Io R( 3) R(41) R(44) R(41) R(2V) ~(42) R(45) R( 4) R(42) R(30) R(46) R(43) R(43) R( 5) R(31) R(47) R(44) R(44) R( 6) R(4a) ~(32) R(451 R(45) R(49) R(33)
0.0111 0.0691 0.2109 0.0032 0.069U 0.0363 0.0029 0.0668 u.0112 0.0667 0.1414 0.0025 0.0353 kE3 2 0.0643 0.0023 0.0337 0.071u U.0618 0.0617 0.0112 0.0321 0.0592 0.0592 0.0111 0.0306 0.0566 0.0711 0.0565 0.0290 0.0110 0.0540 0.0539 0.0274 0.142U 0.0109 0.0513 0.0259 0.0512 0.0107 0.2121 U.0486 0.0244 0.0486 0.0105 0.2812 0.046U 0.0229 0.0459 0.0103 0.0434 0.0214 0.3488 ll.0433 U.0100 U.0200 0.0409 0.04V8 0.4145 0.0097 0.01a7 0.0384 0.0333 0.4780 0.0174 u.0094 U.U359 0.0358 O.Ul61 0.0091
135
v1 AND 25 BANDS OF OCS TABLE III-Conrinued CALCULATEDa WAVENUMBER
0-C'
RELI' INTENSITY
-0.0009 -0.0013 -0.0022
-0.0024 -0.0009 -0.0028
0.0001 0.0001 -0.0018 -0.0022 -0.0021
B A C 0 B F c A 0 B F C D A B F C 0 B
-0.0010
0.0001
-0.0015
0.0001 -0.0010 -0.0038
0.0007 -0.0012 0.0010
i
0.0001 -0.0015 -0.0040 -0.0025 u.0005 0.0000
-0.0011
R(46)
Ri 7j R(46) R(50) R(47) R(34) R(47) R( 8) R(51) R(4Y) Ri35) R(48) ~(52) R( 9) R(4Y) R(36) R(49) R(53) R(50) R(10) R(37) R(5Oj R(54) R(51) R(55) R(11) R(38) R(51) R(52j
c
R(56) ~(52)
: ri
R(53j
3 C F A B D C F ll
R(57) R(53) Ri40j Kfl31 R(54j
A C
R(l4) X(55) Ki42j Rl60)
8
R(58) R(54) R(4lj Rf59) n(55j
iti56 j
d56) Rfl5) Ri6lj R(43) R(57) Ki57 j
R(Q) -0.0008
0.0001
-0.0001 -U.OOUl -0.0049
CALCULATED= WAVENUMBER
0-P
R(44) R(53) R(16) Ri58j RI631
0.0336 0.5389 0.0335 0.0149 0.0313 0.0088 0.0312 0.5969 0.0138 0.0291 0.0085 0.0290 0.0127 0.6517 0.0270 0.0081 0.0269 0.0117 0.0250 0.7030 a.0077 0.0249 0.0107 0.0230 0.0098 0.7507 0.0074 0.0230 0.0212 0.0090 0.0212 0.0070 0.7945 0.0195 0.0082 0.0193 0.0067 0.8342 u.0179 0.0074 0.0178 U.OU63 0.0067 0.0164 0.86911 0.0163 0.0059 0.0061 0.0149 0.0149 0.9011 II.0055 O.OU56 0.0136 0.0136 0.0050 0.0053 0.0124 0.9281 0.0123 0.0045 0.0049 U.0112 0.9507 0.0040 0.0112 U.0101 0.0046 0.0036 0.0101 0.96X 0.0092
1718.3251(28) 1718.3554( 1718.4263( 1718.5388( 1718.5761( 1718.5854( 1718.6087(30) 1718.6891( 171X.7951( 1718.8128( 1718.8898133) 1718.9302( 1718.9495( 1719.0375( 1719.0489( 1719.1683(36) 1719.2074( 1719.2596( 1719.2819( 1719.3002( 1719.4442(39) 1719.46311( 1719.4789( 1719.5490( 1719.6311( 1719.6955( 1719.7161( 1719.7176(43) 1719.7954( 1719.9095( 1719.9663( 1719.9778( 1720.0393( 1720.1207( 1720.2150( 1720.2807( 1720.3220( 1720.3292( 1720.4608( 1720.5196( 1720.5350( 1720.6638( 1720.7041( 1720.7381( 1720.7560( 1720.9384( 1720.9450( 1720.9900( 1721.0030( 1721.1360( 1721.1834( 1721.2214( 1721.3309(10) 1721.3398( 1721.4194( 1721.4503(10) 1721.5231(11) 1721.6529( 1721.6741( 1721.6766(10) 1721.7124(11) 1721.8838(10) 1721.8991(12) 1721.9005(11) 1722.0059( 1722.0830(13) 1722.1124(11) 1722.izla(i2) 1722.2641(14) 1722.3352( 1722.3384(12) 1722.3406(13)
TRANSITION VIBd ROT.
BELT INTENSITY
BAND
(EST.UNC.)b
SAND
(EST.UNC.)~ 1714.1081( 5) 1714.1340( 3) 1714.1988( 5) 1714.3131( 5) 1714.4031( 5) 1714.4096( 7) 1714.4972( 5) 1714.5177( 3) 1714.5855( 6) 1714.6957( 5) 1714.7258( 8) 1714.79321 5) 1714.8553( 6j 1714.8989( 3) 1714.9859( 5) 1715.0395( 9) 1715.0868( 6) 1715.1224( 6) 1715.2737( 5) 1715.2777( 3) 1715.3508(10) 1715.3781( 6) 1715.3869( 6) 1715.5591( 5) 1715.6488( 6) 1715.6541f 3) 1715.6595(llj 1715.6671( 6) 1715.8421( 6) 1715.9081( 6) 1715.9537( 6) 1715.9657(12) 1716.0279( 3) 1716.1227( 6) 1716.1648( 6) 1716.2379( 6) 1716.2695(14) 1716.3993( 3) 1716.4009( 6) 1716.4188( 6) 1716.5198( 6) 1716.5707(E) 1716.6701( 6) 1716.6767( 6) 1716.7683( 3) 1716.7993( 5) 1716.8694(17) 1716.9188( 6) 171b.9500( 6) 1717.0765( 6) 1717.1348( 3) 1717.1649( 5) 1717.1656(19) 1717.2209( 6) 1717.3512( 6) 1717.4083( 6) 1717.4593(21) 1717.4894( 6) 1717.4988( 3) 1717.623h( 6) 1717.6491( 6) 1717.75U4(233 1717.7554i 6j 1717.8604( 3) 1717.8872( 6) 1717.8936( 6) 1718.0190( 6) 1718.0390(25) 1718.1226( 6) 1718.1612( 6) 1718.2195( 2) 1718.2802( 6)
TRANSITION 'JIB+ ROT.
F 7) 6j 6) 2) 7) 6) 6) 7) 2) 6) 7) 6) bj 7) 2) 6) 6) 7) 6) 2) 7) 6) 7) 7) 6) 2) 7) 8) 7) 7j 2) 8) 7) 8) 8) 2) 7) 8) 8) 9) 8) 8) 2) 9) 8) 9)
-0.0009
0.0004
R(47) I71661 R(6lj R(62) R(19) R(67) R(48) R(62) R(63) R(68) R(49j R(20) R(63)
R(50)
-0.0016 0.0003
; A B F
$i] R(21) R(65) R(51)
K(65j
R(71) R(66)
-0.0017 -0.0004
ix! R(66j ~(52) R(67) R(73) R167) ~(23) R(68) R(74) R(68) -0.0000
x1 Ri75j
-0.0008*
:I;:)
-o.u001* -0.OOUl -0.0002' 0.0004* -0.0003* U.0006' 0.0002* ll.0005* -0.0003 0.0007* -0.0002’ 0.0002’
2) 9)
-0.0000
9) 2)
-0.0003* -0.0001
U.0009’ 0.0008*
0.0020* -0.0000’
2)
2)
0 C 6 A 0 F C B 0 F A C 0 6 F
0.0014' -0.0008* o.u002* -0.0025' -0.0003
R 76) R 25)
I
C
a A II C B u A C B c" A s !I C 0
R(7U) R(77) R(71) R(781 R(7lj R(72) R(26) R(7Y) R(72) Ri73j RfBO)
Rit3ij R(74) K(28j R(75) R(82)
J(76) R(2y) $46)) ;I::,’ R(30) R(77) R(7B)
0.0043 0.0032 0.0091 o.0082 0.9829 0.0029 0.0040 0.0082 0.0074 0.0025 0.0037 0.9927 0.0074 0.0023 0.0066 0.0034 0.0066 0.0020 0.9983 0.0059 0.0032 0.0059 0.0018 U.0053 1.0000 0.0016 0.0053 o.uo29 0.0047 0.0014 0.0047 0.9978 0.0042 0.0012 0.0042 0.0037 0.9920 0.0011 0.0037 0.0033 0.0009 0.9827 0.0033 o.oootl 0.0023 0.0007 O.OOZY 0.0026 0.9702 0.0006 ll.OO2G 0.0023 0.0005 0.9546 0.0023 0.0020 0.0005 0.0020 0.9363 0.0017 0.0004 0.0017 0.0003 0.0015 0.9155 0.0003 0.0015 0.0013 0.0003 0.8923 0.0013 0.0012
136
MAKI, OLSON, TABLE
IIl-Conrinued CUlJL4TED~ WAYEIPUnBB% (EST.IRIC.)
RELF TRANSITION VISd ROT. INTENSITY BAND
CALCULATBD~
R(88) R1891 R(8lj
0.0002 O.ODlO 0.0011 0.0002 0.8672 0.0009 0.0010 0.0002 0.0001 O.OW8
#
il!iJ;
A" R(81) R(33) B R(83)
0:0007 0.8120
1722.442415) 1722.556914 1722.561913 1722.6180 16 II 1722.6620( 2) -0.0001
0.0010+
D.0016* D 1722.7908(17) D 1722.9608(18) B 1722.9817(16) 1722.9863( 2) -0.0000 ; 1723.3081( 2) -0.0003 1723.3964(H) 1723.4308i17j 1723.5998(20) 1723.6274( 2) 0.0001 1723.6417(19) 1723.8007(21) 1723.8501(20) 1723.9442( 2) -0.0002 1723.9990(23) 1724.0559(22) 1724.1947(24) 1724.2585( 2) 0.0000 1724.2592(23) 1724.3878(26) 1724.4599(25) 1724.5702( 2) -0.0001 1724.5784(28) 1724.6580(27) 1724.7663(29) 1724.8536(29) 1724.8795( 2) -0.0001 1725.0466(31) 1725.1862( 2j -0.0006 1725.4904( 2) -0.0002 1725.7921( 2) 1726.0913( 3) 1726.3879(3) -0.0002 1726.6820(3) -0.0005 1726.9735( 3) -0.0004
a)
Wavenumbers
given
b)
The statistical
AND SAMS
1727.2625( 1727.5490[ 1727.8329( 1728.1143( 1728.3931( 1728.6693( 1728.9430(
3) 3) 3) 3) 3) 3) 3)
1730.2730( 1730.5312( 1730.7869( 1731.0400(
3) 3) 3) 3)
C
0.0004 O.DOD4
:
0.7204 0.0003
1734.0924( 6)
FIti1 $34; R(85) R(84) R(35) g1
A 6
; C A c"
R(@) R(87) :1:9'1
0.0006 O.ODQ6 o.oml5 0.7824 0.0006 0.0004 o.ooo5 0.7518
1733.8734(
R(88) R(9Q) R(89) R/901 R(38)
0.0002 0.0002 0.6563
A A
R(39j R(40)
0.6240 0.5917 0.5597 0.5281 0.4970 0.4667 0.4371
A R(43) f: $444;
in cm
-0.0000 -0.0001 -;.D$;
A A ;
R(46) R(47) 1?[48{
-0:0004 -0.0001 -0.0004
A"
.Q[:5]
;
-0.0007 -0.0004 -0.0002 -0.0004
6 A A A
-0.0012 -0.0011 -0.0005 -0.0007 -0.0018 -0.0016 -0.0013 -0.0016 -0.0015
A A A A A
A A -0.0025 A A
5i
A
1734.3088( 7) 1734.5225( 7) 1734.7335( 8) 1734.9419( 9) 1735.1477 9) 1735.3507 I10) 1735.5511(11) 1735.7488(12)
0.0004 0.0003 LOO03 0.6885 0.0003 0.0002
c" c"
ReLf TRANSITION VIE! ROT. INTENSITY BAND
1729.2142( 3) -0.0002 1729.4827( 3) -0.0003 A 1729.7487( 3) 0.00~6 A 1730.0121(3) -0.0000 A
1731.2905(3) 1731.5383( 3) 1731.7836(3) 1732.0263( 3) 1732.2664( 3) 1732.5038( 3) 1732.7386( 4) 1732.9708( 4) 1733.2004( 4) 1733.4274( 5) 1733.6517(5)
i A C :
0-C'
; A A A E
1735.9438(13) 1736.1361114) 1736.3258(15j 1736.5127(16) 1736.6969(17) 1736.8784(18) 1737.0572(20) 1737.2332(U) 1737.4066(22)
A
k A A A
0.4054 0.3806 0.3540 0.3284 0.3039
0.2806 0.2585 0.2376 R(53) 0.2179 R(54) R./~J] 0.1994 0.1820 0.1658 R(57) 0.1507 R(58) 0.1366 ;[;5j 0.1236 0.1116 R(61) 0.1005 R(62) 0.0904 O.D811 0.0725 R(65) 0.0648 R(66) 0.0577 R(67) 0.0513 0.0455 0.0403 R(70) 0.0356 R(71) 0.0314 R(72j 0.0276 $43; 0.0243 0.0213 U.0186 :I::] 0.0162 R(77) 0.0141 R(78) 0.0123 R(791 0.0106 0.0092 ;/iy; 0.0079 0.0068 R(83) . 0.0059 ~~~~] 0.0050 0.0043 R(86) 0.0037 R(B7) 0.0031 R(88) R(52)
0.0027 0.0023
-1
uncertainty
in the last
digits
(twice
the standard
deviation)
is qiven
in
-1 should be added to the parentheses. An additional systematic uncertainty of 0.0035 cm statistical uncertainty to allow for the absolute uncertainty of the calibration (see text). c) O-C stands for the observed minus calculated values. were obtained from the unsplit averages of Lhe l-doublet measurements made using the diode laser spectrometer. d)
The vibrational
160'2C32S
molecule
bands
are designated
as follows:
OllfO, and D for 30"0-1O"O. respectively.
by code
letters.
A for the transition
E and
F stand
e) The relative intensities are estimated magnitude estimate of the line intensities
Square brackets enclose Q-r values that transitions. Asterisks (*) indicate
A through
20°0-OO"0,
for the 20"0-OO"0
!l stand
for transitions
and I! for ?l'eO-DlleO,
transitions
of
160'2C34S
values that are intended to give only (see text for explanation).
of the
C for 211f0and
an order
1601sC=S,
of
where J = J ’ for A J = + 1 transitions and .I = .I” for A J = - 1 transitions and f(v) = 1 for all transitions except 30°0-lOO0, where f(v) = 3, and 20°0lOO0,wheref(u) = 2. The intensities were calculated for a temperature of 300 K. Since this intensity calculation does not take into account any intensity perturbations resulting from resonances, the values are useful only as an indication of the
V, AND 2q BANDS OF OCS
137
general order of magnitude of the intensity. We have compared Table III with our diode spectra and find that the intensities are a rough guide although some discrepancies are evident. We also find that the diode spectra show a number of weak lines that are not in the tables. In view of the excellent agreement between the results of this work and the results of Fayt (1) on the 10°O-OOOO band, we believe that the calculated transition wavenumbers given in Table II for that band have a systematic uncertainty of kO.002 cm-’ and a precision that is well represented by the statistical uncertainties given in Table II (twice the standard deviation). Consequently, the overall accuracy of the calculated transitions for the A band of Table II is given by adding the systematic uncertainty of kO.002 cm-’ to the statistically determined uncertainty given in parentheses in Table II. The accuracy of the frequency interval between two lines, however, will be equal to or greater than that estimated from the statistical uncertainties given in Table II. For a correct estimate of the accuracy of frequency intervals one would need to use the variance-covariance matrix. On the other hand the “hot” bands of the 860-cm-’ region are much more poorly known than those in the 1710-cm-’ region and the users of Table II are cautioned not to place too much trust in the statistically estimated uncertainties for the hot bands. Overlapping of the spectra1 lines of the 11‘O-01 ‘0 and 20°0- loo0 bands may have resulted in systematic errors in the Il’O-01’0 measurements which are not reflected in the estimated uncertainties. There is no independent check on the present measurements of the 20°0-OOOOband. As indicated above, some H20 transitions were measured along with the OCS transitions and most of them compared quite well with the calculated wavenumbers given in Ref. (7), but it is uncertain just how accurate those calculated values are. The fit of the measured and calculated transitions for 2v, shows a consistent pattern of deviations indicating the high R-branch measurements may be too high by 0.001 cm-’ and the high P-branch measurements may be low by a comparable amount. Fortunately the precise microwave data remove this systematic error from the calculated transitions. The calculated transitions given in Table III have a systematic uncertainty of kO.0035 cm-’ or less, although the precision (i.e., the frequency difference between two lines) is again well represented by the statistical uncertainties given in Table III. In the near future it is hoped that a few lines of these bands may be measured against appropriate CO or CO, laser transitions in order to reduce the uncertainty in the absolute wavenumber scale. Several such measurements for each band would also be useful for checking the accuracy of the estimated statistical uncertainty of the calculated transitions. ACKNOWLEDGMENTS The authors wish to thank Joe Wells whose experience and advice were helpful in making the diode laser measurements. This work was partially supported by the NASA Upper Atmospheric Research Office and the Office of Standard Reference Data of NBS.
RECEIVED:
June 14, 1979
138
MAKI, OLSON,
AND SAMS
REFERENCES 1. A. FAYT, Ann. Sm. Sci. Bruxelles 84, 69-106 (1970). 2. H. C. ALLEN, E. K. PLYLER, AND L. R. BLAINE, J. Chem. Phys. 26, 400-403 (1957). 3. Y. MORINO AND C. MATSUMLJRA.Bull. Chem. Sot. Japan 40, 1095-1100 (1967). 4. A. G. MAKI, J. Phys. Chrm. Re$ Data 3, 221-244 (1974). 5. N. W. LARSEN AND B. P. WINNEWISSER, 2. Narurforsch. A 29, 1213- 1215 (1974).
6. R. 7. C.
ZALUBAS,
private communication.
CAMY-PEYRET AND J.-M. FLAUD, Mol. Phys.
32, 523-537
(1976).
8. G. GUELACHVILI in “Atomic
Masses and Fundamental Constants” (J. H. Sanders and A. H Wapstra, Eds.), Vol. 5, pp. 424-430, Plenum Press, New York, 1976. 9. T. R. TODD AND W. B. OLSON. J. Mol. Spectrosc. 74, 190-202 (1979). 10. P. G. BUCKLEY, J. H. CARPENTER, A. MCNEISH, J. D. MUSE, J. J. TURNER, AND D. H WHIFFEN, J. Chem.
II.
A.
FAYT, Ann.
Sot.
Sot. Faraday Trans. II 74, 129-135 Sci. Bruxelles 86, 61-88 (1972).
(1978).