High-Resolution Infrared Study of PHD2: The P–H Stretching Bands ν1 and 2ν1

High-Resolution Infrared Study of PHD2: The P–H Stretching Bands ν1 and 2ν1

Journal of Molecular Spectroscopy 215, 85–92 (2002) doi:10.1006/jmsp.2002.8603 High-Resolution Infrared Study of PHD2 : The P–H Stretching Bands ν1 a...

105KB Sizes 3 Downloads 26 Views

Journal of Molecular Spectroscopy 215, 85–92 (2002) doi:10.1006/jmsp.2002.8603

High-Resolution Infrared Study of PHD2 : The P–H Stretching Bands ν1 and 2ν1 O. N. Ulenikov,∗ O. L. Petrunina,∗ E. S. Bekhtereva,∗ E. A. Sinitsin,∗ H. B¨urger,† and W. Jerzembeck† ∗ Laboratory of Molecular Spectroscopy, Department of Physics, Tomsk State University, Tomsk, 634050, Russia, and Institute of Atmospheric Optics, Siberian Branch RAS, Tomsk, 634055, Russia; and †Anorganische Chemie, FB9, Universit¨at Gesamthochschule, D-42097 Wuppertal, Germany E-mail: [email protected]; [email protected] Received March 1, 2002; in revised form May 8, 2002

For the first time the infrared spectrum of PHD2 was recorded in the region of the PH stretching fundamental ν1 at 2324.005 cm−1 and the overtone 2ν1 at 4563.634 cm−1 with a resolution of 4.2 × 10−3 cm−1 and 8.8 × 10−3 cm−1 , respectively. In the analyses about 1340 and 1020 transitions were assigned to the corresponding ν1 and 2ν1 bands, which provided 316 and 248 upper energies, respectively. Since both the bands are sufficiently isolated, a standard Watson-type Hamiltonian (A-reduction, Ir representation) was employed. The obtained sets of spectroscopic parameters correlate very well both with each other, and with C 2002 Elsevier Science (USA) the corresponding parameters of the ground vibrational state.  Key Words: vibration–rotation spectra; PHD2 molecule; spectroscopic parameters.

sample composed of 5% PH2 D, 10% PHD2 , and 85% PD3 was available for comparison and identification of lines belonging to other isotopomers of phosphine than PHD2 by means of relative intensities of lines. The resolution (1/maximum optical path difference) was 4.2 and 8.8 × 10−3 cm−1 , respectively, for the ν1 and 2ν1 bands, which may be compared to the Doppler width at room temperature, 4.8 and 9.4 × 10−3 cm−1 (full width half-maximum). The raw spectrum was zero-filled by a factor of 4. For the ν1 band a path length of 280 mm and a pressure of 70 Pa were chosen, and the interferometer was equipped with a KBr beam splitter, an InSb detector, and a 2000–3000 cm−1 band-pass filter. In total 254 scans were coadded, and calibration done using CO2 lines near 2350 cm−1 (9, 10). We used also the Giessen peak-picking software package written by P. Jensen. Precision of line positions is ca. 0.2 × 10−3 cm−1 . For the 2ν1 band a White-type mulitpass cell operated at a path length of 12.8 m was used, a pressure of 1000 Pa adjusted, and the interferometer was equipped with a NIR-quartz beam splitter, an InSb detector, and a 3700–5200 cm−1 band-pass filter. In total 1050 scans were coadded, and calibration was done with H2 O lines in the 3800–3900 cm−1 region (11). Wavenumber precision is ca. 0.5 × 10−3 cm−1 . For illustration, two parts of the recorded spectra are presented in Figs. 1 and 2.

1. INTRODUCTION

In former contributions (1–3) we have reported on the ground and the low-lying bending states of the phosphine species PHD2 and PH2 D. This systematic study will now be extended to the stretching bands. In the present contribution our targets are the P–H stretching fundamental and the first overtone bands, ν1 and 2ν1 , respectively, of the PHD2 species. Formerly, PHD2 has been studied only in the microwave region (4–7) and in the infrared region at low resolution (8). Recently, the infrared spectrum has been investigated for the first time with high resolution (1, 3). The pure rotational spectrum was reanalyzed in (1), while Ref. (3) deals with the highresolution analysis of the three lowest vibrational bands ν3 , ν4 , and ν6 . The P–H stretching bands ν1 and 2ν1 have not yet been investigated in any detail. Here we present the results of the first high-resolution vibration–rotation study of the ν1 and 2ν1 bands, whose band centers are located at 2324.005 and 4563.634 cm−1 . Spectra were recorded with a Bruker IFS 120HR interferometer at Wuppertal using an optical resolution of 0.0042 and 0.0088 cm−1 in the regions 2170–2460 and 4350–4720 cm−1 , respectively. Experimental details are reported in Section 2. Assignments of the recorded transitions, and the further theoretical analysis of the obtained experimental data, are given in Section 3. A conclusion is drawn in Section 4.

3. ANALYSIS AND DISCUSSION 2. EXPERIMENTAL DETAILS

The PHD2 molecule is an asymmetric top with the value of the parameter of asymmetry κ  0.174. Its six fundamental bands, ν1 , ν2 , ν3 , ν4 , ν5 , and ν6 , are located at 2324.005, 1686.085,

The synthesis of a sample enrichted to 60% PHD2 , 25% PH2 D, 10% PD3 , and 5% PH3 has been described (1). Moreover, a 85

0022-2852/02 $35.00  C 2002 Elsevier Science (USA)

All rights reserved.

86

ULENIKOV ET AL.

FIG. 1. Detail of the ν1 band of PHD2 in the R branch. Transitions of type b are denoted by ticks on top of the trace and assignments are given in italics. Transitions of type c are denoted by full dots. Lines belonging to CO2 are indicated by asterisks. −1

911.652, 766.887, 1692.765, and 978.559 cm , respectively (data from Refs. (3, 12) and the present contribution). As a consequence, both the ν1 , and 2ν1 bands are located away from other vibrational bands, the levels ν2 + ν4 and ν4 + ν5 near 2453

FIG. 2. Detail of the 2ν1 band of PHD2 in the P branch. Transitions of type b are denoted by ticks on top of the trace and assignments are given in italics. Transitions of type c are denoted by full dots.

and 2450 cm−1 , which are the nearest binary combination, being fairly far apart from ν1 . So, the usual Watson-type Hamiltonian of an isolated vibrational state is suitable for the theoretical analysis of the rotational structures of both the (100000) and (200000) vibrational states,

TABLE 1 Rotational and Centrifugal Distortion Parameters for Some Vibrational States of the PHD2 Molecule (in cm−1 )a Parameter 1

(000000) 2

(100000) 3

(200000) 4

(200000) 5

ν A B C  K × 104  J K × 104  J × 104 δ K × 104 δ J × 104 HK × 108 HK J × 108 H J K × 108 H J × 108 h K × 108 h J K × 108 h J × 108 L K × 1012 L K K J × 1012 L J K × 1012 L K J J × 1012 L J × 1012 l K × 1012 l K J × 1012 l J K × 1012 l J × 1012

3.132704198 2.732228719 2.162945246 0.9863227 −0.4549697 0.3728591 −0.3401298 0.10895370 0.27827 0.97303 −0.64788 0.189953 −0.09708 −0.247351 0.088304 −2.070 2.737 −2.211 0.8163 −0.19426 −0.2961 0.0 0.0 −0.07629

2324.004833(13) 3.099412975(929) 2.711396222(589) 2.163456412(326) 0.916355(117) −0.410551(129) 0.3669201(252) −0.3463185(486) 0.1051544(136) 0.32346(681) 0.81828(820) −0.57423(310) 0.182686(523) −0.10051(278) −0.23940(122) 0.085355(265) −2.554(178) 3.174(192) −2.211 0.8163 −0.19426 −0.2961 0.0 0.0 −0.07629

3.066122 2.690564 2.163968 0.846387 −0.366132 0.360981 −0.352507 0.101355 0.36865 0.66353 −0.50058 0.175419 −0.10394 −0.23140 0.082406 −3.038 3.611 −2.211 0.8163 −0.19426 −0.2961 0.0 0.0 −0.07629

4563.634195(26) 3.06554577(123) 2.689981877(766) 2.164060821(491) 0.848097(104) −0.3658462(957) 0.3612162(159) −0.3515833(340) 0.10140787(894) 0.36966(399) 0.68519(376) −0.50058 0.175419 −0.10394 −0.23140 0.082406 −3.038 3.611 −2.211 0.8163 −0.19426 −0.2961 0.0 0.0 −0.07629

a Column 2 presents the values of spectroscopic parameters of the ground vibrational state which are reproduced from Ref. (1). Parameters of the states (100000) and (200000) as obtained from the fits are shown in columns 3 and 5, respectively. Here, values in parentheses are the 1σ statistical confidence intervals. Parameters presented without confidence intervals were fixed to the values of corresponding parameters of the ground vibrational state. Column 4 gives “predicted” values of parameters of the (200000) state derived from a linear extrapolation of the values of corresponding parameters of the ground and the (100000) vibrational states.

 C 2002 Elsevier Science (USA)

THE ν1 AND 2ν1 VIBRATIONAL BANDS OF PHD2

87

TABLE 2 Experimental Rovibrational Term Values for the (100000) and (200000) Vibrational States of the PHD2 Molecule (in cm−1 )a (100000) J

Ka

Kc 1

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7

0 0 1 1 0 1 1 2 2 0 1 1 2 2 3 3 0 1 1 2 2 3 3 4 4 0 1 1 2 2 3 3 4 4 5 5 0 1 1 2 2 3 3 4 4 5 5 6 6 0 1 1 2 2

0 1 1 0 2 2 1 1 0 3 3 2 2 1 1 0 4 4 3 3 2 2 1 1 0 5 5 4 4 3 3 2 2 1 1 0 6 6 5 5 4 4 3 3 2 2 1 1 0 7 7 6 6 5

E 2 2324.00483 2328.87950 2329.26756 2329.81559 2338.32305 2338.46844 2340.11196 2341.27559 2341.58061 2352.07230 2352.10957 2355.26752 2355.89712 2357.07354 2359.36242 2359.48978 2370.10669 2370.11447 2374.89452 2375.13129 2377.71947 2379.24724 2379.93970 2383.57734 2383.62126 2392.45024 2392.45178 2398.76312 2398.82995 2403.14746 2403.93100 2405.80818 2408.59878 2408.92576 2413.94792 2413.96172 2419.11057 2419.11057 2426.88306 2426.89901 2432.93577 2433.23176 2436.80339 2438.57962 2439.74070 2444.02262 2444.15133 2450.48216 2450.48561 2450.08702 2450.08702 2459.29322 2459.29686 2466.90397

 3

8 1 3 4 6

9 2 1 1 7 1 12 4 4 3 5 5 13 5 2

5 5 2 15 12 6 13 18 9

5 14 6 2 3 5 1 5 0

2 14 6

(200000) δ 4 0 −4 4 8 7 −3 0 5 −2 9 5 −1 0 −3 4 −3 10 −4 0 −1 1 0 9 0 −2 1 2 3 2 0 11 −8 0 8 −13 8 11 −18 0 −8 1 −2 −4 −3 −4 0 0 20 −29 −7 −12 −3 10 2

E 5 4563.63377 4568.48819 4568.86366 4569.38949 4577.90340 4578.04499 4579.62236 4580.74859 4581.04027 4591.62703 4591.66329 4594.69584 4595.30773 4596.43410 4598.64918 4598.77013 4609.63765 4609.64606 4614.23851 4614.47013 4616.95065 4618.43371 4619.09397 4622.61229 4622.65388 4631.96027 4631.96187 4638.02771 4638.09349 4642.23585 4643.00074 4644.79455 4647.50060 4647.81044 4652.66509 4652.67822 4658.59985 4658.59985 4666.07130 4666.08725 4671.88495 4672.17590 4675.59506 4677.32475 4678.42915 4682.57686 4682.69815 4688.81541 4688.81896 4689.55717 4689.55717 4698.40668 4698.41013 4705.72029

(100000)

 6

5 26 4 8 16 24 2 8 3 19 1

6 3 2 7 25 15 11

10 10 2 3 5

14 14 5 16 6 3 6 17 3 5 4

19 19

11

δ 7

J

−43 10 4 −11 5 4 −5 −5 −5 9 −21 7 −2 6 21 −1 −50 10 3 3 6 −5 22 −5 −1 22 30 5 1 −9 4 3 −2 −4 −28 6 11 −17 6 12 5 2 6 −9 0 −6 −6 29 15 26 21 9 4 3

7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10

Ka

E 2

 3

δ 4

5 4 4 3 3 2 2 1 1 0 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 10 10 9 9 8 8 7 7

2466.99247 2472.47079 2473.35173 2475.99824 2479.16533 2479.76026 2485.56562 2485.61053 2493.17461 2493.17495 2485.37771 2485.37771 2496.00720 2496.00720 2505.09209 2505.11513 2512.38833 2512.72284 2517.31363 2519.25820 2520.96383 2525.77090 2526.02751 2533.24778 2533.26246 2542.01340 2542.01340 2524.97913 2524.97913 2537.02467 2537.02467 2547.54913 2547.55465 2556.43037 2556.53474 2563.17470 2564.11636 2567.59180 2571.04176 2571.97094 2578.45692 2578.55463 2587.07065 2587.07483 2596.98535 2596.98535 2568.88801 2568.88801 2582.34408 2582.34408 2594.29243 2594.29357 2604.66202 2604.69088

3 3 4 22 5 5 10 5

0 −4 −1 −23 0 −1 5 0 31 −34 −1 −2 43 −30 −1 1 2 −6 −2 0 0 −1 −3 −9 5 −12 −42 −8 −8 4 −10 −5 −4 0 0 4 0 −2 10 −3 2 0 17 −11 9 2 3 3 9 6 9 −2 0 0

1 3 3 4 4 5 5 6 6 7 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 1 1 2 2 3 3 4

(200000)

Kc

9 9 65 65 6 5 1 8 5 6 5 5 6 12 1 21 21 10 10

2 2 6 8 12 6 6 18 7 10 7

8 8 18 18

8 8

E 5

 6

δ 7

4705.80786 4711.06123 4711.92454 4714.44985 4717.52782 4718.09029 4723.70760 4723.74965 4731.05674

8 13 4 3 3 2 5 4

2 14 0 9 −4 4 −5 −13 0

4724.82916 4724.82916 4735.04682 4735.04682 4743.77878 4743.80163 4750.78517 4751.11545 4755.50648 4757.40633 4759.02578 4763.68997 4763.93118 4770.91189 4770.92603

17 17

1 0 40 −33 1 −5 5 −3 5 −7 −4 −5 2 −13 46

4764.41315 4764.41315 4775.99167 4775.99167 4786.10792 4786.11268 4794.64109 4794.74478 4801.10937 4802.03614 4805.34838 4808.70939 4809.58638 4815.86933 4815.96062 4824.19154 4824.19470 4833.76845 4833.76845 4808.30564 4808.30564 4821.23914 4821.23914 4832.72458 4832.72458 4842.68971 4842.71859

4 30 6 4 10 9 3 7 4

10 10 8 8 32 4 7 10 12 3 10 7

13 13 68 68 13 5

−12 −12 9 −6 16 −60 4 0 9 9 15 −12 2 −7 −9 15 −10 −23 −30 0 0 −5 −8 66 −59 −2 0

a In Table 2,  is the experimental uncertainty of the energy value, equal to one standard deviation in units of 10−5 cm−1 ; δ is the difference E exp. − E calc. , also in units of 10−5 cm−1 ;  is not quoted when the energy value was obtained from only one transition.

 C 2002 Elsevier Science (USA)

88

ULENIKOV ET AL.

TABLE 2—Continued (100000) J

Ka

Kc 1

10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

4 5 5 6 6 7 7 8 8 9 9 10 10 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

6 6 5 5 4 4 3 3 2 2 1 1 0 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2

E 2 2613.18284 2613.54301 2619.17969 2621.23717 2623.55476 2628.79306 2629.22264 2637.25474 2637.28903 2647.02410 2647.02410 2658.07232 2658.07232 2617.10002 2617.10002 2631.96082 2631.96082 2645.32382 2645.32382 2657.13889 2657.14637 2667.26649 2667.38287 2675.18086 2676.16060 2680.51221 2684.17629 2685.50176 2692.58372 2692.75871 2702.17137 2702.18279 2713.09149 2713.09149 2725.25564 2725.25564 2669.61094 2669.61094 2685.87031 2685.87031 2700.64018 2700.64018 2713.88103 2713.88284 2725.50941 2725.54322 2735.23637 2735.61448 2742.31324 2744.44732 2747.43344 2753.03058 2753.67795 2762.45506 2762.52039 2773.19958 2773.20269

 3

(200000) δ 4

7 −2 8 −1 8 0 7 2 8 0 8 0 9 −2 18 7 19 11 120 64 120 −68 12 0 12 −2 2 0 2 0 6 3 6 3 18 14 18 −13 14 −4 12 3 10 0 10 0 11 3 10 −1 12 1 10 −1 6 −4 11 −3 4 8 15 −5 10 4 32 19 32 −19 14 0 14 −1 1 −5 1 −5 7 1 7 1 12 2 12 −4 0 0 14 0 4 −7 9 4 5 −3 11 2 12 −1 11 1 11 14 11 −3 3 −12 13 0 38 −10

(100000)

E 5

 6

δ 7

J

4850.87068 4851.22772 4856.61601 4858.63275 4860.83019 4865.92181 4866.32451 4874.09559 4874.12743 4883.53467 4883.53467 4894.20775 4894.20775 4856.50215 4856.50215 4870.78514 4870.78514 4883.62920 4883.62920 4894.98519 4894.99256 4904.71490 4904.83105 4912.30363 4913.27145 4917.41544 4920.99433 4922.24290 4929.11185 4929.27482 4938.37554 4938.38598 4948.92635 4948.92635 4960.67952 4960.67952 4908.99864 4908.99864 4924.62448 4924.62448 4938.82028 4938.82028

10 2 14 17 7 8 12 9

6 0 24 6 −7 −3 −4 −15 −14 89 −33 −48 −50 −6 −6 5 4 5 −23 0 −7 −1 0 9 0 26 20 3 4 4 2 −1 6 −29 −2 −3 7 7 −4 −4 −5 −12

12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

4962.72141 4962.75549 4972.05943 4972.43564 4978.83625 4980.93506 4983.76365 4989.21394 4989.81966 4998.31867 4998.37915

37 37 17 17 13 13 24 24

9 25 12 8 30 17 20

33 33

3 3 3 3 12 12

13

24 4 10

8 10

−7 2 23 0 3 5 −2 10 −8 −7 −3

Ka

Kc

E 2

 3

δ 4

2 1 1 0 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2

2785.25537 2785.25537 2798.51432 2798.51432 2726.41612 2726.41612 2744.06739 2744.06739 2760.23705 2760.23705 2774.89160 2774.89160 2787.97140 2787.98065 2799.32278 2799.44898 2808.39631 2809.40161 2814.66327 2818.49361 2820.26982 2827.87999 2828.15810 2838.42113 2838.44375 2850.32255 2850.32255 2863.49482 2863.49482 2877.82556 2877.82556 2787.51037 2787.51037 2806.54652 2806.54652 2824.10836 2824.10836 2840.16671 2840.16671 2854.67432

21 21 17 17 3 3 11 11

3 −8 2 2 0 0 2 2 11 10 32 −11 −8 −6 2 3 8 1 3 −4 −3 0 1 5 −19 54 −56 5 2 −2 −2 4 4 7 7 −1 −1 15 5 −11

1 11 11 12 12 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13

 C 2002 Elsevier Science (USA)

(200000)

2867.53748 2867.57579 2878.45108 2878.84387 2886.60968 2888.79946 2892.49772 2898.40041 2899.30826 2908.77580 2908.88480 2920.47620 2920.48391 2933.51980 2933.51980 2947.78691

22 9 13 9 1 20 15 16 12 11 9 17

23 23 19 19 8 8 12 12 15 15

4 16 14 16 13 17 21 15 6 15 34 1 13 27 27 19

11 −1 −1 2 3 −2 9 −4 6 −3 −1 15 20 11 −22 −2

E 5

 6

5020.35024 5020.35024 5033.16241 5033.16241 4965.79005 4965.79005 4982.75227 4982.75227 4998.29215 4998.29215 5012.37759 5012.37759 5024.94831 5024.95783 5035.85310 5035.97926 5044.55208 5045.54864 5050.55615 5054.30677 5055.97830 5063.36901 5063.62778 5073.55515 5073.57645 5085.05643 5085.05643 5097.78507 5097.78507 5111.63480 5111.63480 5026.87139 5026.87139 5045.16257 5045.16257 5062.03998 5062.03998 5077.47359 5077.47359 5091.41850 5091.41850

20 20 18 18 12 12 9 9

5103.81717 5114.25435 5114.64656 5122.06499 5124.22504 5127.72583 5133.48468 5134.33253

5154.81554 5154.82322

31 31 11 7 12 17 12 15 17 11 17 22 14 43 43 19 19 17 17

4 4 14 14 14 14 67 67

18 12 10 13

33

δ 7 16 6 3 3 14 14 3 3 −39 −40 19 −25 −29 −7 −2 −23 15 3 13 8 18 3 19 0 22 81 −21 9 6 3 3 32 32 −6 −6 −3 −4 −10 −20 100 −144 54 12 11 18 10 17 53 20

24 19

THE ν1 AND 2ν1 VIBRATIONAL BANDS OF PHD2

89

TABLE 2—Continued (100000) J

Ka

Kc 1

14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

13 14 14 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12

1 1 0 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5

(200000)

E 2

 3

δ 4

2947.78691 2963.16501 2963.16501

19 23 23

−3 −3 −3

2873.30161 2873.30161 2892.24819 2892.24819 2909.70148 2909.70148 2925.62242 2925.62242 2939.94282 2939.95327 2952.49540 2952.63035 2962.71301 2963.73929 2969.93054 2973.89746 2976.16888 2984.25603 2984.66341 2995.73815 2995.77837

3022.76977 3022.76977 3038.10739 3038.10739 3054.50655 3054.50655 2922.54370 2922.54370 2944.32653 2944.32653 2964.64990 2964.64990 2983.48938 2983.48938 3000.81107 3000.81107 3016.56091 3016.56384 3030.63474 3030.67774 3042.71483 3043.12156 3051.94915 3054.18601 3058.62587 3064.79974 3066.00454 3076.12018 3076.28645 3088.76527

12 12 14 14 28 28

10 16 17 7 11 12 17 15 13 17

28 28 23 23 24 24

11 11 13 13 21 21

18 16 18 18 16 12 10 29 11 12 12 17 21

0 0 −5 −5 4 1 46 −15 36 −21 19 5 0 13 −5 0 −1 −4 −5 −23 −4

17 7 −5 −6 −3 −3 0 0 0 0 −1 −1 −6 −7 22 7 −1 −12 −14 0 0 0 −8 −23 22 −5 0 −1 −3 −4

(100000)

E 5

 6

δ 7

5196.07320 5196.07320 5092.23663 5092.23663 5111.84963 5111.84963 5130.05648 5130.05648 5146.82998 5146.82998 5162.13198 5162.13198 5175.89433 5175.90542 5187.95269 5188.08856

22 22 30 30 8 8 19 19 20 20 27 27 10 14 25

12 12 12 12 −6 −6 2 2 −16 −18 31 −31 −19 −25 1 19

5198.76826 5204.65829 5208.55196 5210.68770 5218.55202 5218.93036 5229.64899 5229.68580 5242.08387 5242.08520 5255.77410 5255.77410 5270.59885 5270.59885 5286.45226 5286.45226 5161.88030 5161.88030 5182.80699 5182.80699 5202.33512 5202.33512 5220.44004 5220.44004 5237.08771 5237.08771

30

−7 −4 3 −25 −11 0 14 10 54 −40 21 12 21 21 17 17 −1 −1 −3 −3 −3 −3 −9 −10 −3 −19

5265.74925 5265.79232 5277.34464 5277.75183 5286.18330 5288.39576 5298.63039 5299.75501 5309.56691 5309.72083 5321.78953

10 19 4 17

42 42 34 34 21 21 8 8 16 16 8 8 7 7 16 16

15 20 8

17 26 19 14

15 −5 14 −6 −13 −49 −16 −10 −23 15 16

J

Ka

Kc

E 2

 3

δ 4

4 4 3 3 2 2 1 1 0 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 18 18 17 17 16 16 15 15 14 14 13 13 12 12

3088.77950 3102.78369 3102.78369 3118.04727 3118.04727 3134.43026 3134.43026 3151.82231 3151.82231 2996.47078 2996.47078 3019.61451 3019.61451 3041.30623 3041.30623 3061.52354 3061.52354 3080.23687 3080.23687 3097.39736 3097.39736 3112.93367 3112.94649 3126.66550 3126.80949 3138.00905 3139.05668 3146.18346 3150.27335 3153.07193 3161.60183 3162.16263 3174.02003 3174.08365 3187.84106 3187.84552 3202.98958 3202.98958 3219.32653 3219.32653 3236.72795 3236.72795 3255.08361 3255.08361 3074.66285 3074.66285 3099.15883 3099.15883 3122.21007 3122.21007 3143.79576 3143.79576 3163.88775 3163.88775

34

20 20

17 36 −42 2 −1 −7 −7 −18 −18 −3 −3 −7 −7 −9 −9 13 13 −14 −18 34 −47 4 −4 14 3 23 −5 24 31 −13 0 −2 0 16 26 −2 2 −22 −2 −3 −8 −8 11 11 −5 −5 14 14 2 2 4 4 −8 −9

3199.41521 3199.41895

15 16

−2 −3

1 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18

12 13 13 14 14 15 15 16 16 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 0 1 1 2 2 3 3 4 4 5 5 6 6 7

 C 2002 Elsevier Science (USA)

(200000)

25 25 25 25 29 29 11 11 14 14 16 16 21 21

40 40 3 22

19 18 34 23 4 22 13

20 20 21 21 23 23

14 14 18 18

E 5 5321.80254 5335.33850 5335.33850 5350.09151 5350.09151 5365.92782 5365.92782 5382.74495 5382.74495 5235.79631 5235.79631 5258.02782 5258.02782 5278.86885 5298.29625 5298.29625 5316.27976 5316.27976 5332.77470 5332.77470 5347.70634 5347.71874 5360.89648 5361.04188 5371.77078 5372.81545 5379.59336

 6

δ 7

9 9 9 9 17

32 32 −40 1 −2 −83 −83 −2 −2 12 12 −5 −5 −8

25 25 10 10 35 35 5 20 22 10 20

−19 −19 10 6 49 −35 62 −6 30 57 54 24 −20

5394.55223 5395.07256 5406.55432 5406.61291

5 10 4

−6 0 7 34

5419.91774 5434.55620 5434.55620 5450.34803 5450.34803 5467.17255 5467.17255 5484.92345 5484.92345 5313.97750 5313.97750 5337.50459 5337.50459 5359.65015 5359.65015 5380.39132 5380.39132 5399.70034 5399.70034 5417.53815 5417.53815 5433.84629

14 7 7

−15 15 −7 −20 −20 17 17 1 1 1 1 −54 −54 −13 −13 3 3 10 9 22 0 41

28 28 17 17 25 25

14 14 10 10 16 16 21 21

90

ULENIKOV ET AL.

TABLE 2—Continued (100000) J

Ka

Kc 1

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17

11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2

(200000)

E 2

 3

δ 4

3214.67662 3214.72415 3227.90065 3228.32289 3238.19785 3240.48375 3245.67826 3252.10638 3253.63714 3264.37134 3264.60824 3277.95672 3277.97985 3292.94236

7 22 18

−3 −3 0 −17 8 19 −3 −21 0 −18 −4 −3 5 32

3309.19612 3309.19612 3326.58005 3326.58005 3344.97139 3344.97139 3364.25884 3364.25884 3157.11303 3157.11303 3182.95150 3182.95150 3207.35321 3207.35321 3230.29843 3230.29843 3251.76090 3251.76090 3271.70605 3271.70605 3290.08470 3290.08470 3306.81312 3306.82786

55 −16 55 −23 36 16 36 16 15 −8 15 −8 −2 −2 0 0 17 0 17 0 21 −10 21 −10 21 14 21 14 53 17 53 16 8 −1 8 −6 34 −72 22 14 1

3321.85464 3334.14727 3335.22222 3343.27658

22 21 −3 11

7 11 18 14 11

11 19

δ 7

J

5448.51163 5448.55891 5461.20456

87 7 21

5473.32699 5478.24023

75 33

19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

E 5

5485.96053

5509.53465 5523.99980 5523.99980 5539.71152 5539.71152 5556.51716 5556.51716 5574.30167 5574.30167 5592.95736 5592.95736

5466.71630 5466.71630 5487.34107 5487.34107 5506.51039 5506.51039

 6

(100000)

22

68 68 30 30

1 1

10 10 30 30

24

−12 70 −71 22 15 −16 −16 −3 −3 −39 −39

−20 −20 16 15 46 41

5540.25135

10

5554.55221

22

5566.48414 5567.55809

3350.83412 3359.78866 3360.52287

9 6 −13

3373.23623 3387.91542

16 23

5618.42988

3404.04286 3404.04286 3421.37549 3421.37549 3439.77816 3439.77816

36 21 36 −29 38 −7 38 −9 9 −2 9 −2

5634.02065 5634.02065 5650.77660 5650.77660 5668.57013 5668.57013

14

18 −48

−28 60 60

33 −13 −27 −29 −49 −49

Ka

Kc

E 2

2 1 1 0 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 12 12 11 11 10 10 9 9 7 7 6 5 4 4 3 3 2 2 1 1 0 20 20 19 19 18 18 17 17 16 15 13 10 9 8 5 4 4 3

3459.13020 3459.13020 3479.31615 3479.31615 3243.81392 3243.81392 3270.98501 3270.98501 3296.72812 3296.72812 3321.02255 3321.02255 3343.84507 3343.84507 3365.16477 3365.16477 3384.93780 3384.93780 3403.09864 3419.52375 3419.57636 3433.86761 3434.30895 3445.20740 3447.55197 3453.50041 3460.18200 3473.71364 3487.92035 3487.95575 3521.11437 3521.11437 3539.49814 3539.49814 3558.89093 3558.89093 3579.17216 3579.17216 3600.22232 3600.22232 3363.25212 3363.25212 3390.32545 3390.32545 3415.96020 3415.96020 3440.13278 3440.13278 3462.81522 3483.96893 3521.45184 3561.04952 3578.67102 3592.96539 3644.12727 3644.12727 3663.53339 3663.53339

1 18 18 19 19 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 9 10 10 11 11 12 13 14 14 16 16 17 17 18 18 19 19 20 20 1 2 2 3 3 4 4 5 5 7 9 11 13 14 17 17 18 18

 C 2002 Elsevier Science (USA)

 3

22 22

4 4 6 6 17 17

9 9

16 16

12 12

(200000) δ 4 7 7 −22 −22 0 0 −27 −27 18 18 −9 −9 −32 −32 −9 −10 4 −26 13 38 25 23 −10 17 17 −6 −12 8 −39 12 12 −4 5 5 −4 −4 7 7 −17 −17 20 20 0 0 27 27 2 2 4 8 11 −5 9 −20 28 24 18 18

E 5

 6

δ 7

5706.81704 5706.81704

28 28

27 27

5717.86072 5717.89206

73 17

5767.72422 5767.72422

−12 −12

5806.09773 5806.09773

11 11

12 12

THE ν1 AND 2ν1 VIBRATIONAL BANDS OF PHD2

91

TABLE 2—Continued (100000) J

Ka

Kc

E 2

1 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22

19 19 20 20 21 21 0 1 4 5 5 6 6 7 7 8

3 2 2 1 1 0 22 22 18 18 17 17 16 16 15 15

3683.88621 3683.88621 3705.06394 3705.06394 3726.94228 3726.94228 3429.93680 3429.93680 3540.61351 3540.61351 3564.64765 3564.64765 3587.16905 3587.16905 3608.12997 3608.13005

 3

(200000) δ 4

E 5

 6

(100000) δ 7

−22 −22 14 −17 14 −17 −6 −6 −11 −11 10 10 0 0 5 3 17 −15

 1 i 1 i H = E + A − (B + C ) Jz2 + (B i + C i )J 2 2 2 i

i

1 + (B i − C i )Jx2y − iK Jz4 − iJ K Jz2 J 2 − iJ J 4 2   − δ iK Jz2 , Jx2y + − 2δ iJ J 2 Jx2y + HKi Jz6 + HKi J Jz4 J 2  + H Ji K Jz2 J 4 + H Ji J 6 + Jx2y , h iK Jz4 + h iJ K J 2 Jz2  + h iJ J 4 + + L iK Jz8 + L iK K J Jz6 J 2 + L iK J Jz4 J 4  + L iK J J Jz2 J 6 + L iJ J 8 + Jx2y , l Ki Jz6 + l Ki J J 4 Jz2  + l iJ K J 2 Jz4 + l iJ J 6 + + · · · , [1] where i = 1, or 2, and |1 = (100000), |2 = (200000); Jx2y = Jx2 − Jy2 and J 2 = Jx2 + Jy2 + Jz2 . In this case, both the states (100000) and (200000) are the symmetric ones, and hence both bands ν1 and 2ν1 are of hybrid type allowing the observation of b- and c-type transitions. Assignments of transitions were made with the Ground State Combination Differences method. In the present case, the ground state parameters were taken from Ref. (1) (for the convenience of the reader, they are reproduced in column 2 of Table 1). Transitions of both types, b and c, were assigned in both, ν1 and 2ν1 , bands. However, we found that the b-type transitions are much weaker in comparison to those of c-type both in the ν1 and in the 2ν1 bands (the relative linestrengths of comparable c- and b-type transitions were estimated as 200–250/1 for both the ν1 and 2ν1 bands). For this reason, only c-type transitions were used for the determination of upper rovibrational energies. The latter were obtained as the mean values of energies calculated from several transitions reaching the same upper level. As the result of the analysis, 899 transitions (J max. = 24, max. K a = 22) of c-type and 441 very weak transitions (J max. =

Ka

Kc

E 2

4 3 1 0 23 23 22 22 21 21 19 19 23 23 20 20

3793.44896 3793.44896 3859.43996 3859.43996 3529.34240 3529.34240 3560.44975 3560.44975 3590.15377 3590.15377 3645.27741 3645.27741 3665.36280 3665.36280 3754.11504 3754.11504

1 22 22 22 22 23 23 23 23 23 23 23 23 24 24 24 24



ii

J

19 19 22 22 0 1 1 2 2 3 4 5 1 2 4 5

 3

(200000) δ 4

E 5

 6

δ 7

−3 −3 14 14 −20 −20 10 10 45 45 −9 −9 0 0 21 21

20, K amax. = 18) of b-type were assigned to the ν1 band. Analogously, 695 c-type transitions (J max. = 20, K amax. = 19) and 325 weak b-type transitions (J max. = 18, K amax. = 16) were assigned to the 2ν1 band. They provided 316 and 248 upper energies for the (100000) and (200000) vibrational states, respectively. These energies are presented in columns 2 and 5 of Table 2 together with their experimental uncertainties  in units of 10−5 cm−1 . The energies gathered in Table 2 were fitted with the Hamiltonian, Eq. [1]. They lead to the sets of rotational parameters presented in Columns 3 and 5 of Table 1, together with their 1σ statistical confidence intervals. The parameters of the (100000) vibrational state which are given in column 3 of Table 1 without confidence intervals were fixed to the respective values of the corresponding ground vibrational state parameters. The starting values of the parameters of the (200000) state were obtained by simple linear extrapolation of corresponding parameters of the ground and the (100000) vibrational states. It is interesting to realize that such extrapolation leads to excellent predictions of the values of the rotational and centrifugal distortion parameters of the (200000) state (see, for illustration, column 4 of Table 1). This point, together with the substantial separation of higher overtones of ν1 from possible perturbers of the rotational structure of the nν1 levels, should enable one to provide excellent predictions by simple extrapolation of rotational and centrifugal distortion parameters for the higher vibrational states. The 18 fitted spectroscopic parameters of the ν1 band and the 11 of the 2ν1 band reproduce the 316 and 248 values for the upper energies, respectively, with accuracies close to experimental uncertainties (compare the  and δ values for concrete upper energies as given in Table 2). The final statistical information on the analyzed bands is gathered in Table 3. The last column of Table 3 gives the r ms deviations of the fit of upper energies for both vibrational states studied in the present contribution.

 C 2002 Elsevier Science (USA)

92

ULENIKOV ET AL.

TABLE 3 Statistical Information Concerning the ν1 and 2ν1 Bands of PHD2 Band 1

Center/cm−1 2

J max 3

K amax 4

n ctr /n btr a 5

Nl b 6

m1c 7

m2c 8

m3c 9

r ms/10−4 cm−1 10

ν1 2ν1

2324.00483 4563.63420

24 20

22 19

899/441 695/325

316 248

77.2 72.2

20.3 23.0

2.5 4.8

1.99 3.50

a

n ctr and n btr are the numbers of assigned c- and b-type transitions, respectively. Nl is the number of experimental upper energies. c Here m = n /N × 100% (i = 1, 2, 3); n , n , and n are the numbers of upper energies for which differences δ = i i l 1 2 3 E ex p − E calc satisfy the conditions δ ≤ 20 × 10−5 cm−1 , 20 × 10−5 cm−1 < δ ≤ 40 × 10−5 cm−1 , and δ > 40 × 10−5 cm−1 , respectively. b

4. CONCLUSION

REFERENCES

High-resolution, essentially Doppler-limited infrared spectra of phosphine containing ca. 60% PHD2 have been recorded for the first time in the regions of the P–H stretching band ν1 and the overtone band 2ν1 . A theoretical analysis of the experimental data with a Watson-type Hamiltonian for an isolated vibrational state allowed us to derive sets of 18 and 11 fitted rotational and centrifugal distortion parameters, respectively. These reproduce the 316 and 248 “experimental” upper rovibrational energies with r ms deviations of 1.99 × 10−4 cm−1 and 3.50 × 10−4 cm−1 for the states (100000) and (200000), respectively.

1. O. N. Ulenikov, H. B¨urger, W. Jerzembeck, G. A. Onopenko, E. S. Bekhtereva, and O. L. Petrunina, J. Mol. Struct. 599, 225–237 (2001). 2. O. N. Ulenikov, E. S. Bekhtereva, G. A. Onopenko, E. A. Sinitsin, H. B¨urger, and W. Jerzembeck, J. Mol. Spectrosc. 208, 236–248 (2001). 3. O. N. Ulenikov, E. S. Bekhtereva, O. L. Petrunina, H. B¨urger, and W. Jerzembeck, J. Mol. Spectrosc. 214, 1–10 (2002). 4. G. A. McRae, M. C. L. Gerry, and E. A. Cohen, J. Mol. Spectrosc. 116, 58–70 (1986). 5. C. C. Loomis and M. W. P. Strandberg, Phys. Rev. 81, 798–801 (1951). 6. M. H. Sirvetz and R. E. Weston, J. Phys. Chem. 21, 898–902 (1953). 7. S. G. Kukolich, L. Schaum, and A. Murray, J. Mol. Spectrosc. 94, 393–398 (1982). 8. D. C. McKean, I. Torto, and A. R. Morrisson, J. Phys. Chem. 86, 307 (1982). 9. G. Guelachvili and K. Narahari Rao, “Handbook of Infrared Standards.” Academic Press, New York, 1986. 10. G. Guelachvili et al., Pure Appl. Chem. 68, 193–208 (1996). 11. R. A. Toth, J. Opt. Soc. Am. B 10, 2006–2029 (1993). 12. O. N. Ulenikov, O. L. Petrunina, E. S. Bekhtereva, E. A. Sinitsin, H. B¨urger, and W. Jerzembeck, in preparation.

ACKNOWLEDGMENTS Part of this work was supported by a grant of the Ministry of Education of the Russian Federation. H.B. thanks the Deutsche Forschungsgemeinschaft and the Fonds der Chemie for financial support.

 C 2002 Elsevier Science (USA)