High temperature gaseous and molten salt corrosion

High temperature gaseous and molten salt corrosion

High temperature corrOSIon K Natesan- rnr\1nn~ Q:as~eOllS and molten salt National Laboratory, USA 7.1 Introduction 7.2 Corrosion in single oxid...

6MB Sizes 0 Downloads 148 Views

High temperature corrOSIon K Natesan-

rnr\1nn~

Q:as~eOllS

and molten salt

National Laboratory, USA

7.1 Introduction

7.2 Corrosion in single oxidant environments

C011slcleralbie research on the causes, corrosion bas been kinetics that n'U\lI",h,,,,,

such as 113

Em.!ineeril1fg Casebook

114

MO the oxygen

pressure

for the MIMO eQUlllbrlUill

e

at

atMIMO

In 5v.lJlv~

(.ILl,

element or>T"n,nc, in an

IS

by

as such as time and reactant in the exposure en'V1f(mnlentt. An enormous amount of literature exists on nucleation scales

temperature gaseous and molten salt corrosion

Temperature (Oe)

I Standard free energy of formation of metal oxides as a function

1327

Temperature (oe)

Standard free energy of formation of metal carbides as a function

115

116

127

7,3 Standard

7.3 Thermodynamic

327

527

727

927

1127 1327

energy of formation of metal nitrides as a function

of reaction in mixed oxidants

1tpT'~tnJP

detjermme gas COl1(}POSltliOns energy for the S, 0 and the total pressure ~n~:lhl'!;!PC have been used to establIsh gaSlmc~tal

mt~eraiCtl()nS

proc:edure:s to muumum free

~t"'flV11r\l in the in mixed gas attlrtos:phleres, it

temperature gaseous and molten salt corrosion

117

mO:leCluar gas snelCtes

OY'JfTp.n/<':llllnhnr

en'V'lr()DDleI1lt, on POSislble on a

[7.6} where AO and AS are <::!ulnhllT

are defined

e

RT

e

+

If we assume unit

2

10 can be reduced to

tlI'Tl'111"'1.1

e hxalIDlflatl()D of

I

[7.11 ]

7.8 and 7.11 oenmts the IQeJtlt111cal:lOn of various

118

situations that

corrOSIon

nl"A.I1UI''tl:!

that can be ">J"JlU..,'...." as

both AO and AS should be

11 mallcat4es

a.

This condition will cause reaction to nroicee~a is in contact

stahle

b.

will be the

and molten salt corrosion

log

(Pa)

7.4 Thermochemical dla~~anls for M-S-O systems at 875"C M Fe,

119

120

UQ.

-11

-7

Log

7.5 Thermochemical

for Cr-C-O systems at 982°C.

7.4 Scaling of alloys i.n bioxidant atmospheres

7.4.1 Behaviour ojCrzOrjormin6 aUoys

temperature gaseous and molten salt corrosion

121

Log pO;? (Pa)

7.6 UX'va:e:nlsulDhurthermochemical for type 310 stainless steel at 727, 927 and 1127 environments calculated for several coal processes.

122

-25

-20

10

15

Log p02 (Pa)

Oxvilf:nlsulnhurthermochemical d1a~uanlS

to chromium oxide/chromium Sul)lhl(le the

e.Cluil1bllU1Jn~

for IN 671 at 727, 927 and several coal gas.lllcatlClfl processes. n~Sl}iectJlveJ[y

ratio on the scale thlclIDe:ss and h exposure, at ten[}pt7alturc~s to gas mixtures with a range nt ()xv:llen pressures. Results from these tests also indicate the "transition" or "kinetic" isata pOz»

temperature

salt corrosion

123

0

-2

boundary

,

,0

~

-4

N

(fJ

Q.

g>

...J

I

-6

I

I

I

Cr:z03

• 0

0

ALLOY

-8

I

I

I

1oc$bo

-20

Cr/Fe SULPHIDE SULPHIDE/OXIDE OXIDE

TYPE 310 SS (875°C)

15

log p02 (Pa)

7.8

7.4.2

On the

develoloed on 310 stainless steel as a function pressures in gas environment at 875°C.

of corrosion behaviour for high chromium alloys

and

124

stainless steel

s:orne\Nh::I.t.

favour oxide scale formation. The scale but the most differences between the

temperature ga.fJeOU:i and molten salt corrosion

pO:!p02(eq)

7. 10 Variation in scale thickness and as a function of excess oxygen parameter 800 to (\'!nJopn/!::1ulnhnr mixed gas environments.

126

2

:>

3


Threshold pOz for oxide-scale formation pS2 for base metal sulphidation 8ulphidation

1--_ _ _ _ _ _+-_ _-'---...;B;.,;.8;.;.s&-;;....,.metal suI phi dation

Kinetic boundary

7.11 Schematic

corrosion resistance.

of material behaviour.

temperature gaseous and molten salt corrosion

I

II III

IV

127

Competition

& internal sulphidation is molten at test tenlperatlJre, outer scale after COOling

oxides and Cr boundarY attack by the

7.12 Schematic reaction sequence for corrosion

w

in

3.

Exposure time (h)

7. 13 Compan!son or1:helrIn()grlivune1:nc test data for several nX'vaf~nhmh'}h1]lr mixed gas.

tested at 871 "C in

128

(:j'

E

~ g

0.8

c

'mC»

0.4

:E

,2> Q)

3t

Exposure time (h) Test temperature 87100

7, 14 A COl1lpafJlSOn

7.4.3 Behaviour ofAl10] alloys

n ..r~n""ri

tenloe:rature corrosion, .. \x.,hp'rph,v either AI or may be mobile, Based on bulk self diffusion scale formation be to exceed the rate of ,.CI

temperature gaseous and molten salt corrosion

7. 15 electron mlc:rOS>COJ>V pJnot!01iU'aptls side of scale/metal interface on

129

130

7. 16 electron at different of scale and metal sides of scale/metal interface on Fe25Cr20Ni3Zr after exposure to low oxygen, environment.

reSllstaJllce is Ol>ta:mc:~
temperature gaseous and molten salt corrosion

131

amooot of

scales grown in sulphurwhich amlostm~res,iliewmmJnJurrl-ccmmmm~

7.4.4 Behaviour o/SiOt/orming alloys

7. 4. 5 Breakdown

environments

132

• • • •



Nucleation and sutlSe(IUell1t

eXlJlOse:d to mixed gas atrrloslphe:res second reactant in the gas scales can be

temperature gaseous and molten salt corro~jon

133

clUlmgces in an

1) Particles of Cr appear on the surface of the oxide scale.

grow into islands of richer in Fe.

3)

7.17 o","r~ertlsuIDhllr

mixed

Zr

in

134

Fe 25Cr20Ni Preoxidised for 72 h in tI"' ..... rii.Qoori in - 4 x 10-3 Pa for preoXl,d:ls~~d: in low atrrlOSI)here for different times at

7. 18 MorphllloftPcal atrrlOSl)helre and SUblSeQllently

sut>str'ate O,U, mdllc~ltUJlg some a 7h exposure, the continuous oxide scale has been OreaCtllea~ SUl]pnt,aallon at the substrate/oxide interface is noted. The "'uJ,IJuu• Plirtl(;les to increased sulphur pe11et1eatlon. After u ...,,,......

.l....

temperature

salt corrosion

Internal oxidation in

7.19 Morphc)lo~;tcaj

800

sp~:;;lm4~n

after 500 h

135

136

corrosion .

.... "" ...""'" 7.20 and 7.21

DOlmaam~s aC(~epltal:l e

in

to

lifetimes for high Cr

temperature gaseous and molten salt corrosion

Ga.

Sulfide

Sa.e Meta' Sulfide

(a)

Gas

(d) Oxide

Alloy (b)

le)

Gas Oxide Sulfide

S Channel (1)

(c)

Table 7.1 Bubble

AbOJ

Al:z03

SiOl Fel 03

Cao

Alkalis Other

chemical COJ1rlPOsltU)n Castables Deuse AJ20 J

SiC

Alloy

Gas

Sulfide

of candidate refractories

Fused cast

SiC

137

138 G ••

Ga,

(b)

Sulfide

grain boundary sulfides

represent:aticm of reaction sequences for cnr'OmllR-][Onrnm!!l environments cOllltauung

alumurJUllm sI.llpl111de

n<:lirh£>I,o.C'

interface.

in the

in

7.S Gaseous corrosion of

The fonns of gaseous reaction of

"1£"1ntlrU

materials

materials include reactions

tem'ner'ature gaseous and molten salt corrosion

139

7.6 Deposit-induced corrosion

Corrosion in the presence materials selection and in their a(1(;:Qwacv ot ,)entOf1tnaltlCe

a concern in in several of

140 Gas temperature OC

152 377 Phosphorus pentoxide·rich slags

,Sodium

Alkali iron trisulphates

Alkali sul~lhabas I

Boilersieam generation tubes

..

.. 127

327

572

727

927

Metal temperature (OC) Ke~~m~es

of fireside corrosion

coal-fired boilers.

7. 6.1 Corrosion due to deposits containing alkali, sulphur and oxygen

tubes but may not be a cause Because boiler tube matefllals

TrlCkht',",

of

temperature Direction

7.23

salt corrosion

J41

flow

structure on sUDerbeatc~r

tubes in nulverlsec1-ccJal··bUlmU1IQ boilers.

Intcludmlg sulphur, chlorine in air level used in the combustion process, and metal tel1[1P€~ra1turc~. LUi""'\-"'''';>,

excess detefl1[1me the

142

Temperature

1.24

7.6.2 Corrosion in

environments.

to coal-fired boiler

temperature gaseous and molten salt corro,vion

5

F---~----~~------~~

15 Cr

-25

-45

5

10 Cr -20~------~~----~~~--~------~~

- 35

-25

977 and of various oxide and Phase fields system are also shown.

143

144

to oxygen and

<:!nl'ntuIT

pressures

Qlctatl.:~Q

Mixture 1 CaS

Mixture

2

Mixture 3

:Spc~ClJneJ1S

these

coated with mixtures 1, whereas the

and 4 exhibited coated with mixture 3 still

attack in a

salt corrosion

145

x

146

K

can be used to calculate chromium actIVlty/con,~enltratlOn level of carbide

in the austenite

up to

salt corrosion

carburized to gas mixtures with

7.28 MOltl)hclloglleS 800 spe<~imen!l

7.6.3 Corrosion in

nrll'C'bJ'IPb

147

of alkali slIJphates

matenlals in the presence of sodium sulph~ite, in cOInb1uatlon with sodium has been a Df(}bllem in gas turbmles: this corrosion process "hot corrosion" to dltten~nt1ate gas corrosion have been

148 100r---------------------------------~

Without bed deposit



II

IJ

h

1000h 1980h

Corrosion peIiletr;atlo,n presence

sullphldatlOn by inward diffusion of Qnl'nhl1r rates. Extensive of 1 hot corrosion have been pulolH;hed f'nl .....n<'U1' ....

also known as "low tp.1Irln"~rl1t1J'I'·p.hot

oa:se-mt:lat sullphaltes and sodium

tenloeratlures.

e~iPeC::lalIY

corrosion'~

1Tnl,n""p'Q

and occurs in the eftluent of the FBC

temperature

salt

149

Table 7.2 Process environments and modes of material Process! component Pulverised coal boilers Fluidised bed combustion Gasification

Gas enviroument

Gas

Deposit type

Oxidising

1227-1527

377-727

Oxidising locally reducing Reducing sulphur

827-1027

377-927

Ash CaS04, CaO Carbon

927-1127

377-677

Fly ash

Alkali sulphates

Chlorides

Magneto hydro dynamics Gas turbines

777-927

Alkalis Alkali sulphates Chlorides Cock

827-927

Nitric acid production

Oxidising

Refinery plant

Oxidising

Municipal waste incmeration Pulp and paper

Oxidising Oxidising spent liquor

727-827

Heat treating

Oxidising

927-1327

727-927

Chlorides Sulphates

mtriding Aluminium remelting

Oxidising

Fibreglass

Oxidising

oxides

827-1027

Carbonates

Carbon

Halides

Mode of degradation Alkali corrosion

Alkali corrosion Fouling Hot corrosion Erosion

Carburisation Oxidation Oxidation Carburisation Nitridation Oxidation Acid dew point Oxidation Chlorination Stress corrosion Molten salt attack Oxidation Metal Thenual Salt attack Oxidation Chlorination Glass attack

150

7.7 Service environments of interest

7.8 Summary

References

L

2. 3.

temperature gaseous and molten salt corrosion

151

4. 5.

1980.

6.

7. 8.

9.

II. 12. 13.

FE-90/2.

14. 15.

17.

UX:ydeSCl1eC111en auf

Melall,"Q .., 53, 18. Pivin J C et al. "Oxidation Mechanism of t'e--I'Il--Lt'-L.:,)Llr-:,).AI Influence Small Amounts

152

20.

21. 22.

23.

24.

25.

26. 27.

Ceram.

UeltJoslts", American

t"4;;!,f>V14F>r

28.

29.

30. 31. 32.

33. Natesan Bed Combustion AppJl(;attons,".

1990. 34. Natesan K and Podolski W "Materials for FBC COlB:enera1tlon ;::)v~;terns· on Heat Re~~ist,ant f\AEJ·to~JrEJ/f.· 23-26 Sel)!temtber Proc. first Int.

New

temperature

eds, K Natesan 35. 36.

37.

1991.

1Vlarenru ~cu!nc(~",

and molten salt {Y)YI'o.'i:IIJn

153

ASM Internat:lOmlJ, 7,

R A HU~~g1l1IS,

Hot Corrosion