High Temperature Oxidation Behavior of Al-diffused Fe-Cr-Al Foils

High Temperature Oxidation Behavior of Al-diffused Fe-Cr-Al Foils

Advanced Materials ' 9 3 , I / A: Ceramics, Powders, Corrosion and Advanced Processing, edited by N. Mizutani et al. Trans. Mat. Res. Soc. Jpn., Volum...

355KB Sizes 0 Downloads 23 Views

Advanced Materials ' 9 3 , I / A: Ceramics, Powders, Corrosion and Advanced Processing, edited by N. Mizutani et al. Trans. Mat. Res. Soc. Jpn., Volume 14A © 1994 Elsevier Science B.V. All rights reserved.

145

High Temperature Oxidation Behavior of ΑΙ-diffused Fe-Cr-AI Foils Yuji I k e g a m i , Yoshito M a k i t a a n d N o b u y o s h i O k a t o Technical R e s e a r c h Center, N i p p o n Yakin K o g y o Co., Ltd. 4-2 Kojima-cho, K a w a s a k i - k u , K a w a s a k i , J a p a n

Abstract:High t e m p e r a t u r e o x i d a t i o n of Fe-Cr-AI alloy foils containing 7 t o 13 p e r c e n t Al w a s s t u d ­ ied. T h e s e foils w e r e m a d e b y a process w i t h Al coating a n d diffusion a n n e a l i n g . T h e lifetime of foil in air at 1473K w a s greatly e n h a n c e d by increasing Al concentration. T h e g r o w t h r a t e of AI2O3 s c a l e w a s r e d u c e d also b y raising Al levels. Moreover, surface condition of t h e foil significantly influenced t h e o x i d e g r o w t h rate;that is, t h e as-cold-rolled foil s h o w e d p o o r e r o x i d a t i o n resistance t h a n t h e a s diffusion-annealed foil. C1-AI2O3 scales w h i c h s h o w e d lower g r o w t h rates consisted of coarser colum­ n a r oxide grains, indicating that o x y g e n i n w a r d diffusion along g r a i n b o u n d a r i e s w e r e r e t a r d e d . 1,

INTRODUCTION Fe-Cr-AI alloys h a v e excellent h i g h t e m p e r ­ a t u r e o x i d a t i o n resistance b e c a u s e t h e s e alloys forms p r o t e c t i v e AI2O3 scale u n d e r h i g h tem­ p e r a t u r e oxidizing e n v i r o n m e n t s . Recently, thin foil of Fe-20Cr-5Al alloy w i t h a small a d d i ­ tion of rare e a r t h m e t a l s h a s b e e n u s e d for a n a u t o m o b i l e catalyst s u b s t r a t e ^ . M a n y s t u d i e s h a v e b e e n focused o n t h e effects of REMs a n d o t h e r reactive e l e m e n t s o n high t e m p e r a t u r e o x i d a t i o n b e h a v i o r of Fe-20Cr-5Al alloy f o i l . H o w e v e r , t h e modification of this alloy foil b y t h e a d d i t i o n of reactive ele­ m e n t s h a s a limited effect i n t e r m s of e x t e n d i n g lifetime of t h e foil b e c a u s e it greatly d e p e n d s o n Al c o n t e n t s i n t h e foil. In o u r p r e v i o u s w o r k , w e p r o p o s e d a n e w pro­ cess for p r o d u c i n g h i g h Al containing ferritic stainless steels. T h i s p r o c e s s consists of Al coat­ ing o n ferritic stainless steel a n d diffusion an­ nealing . In this study, Fe-Cr-AI foils containing u p t o 13% Al w e r e p r e p a r e d b y t h e s a m e process a n d their o x i d a t i o n b e h a v i o r w a s i n v e s t i g a t e d . ( 2 ) ( 3 ) ( 4 )

(5)

2.

EXPERIMENTAL

PROCEDURES

2-1 M a t e r i a l s C o m m e r c i a l l y p r o d u c e d Fe-18Cr-3Al-0.1REM alloy strips w i t h a thickness of 0.3mm w e r e u s e d a s a s u b s t r a t e for a l u m i n u m coating. Thickness of Al layers w a s varied t o obtain 7% to 1 3 % Al c o n t a i n i n g alloys. After Al coating,

the strips w e r e cold-rolled t o 0.03mm t o 0 . 1 m m thick a n d t h e n h e a t - t r e a t e d , or diffusion a n ­ nealed, in v a c u u m at 1173K for lOhr. T h i s dif­ fusion annealing condition w a s chosen t o diffuse Al h o m o g e n e o u s l y t h r o u g h foil thickness. T h e chemical c o m p o s i t i o n s of t h e foils o b t a i n e d a r e given in Table 1. Mechanical a n d physical p r o p e r t i e s of t h e s e foils are described in ref. 6. To s t u d y t h e effects of surface c o n d i t i o n s o n oxi­ d a t i o n b e h a v i o r of Fe-Cr-AI alloy foils, 0 . 1 m m thick Fe-17Cr-7Al a n d Fe-17Cr-9Al s t r i p s w e r e further cold rolled t o 0.05mm thick. Oxidation resistance of t h e as-rolled foils w e r e c o m p a r e d w i t h t h e a s - d i f f u s i o n - a n n e a l e d foils. 2-2 O x i d a t i o n tests Specimens for oxidation tests w e r e cut into c o u p o n s of 25 X 5 0 m m a n d cleaned ultrasonically in xylene a n d t h e n in acetone. Foils w e r e u s e d in t h e as-diffusion-annealed c o n d i t i o n except o x i d a t i o n test for i n v e s t i g a t i n g t h e effect of sur­ face conditions. O x i d a t i o n tests w e r e p e r f o r m e d in air at a t e m ­ p e r a t u r e from 1273K t o 1473K. S p e c i m e n s at­ tached t o a n a l u m i n a h o l d e r w e r e i n s e r t e d into an electric b o x furnace. After oxidized for 24hr, the s p e c i m e n s w e r e r e m o v e d a n d w e i g h e d . This p r o c e d u r e w a s r e p e a t e d e n o u g h t i m e s t o obtain weight-gain-versus-time curves. N o oxide exfoliation w a s o b s e r v e d d u r i n g t h e o x i d a t i o n test; therefore, t h e d a t a o b t a i n e d w e r e u s e d t o d e t e r m i n e t h e o x i d e g r o w t h rate.

146 Table 1 Chemical compositions of Al-diffused

Fe-Cr-Al

/

1

Alloy designation in text

Ο­

Compositi on, w t . % AI Ti REM

Fe-17Cr-7AI

Ι 7.4

7.5

Fe-17Cr-9AI Fe-17Cr-11AI Fe-17Cr-13AI

17.5 17.1

9.3 10.9 13.0

3.

16.9

0.04 0.04 0.04 0.04

Ε

0.1

ι

-

11 AI

Ε

0.1 0.1 0.1

ι

0.05mm thick foil oxidized at 1473K

CM

Y

9AI i

Γ

7AI /

ce CD

-

Ρ

2

ο

RESULTS

3-1 Effect of Al and thickness on the lifetime of Fe-Cr-Al foils Figure 1 s h o w s the oxidation behavior of 0.05mm thick Fe-17Cr-7Al, Fe-17Cr-9Al and Fe17Cr-llAl foils. Durations to breakaway oxida­ tion were prolonged with increasing Al concen­ tration. Thickening the foil also extended its lifetime as s h o w n in Fig. 2.

5

/L 0

1

1

200

300

O x i d a t i o n t i m e (hr)

Figure 1 Oxidation behavior of 0.05mm thick Al-diffused Fe-Cr-Al foils at 1473K. 8 Ε

3-2 Effect of Al o n parabolic rate constants Figure 3 s h o w s the effect of Al on parabolic rate constants, Kp, for the growth of AI2O3 scale. These data were calculated from oxida­ tion data at 1423K for 24hr to 96hr. Kp values decreased w i t h increasing Al.

L

100

Fe-17Cr-iW oxidized at 1473Κ

ε 0.05mm

χ: Ο)

©

3-3 Effect of surface condition Figure 4 s h o w s the oxidation behavior of 0.05mm thick Fe-17A1-9A1 foils in the as-rolled and in the as-diffusion-annealed condition. Clearly, the as-diffusion-annealed foil s h o w s better oxidation resistance than the as-rolled foil. Parabolic rate constants for the foils were cal­ culated from the oxidation data during AI2O3 formation and are g i v e n in Table 2. Kp values of the as-diffusion-annealed foil w a s lower than that of the as-rolled foil.

Table 2 Parabolic rate constants at 1474K for Fe-17Cr7A1 and Fe-17Cr-9Al foils. Alloy Fe-17Cr-7AI

Condition as rolled

as diffusion a n n e a l e d Fe-17Cr-9AI as rolled a s diffusion a n n e a l e d

Kp(g%rrrVs) 4.6 χ 10-12 3.9 χ 10 4.7 χ 10-12 1 2

3.2 χ 10 -

1 2

5 100

200

300

O x i d a t i o n t i m e (hr)

Figure 2 Effect of foil thickness on oxidation behavior at 1473K for Fe-17Cr-llAl alloy. 2.0 ι Ε ο

£r

1.5 -

>v

Fe-17Cr-AI foil 0.05mm thick oxidized at 1423K

CN

C

1.0 -

Q.

0.5

10 Al content

15 (%)

Figure 3 Effect of Al o n parabolic rate constants at 1423K for Al-diffused Fe-Cr-Al foils.

147

O x i d a t i o n t i m e (hr)

Figure 4 Oxidation of as-rolled and as-diffu­ sion-annealed Fe-17Cr-9Al foils at 1473K. 3-4 Oxide morphology FigureS s h o w s SEM images of fracture cross sections of AI2O3 scales formed on the as-rolled and the as-diffusion-annealed Fe-17Cr-7Al foils. In both foils, equiaxed grains were ob­ served at the outer surface of the scale and columnar grains at the inner. Columnar grains of the as-rolled foil w e r e larger than those of the as-diffusion annealed foil. AI2O3 scales formed on Fe-17Cr-13Al foil had n o equiaxed grains and significantly larger columnar grains as compared with Fe-17Cr-7Al foil as s h o w n in Fig. 6. 4.

Figure 5 Fracture cross sections of AI2O3 scales formed on (a) as-rolled and (b) as-diffusion-an­ nealed Fe-17Cr-7Al foils oxidized at 1473K for 24hr.

DISCUSSION

The oxidation process for the Fe-Cr-AI foil pro­ ceed in three s t a g e s . (7)

1st. stage : the g r o w t h of AI2O3 scale governed by the parabolic rate law. 2nd. stage : the growth of C n 0 3 scale beneath AI2O3 layers according to the li­ near oxidation law after the ex­ haustion of Al in the foil. 3rd. stage : breakaway oxidation In the second stage, the linear rate constant is said to be proportional to the parabolic rate con­ stant in the first s t a g e . Therefore, the parabolic rate constant for the growth of AI2O3 scale is one of the most important factors in de­ termining oxidation resistance of Fe-Cr-AI foil. (7)

Figurée Fracture cross sections of AI2O3 scales formed on (a) Fe-17Cr-7Al foil and (b) Fe-17Cr13A1 foil oxidized at 1423K for 96hr. The foils were as diffusion-annealed before oxidation.

148 Parabolic r a t e c o n s t a n t s for Al-diffused foils in this s t u d y are g i v e n in Table 3 c o m p a r e d w i t h d a t a in t h e literature for oxidation of c o m m e r ­ cially p r o d u c e d Fe-20Cr-5Al alloy foils and A l - d e p o s i t e d stainless steel f o i l . Kp v a l u e s for t h e Al-diffused foils are l o w e r t h a n t h o s e of Fe-20Cr-5Al foils a n d a g r e e well w i t h t h a t for A l - d e p o s i t e d stainless steel foil. A s s h o w n in Fig. 5 a n d 6, AI2O3 scales w i t h l o w oxide g r o w t h rates h a d coarse columnar grains. By c o m p a r i n g t h e activation energies ob­ t a i n e d in this s t u d y ( s e e Figure 7) w i t h t h e d a t a of ref.10,11 a n d 12, b o t h Al o u t w a r d diffusion t h r o u g h t h e b u l k oxide a n d o x y g e n i n w a r d dif­ fusion along grain b o u n d a r i e s could control a AI2O3 scale g r o w t h . C o a r s e 01-AI2O3 g r a i n s h a v e fewer p a t h s for o x y g e n diffusion, leading to a l o w o x i d e g r o w t h rate. It is n o t clear w h a t d e t e r m i n e s the grain size of C1-AI2O3 scales. T h i n film of a l u m i n u m oxide w a s detected b y AES in the as-diffusion-an­ n e a l e d foil prior t o oxidation test. It is consid­ ered t h a t this film could p r e v e n t transitional o x i d e f o r m a t i o n at t h e early s t a g e of oxidation a n d p r o m o t e coarse c o l u m n a r a - A b C b s c a l e s . Increasing Al concentration in t h e foil m a y m o d ­ ify the thin film a n d reduce the s u b s e q u e n t oxide g r o w t h rate in air while forming coarse oxide grains. (9)

(10)

4. C O N C L U S I O N S H i g h t e m p e r a t u r e o x i d a t i o n b e h a v i o r of Aldiffused Fe-Cr-Al alloy foils containing u p to 13% Al w a s i n v e s t i g a t e d . ( l ) D u r a t i o n s t o b r e a k a w a y o x i d a t i o n of t h e foil w e r e p r o l o n g e d b y increasing t h e Al concentra­ tion a n d also b y thickening the foil. (2)The p a r a b o l i c r a t e c o n s t a n t for t h e AI2O3 g r o w t h d e c r e a s e d w i t h increasing Al content. (3)The foil in t h e as-rolled c o n d i t i o n exhibited p o o r e r o x i d a t i o n resistance t h a n t h a t in t h e asdiffusion-annealed condition. ( 4 ) A b 0 3 scales f o r m e d o n t h e foil w i t h a l o w e r g r o w t h r a t e h a d coarser oxide grains, indicat­ ing t h a t o x y g e n i n w a r d diffusion along grain boundaries were retarded.

Table 3 Parabolic r a t e c o n s t a n t s in air at 1423K. Alloy

Kp(10 - i 2 g 2 / 4 / s e c ) c m

Fe-17Cr-7to13AI:

1.0 to 1.8

Fe-20Cr-5AI(ref.8):

5.2 to 6.2

AI
1.1

10 •11,

ο Ε υ

10 -12

OU 10"

ο



17Cr-7AI 1 7 C r - 1 1 Al

activation energy 17Cr-7AI :351kJ/mol 17Cr-11AI:323kJ/mol

10* 6.5

7.0 1 /Temperature

8.0

7.5 (10 /K) 4

Figure 7 A plot of logKp vs. t h e reciprocal of the absolute t e m p e r a t u r e for 0.05mm thick Fe17Cr-7Al a n d F e - 1 7 C r - U A l foils. REFERENCES 1. N . N o n n e n m a n n : SAE p a p e r 850131(1985) 2. T. K a w a s a k i a n d K. Ishii: P r o c e e d i n g s of International Conference o n Stainless Steel, ISIJ, (1991), 1205 3. K. O h m u r a et al: ibid, (1991), 1212 4. N . H i r a m a t s u et al: ibid,(1991),1227 5. Y. I k e g a m i et al: ibid,(1991),1235 6. Y. I k e g a m i et al: N i p p o n Yakin Technical Report, 2(1993), 71 7. K. Ishii a n d K. K a w a s a k i : J. J a p a n Inst. Metals, 56(1992), 854 8. D. R. Sigler: Oxid. Met., 36(1991), 57 9. A. A n d o et al: N i s s h i n Steel Technical Report, 65(1992), 1 10. Y. Oishi a n d W. D. Kingery: J. C h e m . Phys., 33(1960), 480 11. A. E. P a l a d i n o a n d W. D . Kingery: ibid, 37 (1962), 957 12. H . A. Wang a n d F. A. Kroger: J. A m . C e r a m . S o c , 63(1980)613