HNC2 and PY2 fifth virial coefficients for hard spheres

HNC2 and PY2 fifth virial coefficients for hard spheres

Volume 21, n u m b e r 4 HNC2 AND PHYSIOS PY2 FIFTH VIRIAL LETTERS COEFFICIENTS 1 June 1966 FOR HARD SPHERES ¢ L . O D E N , D. H E N D ...

115KB Sizes 1 Downloads 66 Views

Volume 21, n u m b e r 4

HNC2

AND

PHYSIOS

PY2

FIFTH

VIRIAL

LETTERS

COEFFICIENTS

1 June 1966

FOR

HARD

SPHERES

¢

L . O D E N , D. H E N D E R S O N *¢ a n d R. C H E N

Department of Physics, University of Waterloo Waterloo, Ontario, Canada Received 27 April 1966 The HNC2 and PY2 t h e o r i e s a r e used to calculate the fifth virial coefficient for a s y s t e m of hard s p h e r e s . The PY2 values a r e p a r t i c u l a r l y a c c u r a t e .

I t i s w e l l - k n o w n [1] t h a t t h e v i r i a l c o e f f i c i e n t s may be calculated either from the pressure equa-

tion N---k-T = 1 or from the compressibility

1

(r)

rdr

,

~p

(2)

In e q s . (1) a n d (2) p = N / V , u(r) i s t h e i n t e r m o l e cular potential, g(r) is the radial distribution f u n c t i o n , a n d c(r) i s t h e d i r e c t c o r r e l a t i o n f u n c tion which is related to g(r) by h(rl2) = c(rl3) + pfc(r13)h(r23) dr 3 ,

Katsura and Abe

Rowlinson

Present calculations

-1.582

-1.585

-1.5838

+1.328

+1.331

+1.3298

+1.138

+1.141

+1.1394

-0.912

-0.917

-0.9148

(1)

equation

-k-~ (~----~T = 1 - p f c ( r ) dr .

Table 1 I r r e d u c i b l e c l u s t e r integrals *

(3) -1.1877

w h e r e h(r) = g(r) - 1. A n a p p r o x i m a t e t h e o r y f o r g(r) a n d c(r) m a y be obtained by postulating a second equation rel a t i n g c(r) and g(r). R e c e n t l y , V e r l e t [2] h a s p r o p o s e d t h e HNC2 e q u a t i o n :

c(r) = f ( r ) y ( r ) + y ( r ) - 1 - l n y ( r ) + @(r) ,

(4)

where

f ( r ) = exp{-/:3u(r)}- 1 ,

(5)

y ( r ) : exp{~u(r)}g(r)

(6)

,

and ~ = 1 / k T . T h e f u n c t i o n ~I,(r) i s d e t e r m i n e d b y a c o m p l i c a t e d s e t of e q u a t i o n s . H o w e v e r if @(r) i s e x p a n d e d i n p o w e r s of t h e d e n s i t y , t h e f i r s t two terms may be determined fairly easily. The result is:

-1.5032 +0.9867 * In units of b = ~71ff3. where a bar linking the molecules i and j denotes t h e f a c t o r f ( r i j ). E a c h j o i n t b e t w e e n t h e b a r s d e notes a molecule whose coordinates are integrated and each circle represents a molecule whose position remains fixed. In addition, Verlet has proposed the PY2 equation:

c(r) = f ( r ) y ( r ) + ~ ( r ) .

(8)

The function ¢(r) is also determined by a comp l i c a t e d s e t of e q u a t i o n s . If O ( r ) i s e x p a n d e d ¢ This work has been supported by grants from the U . S . D e p a r t m e n t of the I n t e r i o r , Office of Saline Water and the National R e s e a r c h Council of Canada. t ? Alfred P . S l o a n Foundation Fellow.

420

Volume 21, number 4

PHYSICS LETTERS

Table 2 Fifth virial coefficient* B5(c) Exact

B5(P)

0.1103 ~ 0.0005

HNC

0.0493

0.1447

HNC2

0.1230

0.0657

PY PY2

0.1211

0.0859

0.1074

0.1240

In units of b = l y e 3 . in p o w e r s of the density then

~(r)=~(r)+½p2{~(~}+½p312~+4~}. (9) F r o m eqs. (4) and (7) and eqs. (8) and (9) e x p r e s s i o n s m ay be found f o r the v i r i a l c o e f f i c i e n t s . Both the NHC2 and the PY2 give the f i r s t four v i r i a l c o e f f i c i e n t s e x a c t l y but y i e l d a p p r o x i m a t e and d i f f e r e n t e x p r e s s i o n s f o r the fifth v i r i a l c o efficient. T h e r e f o r e , the a c c u r a c y of the HNC2 and PY2 fifth v i r i a l c o e f f i c i e n t s is a useful t e s t of t h e s e t h e o r i e s . R u s h b r o o k e [3] has c a l c u l a t e d the HNC2 and PY2 fifth c o m p r e s s i b i l i t y v i r i a l c o e f f i c i e n t f o r h a r d s p h e r e s . H o w e v e r , no c a l c u l a ti ons have been m a d e f o r the fifth p r e s s u r e v i r i a l coefficient. In this note we r e p o r t the r e s u l t s of our c a l c ula ti on s of the HNC2 and PY2 fifth p r e s s u r e v i r i a l c o e f f i c i e n t f o r h a r d s p h e r e s . Following B a r k e r and Monaghan [4] and H e n d e r s o n and Oden [5] the n e c e s s a r y i n t e g r a l s w e r e computed by expanding the i n t e g r a n d s in t e r m s of L e g e n d r e p o l y n o m i a l s . In table 1 n u m e r i c a l v a l u e s of the n e c e s s a r y i n t e g r a l s a r e l is t e d . A b r o k e n line between m o l e c u l e s i and j denotes the f a c t o r F o r c o m p a r i s o n , the s i m i l a r i n t e g r a l s which involve only solid l i n e s a r e a l s o l i s t e d and c o m p a r e d with the c a l c u l a t i o n s of K a t s u r a and

rijf'(rij).

1 June 1966

Abe [6] and Rowlinson [7]. The o t h er i n t e g r a l s which contribute to the fifth v i r i a l c o e f f i c i e n t a r e tabulated by Rushbrooke and Hutchinson [8]. In table 2 the r e s u l t s of our c a l c u l a t i o n s of the hard s p h e r e fifth v i r i a l c o e f f i c i e n t s a r e c o m p a r e d with the e x a c t value of the fifth v i r i a l c o ef f i ci en t [6, 7,9]. F o r c o m p a r i s o n , the r e s u l t s [1] of the HNC and PY equations a r e a l s o i n cluded. The HNC and PY equations a r e obtained f r o m eqs. (4) and (8), r e s p e c t i v e l y , by putting ~I,(r) and ~(r) equal to z e r o . The PY2 r e s u l t s a r e c o n s i d e r a b l y m o r e a c c u r a t e than t h o se of the o t h er t h e o r i e s . We have a l s o c a l c u l a t e d the HNC2 and PY2 fifth v i r i a l c o e f f i c i e n t s f o r the 6:12 potential and found t h e s e fifth v i r i a l c o e f f i c i e n t s to be v e r y a c c u r a t e f o r this potential. T h e s e r e s u l t s t o g e t h e r with the d e t a i l s of our c a l c u l a t i o n s will be published shortly. The au t h o r s a r e g r a t e f u l to Dr. J. A. B a r k e r and to P r o f e s s o r G. S. Rushbrooke f o r t h e i r v a l uable c o r r e s p o n d e n c e .

R~f87"~CeS 1. J.S. Rowlinson, Rep. Progr. Phys. 28 (1965) 169. 2. L.Verlet, Physica 30 (1964) 95. 3. G.S. Rushbrooke in: Statistical mechanics of equilibrium and non-equilibrium, ed.: J.Meixner (NorthHolland Publ. Comp., Amsterdam, 1965) p. 222. 4. J.A. Barker and J. J. Monaghan, J. Chem. Phys. 36 (1962) 2564. 5. D.Henderson and L.Oden, Mol. Phys. (in press). 6. S.Katsura and Y.Abe, J. Chem. Phys. 39 (1963) 2068. 7. J.S. Rowlinson, Proc. Roy. Soc. (London) A279 (1964) 147. 8. G.S.Rushbrooke and P.Hutchinson, Physica 27 (1961) 647. 9. F.H. Ree and W. G. Hoover, J. Chem. Phys. 40 (1964) 939.

421