Homogenization and thermopiezoelectricity

Homogenization and thermopiezoelectricity

MECHANICS RESEARCH COMMUNICATIONS Vol. 19(4),315-324,1992. Printed in the USA. 0093-6413/92 $5.00 + .00 Copyright (c) 1992 Pergamon Press Ltd. HOMOGE...

305KB Sizes 0 Downloads 26 Views

MECHANICS RESEARCH COMMUNICATIONS Vol. 19(4),315-324,1992. Printed in the USA. 0093-6413/92 $5.00 + .00 Copyright (c) 1992 Pergamon Press Ltd.

HOMOGENIZATION AND THERMOPIEZOELECTRICITY

A. Galka, J.J. Telega and R. Wojnar Polish Academy of Sciences, Institute of Fundamental Technological Research ~wietokrzyska 21, 00-049 Warsaw, Poland

(Received 30 September 1991; accepted for print 31 October 1991)

Introduction

In [9] the formulae were derived for the effective moduli of a piezoelectric composite exhibiting fine periodic structure. The static case considered was studied by the method of F-convergence, cf.[l]. Next, in [10] these results were extended by investigating the dynamic behaviour. The same formulae for the effective moduli were obtained by using the method of Bloch expansions. The aim of this contribution is to present our preliminary results concerning homogenization of the equations of the linear thermopiezoelectricity. To such a problem the method of F-convergence is not applicable. Therefore the relevant analysis was performed by using the method of two-scale asymptotic developments. Our analysis leads to interesting conclusions related to the effective moduli and to the change of the initial condition for the temperature of the homogenized body.

Basic

Let

Equations

~ c ~3

interval.

All

be a bounded three-dimensional domain and indices

appearing

in

the

text

take

(0,~)

values

(T > O) a time 1,2

and

3.

The

summation convention is consequently used throughout the paper.

The fundamental relations describing a linear, cf.

(i)

thermopiezoelectric solid are,

[S,6,7]

Field equations

~l J, J

D

+ b

l,!

!

=

= O,

"" PUi

'

in 315

in

~ x

flx

(O,T)

(O,T)

(i)

(2)

316

A. GALKA,

(ii)

J.J.

T E L E G A and R. W O J N A R

Heat e q u a t i o n

s

(iii) C o n s t i t u t i v e

=

(~¢ije,

+ r

1),J

fl x (0, z)

(3)

equations

o'lj = Cijklekl

Dl = g i Geometrical

- ~rljO - g k l j E k

+~e+kE

S = ~tjelj

(iv)

in

J

kl e kl

,

(4)

i 1 '

+AO1 +e

lk E k

relations

1

Here

E,

ekl(U)

=

b,

E,

u,

displacement

p,

f i e l d vector,

natural

state

The

moduli:

and

body

r = W/T

(u k

,l

s

are,

force

o

,

K

Cljkl

'

)

respectively,

vector,

the

vector,

= k

heat

E k (~)

ij

/T

o

the

mass

-

~'k

the

usual

c

tensor, the

c

are the l] at constant strain,

o

k

, where heat

the

electric

temperature

~ = c /T

and the T

o

is the

conductivity

k i are p y r o e l e c t r i c

IJkl

71J

(thermal),

giJk

(piezoelectric)

symmetry conditions

= c

= ~jt

kllJ

gijk

= c

= c

lJlk

= gikJ

'

Jlkl

eli

= eji

We make the f o l l o w i n g a s s u m p t i o n

3 ~ > 0

(5)

stress

density,

relative

,

=

heat sources.

(elastic),

~lj

lj

1,k

u

temperature,

c e is the s p e c i f i c

satisfy

+

displacement

(absolute)

and W r e p r e s e n t s

(dielectric)

O

the

2-

=

the e l e c t r i c

Moreover

moduli

D,

vector,

entropy.

coefficients,

U(k,1)

V e e E3 s

c

lJkl

( x)eij

ekl

~ ~lel

2

'

and

e

lj

HOMOGENIZATION

Va •

> 0

3 aI

AND T H E R M O P I E Z O E L E C T R I C I T Y

R3

~'l J

(x)a a i

z a

J

I

lal 2

317

'

(6) 3

a2

> 0

3 o~3 > 0

for almost

a •

R3

k l j ( x ) a a j ~- ~2 l a l 2

V a •

~3

el j ( x ) a i a

V

e v e r y x • ft.

2'

E3 is the space of s y m m e t r i c

Here

3x3 matrices.

S

An a l t e r n a t i v e form of the c o n s t i t u t i v e

Crlj

=

Cijklekl

=

-

oljeij

equations

-

~ijS

(7)

,

k k

+ X sl + •

is given by

gkljEk

-

+ ~s - A E

= -g i k l e k l

Di

j -> 'z3 l a l

lk Ek

'

where Cijkl

=

~-I~i

+

CiJkl

gk

-I

~iJ

=

=

~lJ

~

-

'

,

=

j~k l

i j = gklJ

#-IAk

S u b s t i t u t i n g (7) i n t o Eqs.(1),(2)

-I -- ~

~

=



=

Here u, s ,

_

#-IA

and (3) we r e a d i l y o b t a i n

(CijklUk, I - ~ijS + gkij~,k)'~J

(~ik uk,, +

S -

[KiJ(-~klUk,l



k~,k

+

~S

)

+

,,

=

lk~'

+ b i = ptli , (9)

0 ,

k )

'i

] 'J

+ r .

~, b, and r a r e f u n c t i o n s o f x • fl and t • ( 0 , ~ ) .

E q s . ( 9 ) r e p r e s e n t a system o f e q u a t i o n s f o r f i n d i n g u, ~ and s. has

to

homogeneous

be

C8)

~k~lJ '

completed by boundary

boundary

and

initial

conditions.

Obviously, i t We assume

the

conditions

u(x,t)

= 0 ,

8(x,t)

= 0 ,

~(x,t)

= 0

(10)

318

A. GALKA,

for x e O~ and The

initial

J.J.

TELEGA

a n d R. W O J N A R

t e [0,~].

conditions

are

u(x,O)

= U(x)

,

u(x,O)

= V(x)

,

~(x,0)

= F(x)

, (11)

e(x,0)

The f u n c t i o n s

= T(x)

U, V, T a n d F are p r e s c r i b e d .

Homogenization

Let

the

material

density

say

p

be

functions

Y-periodic

C1jkl

Y = (O,Y 1 ) x ( O . Y 2 ) x.( O , Y . 3)

c

c |]kl

(x) = c

e ~ (x) lj

~(x)l

where

= e

( ~ c

lj

= ~l(

x ~ Q.

ljkl

, glJk

functions.

( ~ )

.c f . [ 1

'

'

k ~ (x) II

k

= k

Y

( ~ e

)

Jk

'

/~S(x) = ~ ( X~ ) ,

xe ) ,

E

The f u n c t i o n s

Cljkl

' ~lJ

the

( 5 ) C

~l

pe(x)

' etc.

' glJk

is

so

' 11

' ~ and

the

called

basic

cell,

We s e t

(x) = gl

lj

' kl]

' EiJ

usual,

4,8,9]

glJ

C

)

As

j

'

(x)

= ~1

j

( x e

)

'

(12)

= pC x_ ) ,

are e Y - p e r i o d i c ,

where

~ > 0 is

value

problem

a small p a r a m e t e r . For

a

fixed

(9),(i0),(Ii) Under

In

e

physically

order

passage

to

>

0

a

with periodic reasonable

find

the

e ~ 0 we a s s u m e

solution material

to

assumptions

effective

the

functions

initial-boundary (12)

is d e n o t e d

such a solution

properties

or

to

exists

C

C

by

u , ~ , s .

and

is unique.

effectuate

the

limit

that

ue(x,t)

= u°(x,y,t)

+ ~:ul(x,y,t)

+ e2u2(x,y,t)

+ ....

~C(x,t)

= ~°(x,y,t)

+ e~1(x,y,t)

+ e2~2(x,y,t)

+ ....

sC(u,t)

= s°(x,y,t)

+ es1(x,y,t)

+ e2s2(x,y,t)

+ ....

(13)

HOMOGENIZATION AND THERMOPIEZOELECTRICITY

where y = xle. The function u°(x,.,t), ul(x,.,t) . . . . . o .... s (x,.,t), sl(x,.,t), etc., are Y-perlodic.

The asymptotic analysis given.

It can

be

is lengthy.

shown

that

the

~°(x,.,t),

Therefore the final

functions

u ° and

o

319

~l(x,.,t),

results will only be do

not

depend

on

y,

provided that the Ignaczak conditlon [6, p. S4]

{~.{2 _ /3 A --

is satisfied.

Here A

By virtue of (6)

.

is the smallest eigenvalue of the matrix ~ = [~

min

A 4

, mln

-

lJ

> O. mln

For a function f ~ LI(y) we set = ~

i

J" f(y)dy .

I *I

The homogenized e q u a t i o n s

a2u ° i

~t 2

are

a2u °

h -- C

lJkl

~Xj

k aX

c9 Ah 820 h 8--6 = l j -a x - ax i

8 uk 8x ~x i

r

o - 32~ CgX c~x

h eli

J

1

+

82o

h + gklJ

h ~lJ

aX J OXk

~0 h a--X- -

J + bi

'

(15)

,

j

2 0

h glkJ

(14)

Y

i

+

k h

~0 h

-0

.

Iax

J

i

Hence we conclude that u°(x,t), ~°(x,t) and are, respectively, displacement

field,

the electric

potential

and

the entropy of

(homogenized) theormopiezoeletric body while 8h(x,t)

the

the effective

is its temperature field.

The following relation holds true

°h(x't

We

observe

=

that

s°(x'y't

-

in general

Ic

8u ° 8u I k + ay, ~ ) +

s o depends

not

~k (

only

8~ ° + a~i

on

(x,t)

)

but

(16)

also

on

the

microscopic variable y.

The

boundary

ones.

Also

conditions

the

initial

for

the

homogenized

conditions

body

for u ° and o

are

still

remain

the

homogeneous

unchanged,

cf.(11).

A. GALKA,

320

Surprisingly,

initial

the

J.J.

TELEGA

condition

and R. W O J N A R

Oh c h a n g e s

for

and

is

given

in

the

next

section. Let

us pass

linearity

now t o

of the

ul(x,y,t)

= X~

k

the

formulae

problem

mn)

(y)e

for

studied

mn

the

effective

material

moduli.

Due t o

the

we h a v e

[ u°(x,t)

¢¢m)

] +

k

o~O(x,t)

(y)

OX

+ Fk(Y)Oh(x,t)

,

m

(17) 1

~ (x,y,t)

where

the f u n c t i o n

Let

us

are

functions

assume

materials.

H

per

X

that of

[ u°(x,t) ] + R(m)Cy)

(y)e

(mn)

~(m)

, _

the

class

,

F,

periodic Lm(Y).

~(mn) ,

Ox

R(m)

material

+ Q ( y ) 8 h ix, t)

a~°°(x't)

mn

and

m

Q are

functions

c

Such a case

covers

equal

on o p p o s i t e

'

Y-periodic.

ijkl

layered

(y),

gilk(Y)

'

etc.

'

thermopiezoelectric

We set

(Y) = {v e H I ( y ) Iv t a k e s

Hper ( y , ~ 3 )

The

~(mn)

=

unknown

following

values

= {v = (vl)lv I • Hper(Y),

i = 1,2,3}

periodic

into

local

functions

entering

sides

o f Y} ,

(18)

.

Eqs.(17)

(19)

are

solutions

to

the

problems.

P r o b l e m p1

loc

Find

(mn)

~ H

(y, N3)

and

~(mn)

e H

per

per

(mn) y

[Cijmn(Y)

+ C

lJkl

(y)eY

zl

-

(Y)

such that

@~(mn)

) + gk (y) lJ

- -

~Yk

]e ~ ( v ) d y = 0 ' J V v • H

J" [gl~,.,_ ( y ) y

+ gikl(Y)eY

1

(¢mn))

_ ~lk(y

)

Be( mn ) BY k

(y,~3)

,

] OW d y = 0 , ¥ w ~ H (Y) BY 1 per

.

per

HOMOGENIZATION

AND THERMOPIEZOELECTRICITY

321

Problem pZ loc Find

@(m)

e H

-

per

(Y,R 3)

and

R (m) e H

per

(Y)

such that

8R (m ) Yf [gmlj (y) + gklj (y) - - a yk + C! Jkl (Y)e~l (-@(m)) ]e lyj (v)dy = 0 , V v e H

f [elm(Y) y

+ e

8R (m) - ay - k -

ik

glkl

e y (@(m))] kl

aw

-

~y---~

dy = 0

(Y,R 3)

per

V w e H

'

,

(Y) . per

Problem p3

loc

Find

F e H

per

-

(y,~3)

and

Q e H

per

(Y)

such

that

f [~i (y) - c (y)e y (r) (y) 3Q ]e y (v)dy = 0 y J iJkl kl - - gklJ 3y---RlJ '

V ve

f [Ai(y ) + glkl(Y)e:l(F ) _ el OQ ] O w dy = 0 , y kay k 3y I

VweH

where

e y (v) = I

~j

2

(

av

av

t - - + ayj

j _ _ @Yl

Rigorously,

the

two-scale

formulation

of

the

involved

local

in them have

the point

of departure

Then the local problems

)

analysis

problems.

to be more

leads

directly

Consequently,

regular,

may be the weak

at

the

least

(Y)

per

(variational)

to

the

material

of class

,

strong

functions

CI(Y).

However,

form of the system

(9).

are as above.

one can determine

the homogenized

They are given by

~ (kl) h

CiJkl

--{Y,~3),

per

.

asymptotic

Having solved the local problems moduli.

H

c~ ( k l )

m

ljkl

lJmn

c3y n

gmlJ

Oy m

(effective)

322

A. GALKA,

J.J.

TELEGA

and R. W O J N A R

a~( k ) h

aR {k)

m ----

gkil

+


C

-

+

llmn @Yn

-

>

gmlJ @Ym

aF

h

k

~IJ

= <~|J

- ClJkl

aQ --

Oy I

gkiJ

>

Oy k

(20) aO

h =


+

Ki i

K

lJ

h

=

<•

>

Oy k

'

a_ # _k(m)

-

Elm

j

-;k

im

glkl

+

aR(m) - -



Oy I

ik

>

Oy k

aF

~h

=


i

Here 8- = ( O j)

® •

find

-

f [K y

i

e

aQ

H

(Y,~)

+

glkl

k

Ik ay k

is a solution

ay I

to the following

problem

such that

per

a® av (y) k ] k dy = 0 , Oy I Oy~

(y) - K Ik

Moreover

-

II

V ve

H

per

(Y, [R3 )

(21

we have

h

1



= IYI yI s ° ( x , y , t ) d y _

=

_

~:J

#heh

U0 i,l

(x,t)

+

(x,t)

-

~h

a~O(x,t)

l

ax i

(22 aF k

Chan~e

in the

Surprising the

Initial

phenomenon

temperature

prove

that,

Condition

of

the

in general,

~

~Q

>

for the Temperature

is observed effective oh(x,O)

+

in what solid,

~ T(x),

concerns cf.also

x e H.

(23

of the H o m o K e n i z e d

the

initial

[2,4].

Namely,

Body

condition we

shall

for now

H O M O G E N I Z A T I O N AND T H E R M O P I E Z O E L E C T R I C I T Y

323

For e > 0 the initial entropy is expressed by

c

sC(x'O) = ~IJ

(x)

OU i #c AC(x) a-~-- + (x)T(x) - I J

aF ax

(24) i

The d e r i v a t i o n of the initial c o n d i t i o n for e h relies on [ 3 ,

Lemma

1.

Let f e Lm(Y)

be a Y-periodic

where ~ is a bounded domain.

Consequently,

(x)

=

f(

ex )' x • ~,

Then

l I f(x)dy ) = ]-Y]-y

fc

function and fe

p. 21].

weak - " in Lm(fl) .

,

if g e L2(fl) then feg converges to g weakly in L2(~).

Hence we conclude that

au

lim se(x'O) = <~lJ > c ~0

On the other hand Eq.(22)

-

i

(x)

-a x

+ <#>T(x)



-

OF(x) Ox

j

(25)

l

implies

h = ~ i ]

aU (x) i ~X J

+

~

(

)

_

~heh'x'O"

Ah OF(x) I ~X

(26)

i

Because

lim se(x,O) = e ~0

,

(27)

therefore au T(x)

eh(x,O)

+ (<~l]

> - ~ih )

J

8h(x,O)

~ T(x),

i - (<~ > - kh ) OF i i ax j

= ,e h

Thus

~

in

general.

i

(28)

324

A. GALKA, J.J. TELEGA and R. WOJNAR

The change the r.h.s,

in the thermal

boundary condition

of (25) and (26) have to be equal.

of the homogenized body is well defined. is determined

by

(28).

h are different Yij

from

More

precisely,

<8>,

and

results

the homogenized

its initial temperature quantities

respectively.

responsible for the change in the thermal boundary condition, initia]

conditions

(II) I,

observed for the homogeneous

(11) 3

and

(11) 4

that

In such a way the initial entropy

Consequently,

<~i j>,

from the fact

are

initial conditions,

Just

~h

this

k~ and i fact is

provided that the

inhomogeneous.

No

change

is

because T=O, U=O and F=O imply

eh(x,O)=O.

References

1.

H. A t t o u c h , Variational Convergence for Functions and Operators, Pitman, London (1984) 2. S. B r a h i m - O t s m a n e , G.A. F r a n c f o r t and F. M u r a t , Homogenization in thermoelastieity, in: Random M e d i a a n d C o m p o s i t e s , e d . b y R.V. Kohn a n d G.W. M i l t o n , p. 13, SIAM, P h i l a d e l p h i a (1988) 3. B. D a c o r o g n a , Direct Methods in the Calculus of Variations, Springer Verlag, Berlin (1989) 4. G.A. F r a n c f o r t , Two v a r i a t i o n a l problems in thermoelasticity, Ph.D. Thesis, Stanford University, April ( 1 9 8 2 ) 5. G.A. Maugin, Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam (1988) 6. W. Nowacki, Electromagnetic Effects in Deformable Solids, (in Polish), PWN, Warszawa (1989) 7. J.F. Nye, Physical Properties of Crystal, The Clarendon Press, Oxford

8. 9.

i0.

(1957) E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Verlag, Berlin (1980) J.J.Telega, Piezoelectricity and homogenization. Application to biomechanics, in: Continuum Models and Discrete Systems, ed.by G.A. Maugin, vol.2, 220, Longman, Essex (1991) N.Turbe, C.A. Maugin, On the linear piezoelectricity of composite materials, Math. Meth. in the Appl. Sci., 14, p.403, (1991)