~t 2
are
a2u °
h -- C
lJkl
~Xj
k aX
c9 Ah 820 h 8--6
8 uk 8x ~x i
r
o - 32~ CgX c~x
h eli
J
1
+
82o
h + gklJ
h ~lJ
aX J OXk
~0 h a--X- -
J + bi
'
(15)
,
j
2 0
h glkJ
(14)
Y
i
+
k h
~0 h
-0
.
Iax
J
i
Hence we conclude that u°(x,t), ~°(x,t) and are, respectively, displacement
field,
the electric
potential
and
the entropy of
(homogenized) theormopiezoeletric body while 8h(x,t)
the
the effective
is its temperature field.
The following relation holds true
°h(x't
We
observe
=
that
s°(x'y't
-
in general
Ic
8u ° 8u I k + ay, ~ ) +
s o depends
not
~k (
only
8~ ° + a~i
on
(x,t)
)
but
(16)
also
on
the
microscopic variable y.
The
boundary
ones.
Also
conditions
the
initial
for
the
homogenized
conditions
body
for u ° and o
are
still
remain
the
homogeneous
unchanged,
cf.(11).
A. GALKA,
320
Surprisingly,
initial
the
J.J.
TELEGA
condition
and R. W O J N A R
Oh c h a n g e s
for
and
is
given
in
the
next
section. Let
us pass
linearity
now t o
of the
ul(x,y,t)
= X~
k
the
formulae
problem
mn)
(y)e
for
studied
mn
the
effective
material
moduli.
Due t o
the
we h a v e
[ u°(x,t)
¢¢m)
] +
k
o~O(x,t)
(y)
OX
+ Fk(Y)Oh(x,t)
,
m
(17) 1
~ (x,y,t)
where
the f u n c t i o n
Let
us
are
functions
assume
materials.
H
per
X
that of
[ u°(x,t) ] + R(m)Cy)
(y)e
(mn)
~(m)
, _
the
class
,
F,
periodic Lm(Y).
~(mn) ,
Ox
R(m)
material
+ Q ( y ) 8 h ix, t)
a~°°(x't)
mn
and
m
Q are
functions
c
Such a case
covers
equal
on o p p o s i t e
'
Y-periodic.
ijkl
layered
(y),
gilk(Y)
'
etc.
'
thermopiezoelectric
We set
(Y) = {v e H I ( y ) Iv t a k e s
Hper ( y , ~ 3 )
The
~(mn)
=
unknown
following
values
= {v = (vl)lv I • Hper(Y),
i = 1,2,3}
periodic
into
local
functions
entering
sides
o f Y} ,
(18)
.
Eqs.(17)
(19)
are
solutions
to
the
problems.
P r o b l e m p1
loc
Find
(mn)
~ H
(y, N3)
and
~(mn)
e H
per
per
(mn) y
[Cijmn(Y)
+ C
lJkl
(y)eY
zl
-
(Y)
such that
@~(mn)
) + gk (y) lJ
- -
~Yk
]e ~ ( v ) d y = 0 ' J V v • H
J" [gl~,.,_ ( y ) y
+ gikl(Y)eY
1
(¢mn))
_ ~lk(y
)
Be( mn ) BY k
(y,~3)
,
] OW d y = 0 , ¥ w ~ H (Y) BY 1 per
.
per
HOMOGENIZATION
AND THERMOPIEZOELECTRICITY
321
Problem pZ loc Find
@(m)
e H
-
per
(Y,R 3)
and
R (m) e H
per
(Y)
such that
8R (m ) Yf [gmlj (y) + gklj (y) - - a yk + C! Jkl (Y)e~l (-@(m)) ]e lyj (v)dy = 0 , V v e H
f [elm(Y) y
+ e
8R (m) - ay - k -
ik
glkl
e y (@(m))] kl
aw
-
~y---~
dy = 0
(Y,R 3)
per
V w e H
'
,
(Y) . per
Problem p3
loc
Find
F e H
per
-
(y,~3)
and
Q e H
per
(Y)
such
that
f [~i (y) - c (y)e y (r) (y) 3Q ]e y (v)dy = 0 y J iJkl kl - - gklJ 3y---RlJ '
V ve
f [Ai(y ) + glkl(Y)e:l(F ) _ el OQ ] O w dy = 0 , y kay k 3y I
VweH
where
e y (v) = I
~j
2
(
av
av
t - - + ayj
j _ _ @Yl
Rigorously,
the
two-scale
formulation
of
the
involved
local
in them have
the point
of departure
Then the local problems
)
analysis
problems.
to be more
leads
directly
Consequently,
regular,
may be the weak
at
the
least
(Y)
per
(variational)
to
the
material
of class
,
strong
functions
CI(Y).
However,
form of the system
(9).
are as above.
one can determine
the homogenized
They are given by
~ (kl) h
CiJkl
--{Y,~3),
per
.
asymptotic
Having solved the local problems moduli.
H
c~ ( k l )
m
ljkl
lJmn
c3y n
gmlJ
Oy m
(effective)
322
A. GALKA,
J.J.
TELEGA
and R. W O J N A R
a~( k ) h
aR {k)
m ----
gkil
+
C
-
+
llmn @Yn
-
>
gmlJ @Ym
aF
h
k
~IJ
= <~|J
- ClJkl
aQ --
Oy I
gkiJ
>
Oy k
(20) aO
h =
+
Ki i
K
lJ
h
=
<•
>
Oy k
'
a_ # _k(m)
-
Elm
j
-;k
im
glkl
+
aR(m) - -
•
Oy I
ik
>
Oy k
aF
~h
=
i
Here 8- = ( O j)
® •
find
-
f [K y
i
e
aQ
H
(Y,~)
+
glkl
k
Ik ay k
is a solution
ay I
to the following
problem
such that
per
a® av (y) k ] k dy = 0 , Oy I Oy~
(y) - K Ik
Moreover
-
II
V ve
H
per
(Y, [R3 )
(21
we have
h
1
= IYI yI s ° ( x , y , t ) d y _
=
_
~:J
#heh
U0 i,l
(x,t)
+
(x,t)
-
~h
a~O(x,t)
l
ax i
(22 aF k
Chan~e
in the
Surprising the
Initial
phenomenon
temperature
prove
that,
Condition
of
the
in general,
~
~Q
>
for the Temperature
is observed effective oh(x,O)
+
in what solid,
~ T(x),
concerns cf.also
x e H.
(23
of the H o m o K e n i z e d
the
initial
[2,4].
Namely,
Body
condition we
shall
for now
H O M O G E N I Z A T I O N AND T H E R M O P I E Z O E L E C T R I C I T Y
323
For e > 0 the initial entropy is expressed by
c
sC(x'O) = ~IJ
(x)
OU i #c AC(x) a-~-- + (x)T(x) - I J
aF ax
(24) i
The d e r i v a t i o n of the initial c o n d i t i o n for e h relies on [ 3 ,
Lemma
1.
Let f e Lm(Y)
be a Y-periodic
where ~ is a bounded domain.
Consequently,
(x)
=
f(
ex )' x • ~,
Then
l I f(x)dy )
fc
function and fe
p. 21].
weak - " in Lm(fl) .
,
if g e L2(fl) then feg converges to
Hence we conclude that
au
lim se(x'O) = <~lJ > c ~0
On the other hand Eq.(22)
-
i
(x)
-a x
+ <#>T(x)
-
OF(x) Ox
j
(25)
l
implies
h = ~ i ]
aU (x) i ~X J
+
~
(
)
_
~heh'x'O"
Ah OF(x) I ~X
(26)
i
Because
lim se(x,O) = e ~0
,
(27)
therefore au
eh(x,O)
+ (<~l]
> - ~ih )
J
8h(x,O)
~ T(x),
i - (<~ > - kh ) OF i i ax j
= ,e h
Thus
~
in
general.
i
(28)
324
A. GALKA, J.J. TELEGA and R. WOJNAR
The change the r.h.s,
in the thermal
boundary condition
of (25) and (26) have to be equal.
of the homogenized body is well defined. is determined
by
(28).
h are different Yij
from
More
precisely,
<8>,
results
the homogenized
its initial temperature quantities
respectively.
responsible for the change in the thermal boundary condition, initia]
conditions
(II) I,
observed for the homogeneous
(11) 3
and
(11) 4
that
In such a way the initial entropy
Consequently,
<~i j>,
from the fact
are
initial conditions,
Just
~h
this
k~ and i fact is
provided that the
inhomogeneous.
No
change
is
because T=O, U=O and F=O imply
eh(x,O)=O.
References
1.
H. A t t o u c h , Variational Convergence for Functions and Operators, Pitman, London (1984) 2. S. B r a h i m - O t s m a n e , G.A. F r a n c f o r t and F. M u r a t , Homogenization in thermoelastieity, in: Random M e d i a a n d C o m p o s i t e s , e d . b y R.V. Kohn a n d G.W. M i l t o n , p. 13, SIAM, P h i l a d e l p h i a (1988) 3. B. D a c o r o g n a , Direct Methods in the Calculus of Variations, Springer Verlag, Berlin (1989) 4. G.A. F r a n c f o r t , Two v a r i a t i o n a l problems in thermoelasticity, Ph.D. Thesis, Stanford University, April ( 1 9 8 2 ) 5. G.A. Maugin, Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam (1988) 6. W. Nowacki, Electromagnetic Effects in Deformable Solids, (in Polish), PWN, Warszawa (1989) 7. J.F. Nye, Physical Properties of Crystal, The Clarendon Press, Oxford
8. 9.
i0.
(1957) E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Verlag, Berlin (1980) J.J.Telega, Piezoelectricity and homogenization. Application to biomechanics, in: Continuum Models and Discrete Systems, ed.by G.A. Maugin, vol.2, 220, Longman, Essex (1991) N.Turbe, C.A. Maugin, On the linear piezoelectricity of composite materials, Math. Meth. in the Appl. Sci., 14, p.403, (1991)