Livestock Production Science, 5 (1978) 71--80
71
© Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands
HOUSING AND CLIMATIC CONDITIONS FOR EARLY WEANED PIGLETS
J. LE DIVIDICH and A. AUMAITRE Institut National de la Recherche Agronornique, Station de Recherches sur l'Elevage des Porcs, 78350 Jouy-en-Josas (France)
(Received 7 March 1977) ABSTRACT Le Dividich, J. and Aumal'tre, A., 1978. Housing and climatic conditions for early weaned piglets. Livest. Prod. ScL, 5: 71--80. The recent results of research carried out on housing and climatic conditions for early weaned piglets are reviewed in the present paper. Piglets weaned at 3--4 weeks of age are, in most cases, raised on a totally wired floor in weaning houses. The optimum area per animal and the number of piglets per pen depend on their age and weight at entry and leaving of the weaning house, respectively. The "allin-all-out" management system is shown to improve the growth performance of piglets. The effects of some physical components of the thermal environment (air temperature, wind speed and relative humidity) on the growth, energy and nitrogen metabolism of the piglet were analysed. An interaction between the air temperature and the feeding level, on the one hand, and the air temperature and the management system (type of floor, piglets raised individually or in groups) on the other, was found. However, no definite conclusions can be drawn about the optimum environmental conditions for early weaned piglets.
INTRODUCTION Early w e a n i n g o f piglets s h o r t e n s the r e p r o d u c t i v e cycle o f the sow and increases her p r o d u c t i v i t y in t e r m s o f piglets w e a n e d per sow a n d per year. This has been possible t h r o u g h the i m p r o v e m e n t o f feeding o f the early w e a n e d animal (Meade et al., 1 9 6 9 ; Van der H e y d e , 1 9 6 9 ; Braude et al., 1970), taking into a c c o u n t the p a r t i c u l a r n u t r i t i o n a l p h y s i o l o g y o f the piglet ( A u m a i t r e , 1971). C o n s e q u e n t l y , w e a n i n g h o u s e s have been designed a n d a d a p t e d t o provide s u f f i c i e n t space, v o l u m e a n d suitable e n v i r o n m e n t f o r the piglet (Bina et al., 1973). In addition, r e d u c t i o n of t i m e / l a b o u r r e q u i r e m e n t s f o r piglet care has led t o the fitting o f w e a n i n g houses with f l o o r e d cages (Glatt et al., 1974} which also i m p r o v e the hygienic c o n d i t i o n s (Van der H e y d e , 1970). However, this situation favours an increase o f radiative and c o n v e c t i v e h e a t losses. Cons e q u e n t l y , the critical t e m p e r a t u r e o f the piglet is p r o b a b l y increased (Stephens, 1971). Besides, the piglet is r e m o v e d f r o m the sow w h i c h is an excellent source o f w a r m t h ( B o n d et al., 1 9 5 2 ) and it is m o r e susceptible t o an adverse
72
environment because it is young or undersized (Mount, 1968). The purpose of this report is to review the present status of our knowledge regarding the influence of environmental factors (temperature, humidity, wind, light, animal space and hygiene) on early weaned piglet performance. MR TEMPERATURE
It is well established that the y o u n g pig is badly protected from chilling and has a poorly developed heat, retaining capacity (Holub et al., 1957; Mount, 1968; Kovacs and Rafai, 1973). The thermal need measured from the thermoneutral zone estimated for a single piglet is high (Kovacs and Rafai, 1973 ). The air temperature is all the more important as the piglets are raised in totally wire-floored cages (battery or flat deck). Indeed, the presence of bedding (straw, w o o d shavings) may help the piglets to create a microclimate which protects them from the adverse effects of climate and considerably reduces heat losses. Stephens (1971) reported that moving piglets 2--9 days old from concrete floor to straw floor at 10 ° C was equivalent to a rise in air temperature of 8 ° C. This may explain that over the range of 16.5--32.2 ° C, no significant differences were found in the performance of piglets weaned at two weeks of age and raised on concrete-floored pens with w o o d shavings (Combs and Wallace, 1970). On the other hand, o p t i m u m air temperature for piglets weaned at 5 weeks is a b o u t 25 ° C according to Voloschik and Morozov (1972); at lower air temperature (13 ° C), growth rate and feed efficiency were decreased while level of mortality was dramatically increased (Table I). When bedding was absent, growth performances were improved (Nikulin and Puretski, 1974) with high air temperature (24°C) and heated floor (23°C). With regard to piglets raised on a totally wired floor, there is a very limited amount of scientific information concerning the optimum air temperature requirements of the y o u n g animals; besides, the available data are still conflicting. For early wearned piglets (3 days old) fed ad libitum and kept in metabolism cages from 15 to 71 days of age (Fig.l), maximum growth rate and feed conversion efficiency were obtained between 20 and 25 ° C (Fuller, TABLE I Effect o f air t e m p e r a t u r e o n g r o w t h p e r f o r m a n c e o f piglets w e a n e d a t 5 weeks ( f r o m 35 to 1 2 0 d a y s old) a c c o r d i n g t o V o l o s c h i k a n d M o r o z o v , 1 9 7 2 . Air t e m p e r a t u r e Relative h u m i d i t y
(° C) (%)
Av. daily gain Feed intake Mortality
(g) (g/day) (%)
13 89
20 75
281 1520 10
298 1470 0
25.4 64 331 1410 0
20' 70
29 56 246 1350 10
' 29 ° C a n d 56% R.H. u n t i l 70 days old, 20 ° C a n d 70% R.H. f r o m 70 to 120 days old.
73
70.
T T/i--Z--l\ ~:'~ 60. I
.c g 0"~
0
" ~ so. ~ /
~/:
T
. ga,n \ .~ • ,oo _ ~k~ ± feed
a" \ "~ E.
Feed intake ( kg/8 weeks)
4o.
~'o 30. c o
~'/~'/~
= ~
weight gain ( kg/8 weeks)
air temperature(°C) Fig.1. E f f e c t o f air t e m p e r a t u r e o n g r o w t h p e r f o r m a n c e o f piglets individually raised in m e t a b o l i s m cages ( a c c o r d i n g t o Fuller, 1965).
1965). Conversely, no differences were found in the performance of pigs weaned at 2 days of age and reared until 28 days either continuously at 20 ° C or at 30 ° C gradually reduced to 20 ° C during the first 4 days (Braude et al., 1970). In the same way, Sugahara et al., (1970) found similar weight gains of piglets fed ad libitum and reared from 9.4 to about 34.0 kg liveweight either at 7 ° C or at 23 ° C, whereas a significant decrease was observed at 33 ° C. However, these results might be explained by the level of feeding which was greater by 21 and 76% in piglets raised at 7 ° C than in those at 23 and 33 ° C, respectively. RELATIVE HUMIDITY Very few data with regard to the effect of relative humidity (R.H.) on growth performance and health of weaned piglets are available. In field experiments, R.H. closely depends on air temperature, especially in heated houses, so that the proper effect of R.H. is generally confounded With that of air temperature. As a rule, h u m i d i t y has some influence on the growth rate of pigs, but mostly at very high air temperatures (Morrison et al., 1966). For reasons of hygiene, the relative air h u m i d i t y should be rather low (between 40 and 60%) according to Van der Heyde (1970). However, Curtis et al., (1972) reported a higher number of viable airborne bacterial particles in association with low humidity. Results of Aumaitre et al. (1976) suggest t h a t the decrease of early weaned piglet performance which occurs during the h o t weather (from June to October) may be attributed to a high level of humidity; however, these results may also be explained by an inadequate ventilation rate. AIR VELOCITY
Because of the considerable magnitude of convective heat losses from piglets reared in batteries, air velocity is an important factor to consider in ad-
74
dition to air temperature. The work of Mount (1965) indicates that an increase in wind speed from 10 to 56 cm s - ' is found to be equivalent to a fall in temperature of 4 ° C in still air for 2-kg pigs. Nave and Olver (1963) also showed that y o u n g pigs (up to 2--3 weeks old) react unfavourably to an air velocity of 12 cm s - ' . Besides, the adverse effects of draughty conditions have been reported by Muehling and Jensen (1961). They noted that draught-free piglets grew 6% faster on 25% less feed than did draught-exposed pigs when the air temperature varies from 4 to 19°C. Should air flow be increased at high temperatures (especially in summer conditions)? By means of oxygen consumption measurements, Kovacs and Rafai (1973) note that above the thermoneutral zone, some benefits might be realized from an increased air velocity. However, except at very high air temperatures, no favourable effect was observed on gain and feed conversion rates of fattening swine (40 kg), and in many cases, adverse effects were noted (Bond et al., 1965). Van der Heyde (1970) suggests maintaining the air flow at a constant rate rather than varying it according to temperature, even in h o t weather. Brent et al., (1975) rec o m m e n d constant air speed within the range of 12--25 cm s - ' . LIGHT
Light, as an environmental factor, has n o t been shown to have much influence on the production of growing-finishing pigs (Braude et al., 1958; Dufour and Bernard, 1968). Rearing in complete darkness is considered to be favourable to the quietness of suckled piglets (Bears et al., 1974) and to a reduction of agressiveness in mixed animals of different litters after early weaning, (Van der Heyde, 1970). SPACE-- N U M B E R
O F PIGLETS P E R P E N
For piglets weaned at 9--11 kg liveweight and traditionally raised on a concrete floor with bedding, the space allowance per animal varies from 0.4 to 0.6 m 2 until they reach 25--37 kg liveweight (Rieger et al., 1972; Glatt et al., 1974). As for early weaned piglets raised in batteries or in slatted-floor pens, the space allowance may be considerably reduced. In batteries, the recommended floor area is 0.2 m 2 until the 20 kg liveweight is reached (Van der Heyde, 1970}. However, for older weaned piglets (11 kg) kept in batteries until 25 kg, results presented in Table II show that with 0.26 m ~ per animal, growth rate and feed efficiency are severely restricted (Rieger et al., 1972). On the other hand, Jensen et al. (1966) also reported lower growth performance in piglets weaned at 4 weeks with 0.21 m 2 compared with 0.28 or 0.35 m 2 per piglet. With a constant floor area of 0.30 m 2 per piglet, an increasing number of animals per pen from 7 to 16 did not affect growth rate; however, above this number, a slight decrease in the growth rate was observed (Jensen et al., 1966).
75
TABLE
II
Effect of number of piglets per pen and surface area per piglet on growth performance of weaned animals Number of piglets per pen Surface area ~ per piglet ( m 2 ) 2 Av.
daily gain (g)
Feed/gain
7
8
--
9 0.3
0.26 -509
--
--
2.14 1.60
16
-468
-426
--
--
--
--
Jensen et al., 1 9 6 6 Rieger et al., 1 9 7 2
420 --
400 --
Jensen et ",d., 1 9 6 6 Rieger et al., 1 9 7 2
0.3 0.15
1.82
0.3
2.24 1.89
References
24
--
-0.20
430 --
--
12
--
2.18 --
Jensen et a l . , 1 9 6 6 Rieger et al., 1 9 7 2
i F r o m 9 t o 2 5 k g liveweight. 2 F r o m 1 1 t o 2 5 k g liveweight.
HYGIENE
Gastrointestinal disturbances are very frequently observed after early weaning, especially when the feeds are not sufficiently adequate (composition, level of feeding, frequency}. Kovacs et al. (1974) found that cold decreases general immunity; in the same way, newborn piglets were found to be more resistant to infection with attenuated transmissible gastroenteritis virus when maintained at a high ambient temperature (Furuuchi and Shimizu, 1976). On the other hand, the total number of microorganisms varies according to the cleaning of the house (Marx and W5rner, 1973). Schneider and Bronsch (1973) showed that the management technique "all-in-all-out" for piglets weaned at three weeks was considerably better than a continuous production technique in the same batch (Table III). This improvement of rate of weight gain (+ 26%) and in feed conversion ratio is derived from a considerable decrease in the scouring frequency after raising piglets in a house and pens that are very carefully cleaned after a batch of piglets.
TABLE
III
C o n t i n u o u s vs. " a l l - i n - a U - o u t " h o u s i n g in r e l a t i o n t o g r o w t h p e r f o r m a n c e o f p i g l e t s w e a n e d at 3 w e e k s ( a c c o r d i n g t o S c h n e i d e r a n d B r o n s c h , 1 9 7 3 ) Management system d a i l y gain ( g ) l (relative) Feed/gain (relative) Av.
i From
21
to
63
Continuous 400
"all-in-all-out" 503**
(100)
(126)
1.89 (100)
days old.
1.74 (92)
76
NUTRITION X ENVIRONMENT INTERACTION
There is an interaction between nutrition and environment. Thus, (Table IV), weight gain in piglets reared on wire-floored cages at 18 ° C was similar to that of pigs at 23 ° C provided that the feed was well balanced in amino-acids (Le Dividich et al., 1976). In another connection, Muehling and Jensen (1961) reported t h a t increasing the dietary energy level improved the growth performance of unheated piglets. E F F E C T O F T H E R M A L E N V I R O N M E N T ON E N E R G Y A N D P R O T E I N M E T A B O L I S M AND BODY COMPOSITION
Pigs kept in an environment below their thermoneutral zone must increase their heat production to compensate for heat loss. Because of the effect on carcass composition, it is important to know the nature and the relative proportions of nutrients (especially fat and protein) which are catabolized to produce extra heat. Results reported by S~rensen and Moustgaard (1967) suggest that nitrogen deposition is reduced and carcass fatness increased in pigs ( f r o m 30 to 80 kg liveweight) kept at low air temperatures. According to Kovacs et al. (1974) piglets weaned at 2--4 weeks of age and raised at 6--7 ° C also show a tendency to be fatter than those raised at 25--26 ° C. Conversely, in early weaned piglets, Fuller (1965) and Voloschik and Morozov (1973) did not find an increase of nitrogen catabolism over the range of 10--25 ° C, but energy retention decreased from 41.8% at 25 ° C to 33.9% at 10 ° C (Table V). Sugahara et al. (1970) found no significant differences in the back-fat thickness of young pigs fed ad libitum and kept at 7, 23 or 33 ° C. Under a paired-feeding regime, piglets raised at 2 ° C were leaner than those raised at 20 ° C (Hacker et al., 1973), but the liveweights of piglets at slaughter were very different (about 51 kg at 20 ° C vs. 27 kg at 2 ° C). No definitive conclusions can be drawn from these different experiments; but they suggest that more has to be known about the true effect of temperaT A B L E IV E f f e c t o f quality o f p r o t e i n o n the g r o w t h p e r f o r m a n c e o f piglets w e a n e d at 5 w e e k s at t w o t e m p e r a t u r e s ( p e r i o d 50--71 d a y s ) a c c o r d i n g t o Le Dividich a n d al., 1976. Air t e m p e r a t u r e
5% s k i m m e d in the diet milk
Av. daily gain (g)
F e e d intake (g/day)
Gain/feed
18oc
+1 _2 + _
523 a 447 b 524 a 483ab
1064 a 1058 a 1073 a 1063 a
0.49 a 0.43 a 0.49 a 0.46 a
23 ° C
' C o m p o s i t i o n (%): c r u d e p r o t e i n 18.2; lysine 1.02; m e t h i o n i n e + c y s t i n e 0.75. 2 C o m p o s i t i o n (%): c r u d e p r o t e i n 17.6; lysine 0.89; m e t h i o n i n e + c y s t i n e 0.71.
77
TABLE V Effect of air temperature on N and energy metabolism Air temperature
(° C)
10
15
20
25
30
References
(%)
58.9
58.7
58.3
57.6
51.8
Fuller, 1965
53.6
52.2
49.0
58.5
Voloschik and Morozov, 1973
39.0
40.0
41.8
43.3
Fuller, 1965
Total urinary N Total digested N Total excreted N (%) Total ingested N Energy retained (%)
33.9
Energy intake
ture on protein and energy metabolism, taking into account the age and weight at weaning. CONCLUSION
Performances of the early weaned pig could be affected markedly by environmental and housing conditions. The effect of some physical parameters, principally low temperatures, are known, but other parameters like air velocity, relative humidity, light etc., must be investigated. Conditions for good management are also known but without enough precision. Hygiene conditions in relation to cleaning and desinfection ("all-in-all-out" system) appear to be important for the growth performance as well as survival rate in young animals.
REFERENCES Aumaftre, A., 1971. Le d~veloppement des enzymes dans le tube digestif du jeune porcelet: importance pour le sewage et signification nutritionnelle. Ann. Zootech., 20: 551--575. Aumal'tre, A., Le Pan, J. et Bina, L., 1976. Le bfitiment de sevrage pr~coce des porcelets r~alisation, contr61e et r~gulation de l'ambiance; investissements et d~penses d'~nergie. Journ6es Rech. Porcine en France, I.N.R.A., I.T.P. ~d., Paris, pp. 305--315. Bears, W.H., Hacker, R.R. and Batra, T.R., 1974. Some effects of total darkness on young pigs. J. Anita. Sci., 3 9 : 1 5 3 (Abstr.). Bina, L., Rettagliati, J., Bichon, F. et Aumaitre, A., 1973. Importance du milieu environnant dans l'(~levage du porcelet. Conception, r~alisation et conditionnement de l'ambiance dans un b~timent de sevrage tr~s pr~coce. Journ~es Rech. Porcine en France, I.N.R.A., I.T.P. (~d., Paris, pp. 249--262. Bond, T.E., Kelly, C.F. and Heitman, H. Jr., 1952. Heat and moisture toss from swine. Agric. Engin., 33: 148--152. Bond, T.E., Heitman, H. and Kelly, C.F., 1965. Effects of increased air velocity on heat and moisure loss and growth of swine. Trans. A.S.A.E., 8: 167--169.
78
Braude, R., Mitchell, K.G., Finn-Kelsey, P.F. and Owen, J.M., 1958. The effects of light on pigs. Proc. Nutr. Soc., 17: 38. Braude, R., Mitchell, K.G., Newport, M.J. and Porter, J.W.G., 1970. Artificial rearing of pigs. I. Effect of frequency and level of feeding on performance and digestion of milk proteins. Br. J. Nutr., 24: 501--516. Brent, G., Hovell, D., Ridgeon, R.F. and Smith, M.J., 1975. Early Weaning of Pigs. Farming Press Ltd., 134 pp. Combs, G.E. and Wallace, H.D., 1970. Influence of modified environment on performance of young pigs. Mimeo Series no AN 70-9. Florida Agric. Exp. Stat., Gainesville, Florida, 2 pp. Curtis, S.E., Grunloh, D.J., Simon, J. and Jensen, A.H., 1972. Aerial bactericide in occupied swine houses. J. Anita. Sci., 3 5 : 1 8 7 (Abstr.). Dufour, J. and Bernard, C., 1968. Effect of light on the development of market pigs and breeding gilts. Can. J. Anim. Sci., 48: 425--430. Fuller, M.F., 1965. The effect of environmental temperature on the nitrogen metabolism and growth of the young pig. Br. J. Nutr., 19: 531--546. Furuuchi, S. and Shimizu, Y., 1976. Effect of air ambient temperature on multiplication of attenuated transmissible gastroenteritis virus in the bodies of newborn piglets. Infect. Immun., 13: 990--992. Glatt, G., Glende, P. and Richter, H., 1974. Zweckm~ssige RationalisierungsmSglichkeiten fiir die Haltung yon Absatzferkeln und Mastschweinen. Tierzucht., 27 : 231--234. Hacker, R.R., Stefanovic, M.P. and Batia, T.R., 1973. Effects of cold exposure on growing pigs: growth, b o d y composition and 17-ketosteroids. J. Anita. Sci., 37 : 739--744. Holub, A., Forman, Z. and Jezkova, D., 1957. Development of chemical thermo-regulation in piglets. Nature, London, 180: 858--859. Jensen, A.H., Becker, D.E. and Harmon, B.G., 1966. Management factors and young pig performances. J. Anim. Sci., 2 5 : 1 2 7 3 (Abstr.). Kovacs, F. and Rafai, P., 1973. Investigation on the metabolism of newborn and young piglets. Magyar Ao. Lapja., 28: 182--187. Kovacs, F. and Rafai, P., 1973. The effect of air m o t i o n on the organism of newborn and young piglets. Magyar Ao. Lapja., 28: 613--617. Kovacs, F., Rafai, P. and Pethes, G., 1974. Studies on the adaptation of weaned piglets to different temperatures. Magyar Ao. Lapja., 29: 531--538. Le Dividich, J., Aumaitre, A., Bina, L. et Rettagliati, J., 1976. Le b~timent de sevrage des porcelets: influence de l'~levage au sol et en batterie, de la temperature de l'air ambiant et de l'alimentation sur les performances. Journ~es Rech. Porcine en France, I.N.R.A., I.T.P. ~d., Paris, pp. 317--324. Marx, D. and WSrner, F., 1973. Frfihabsetzen und K~/figaufzucht der Ferkel aus der Sicht des Hygienikers (II). Tierziichter, 12: 521--523. Meade, R.J., Vermedahl, L.D., Rust, S.W. and Wass, D.F., 1969. Effect of protein content o f the diet of the young pig on rate and efficiency of gain during early development and subsequent to 23.5 kg. J. Anita. Sci., 28: 473--477. Morrison, S.R., Heitman, H., Bond, T.E. and Finn-Kelcey, P.F., 1966. The influence of humidity on growth rate and feed utilization of swine. Int. J. Biomet., 10: 163--168. Mount, L.E., 1965. Energy metabolism. In: K.L. Blaxter (Editor), The Young Pig and its Physical Environment. Academic Press, London, pp. 379--385. Mount, L.E., 1968. The Climatic Physiology of the Pig. Arnold Ltd., London, 271 pp. Muehling, A.J. and Jensen, A.H., 1961. Environmental studies with early weaned pigs. Univ. Ill. Agric. Exp. Stat. Bull., 670, 39 pp. Nave, W.R. and Olver, E.F., 1963. Effects of floor temperature and ventilation on swine in confinement. Proc. Am. Soc. Agric. Eng. Miami Beach, Florida (cited by Jensen, A.H., 1964. J. Anim. Sci., 23: 1185--1196). Nikulin, V. and Puretski, V., 1974. Temperature de l'air et ~tat physiologique du porcelet. Svinovodstvo, 2: 20--22. Rieger, O., Pieper, E., Fiedler, R. and Petri, W., 1972. Versuchs und Erfahrungsbericht.
79
Staatliche Versuchs und Lehranstalt fiir Schweinezucht und Haltung Forchheim, Baden Wiirtemberg, 104 pp. Schneider, D. and Bronsch, K., 1973. Einfluss der Stallbelegung nach der sog. Fliessband und Rein Raus Methode auf die Ferkelaufzucht. Ztichtungskunde, 50: 53--60. S~rensen, P.H. and Moustgaard, J.H., 1967. Staldklimaets indflydelse pa vaekst, forderudnyttlse og slagtekvalited hos svin. Statens B.I. Landbrugsbyggeri, 25: 23--57. Stephens, D.B., 1971. The metabolic rates of newborn pigs in relation to floor insulation and ambient temperature. Anita Prod., 13 : 303--313. Sugahara, M., Baker, D.H., Harmon, B.G. and Jensen, A.H., 1970. Effect of ambient temperature on performance and carcass development in young swine. J. Anita. Sci., 31: 59--62. Van der Heyde, H., 1969. Etude comparative de l'~levage des porcelets en batterie et de l'~levage traditionnel dans une exploitation mixte. Revue Agric., 22: 1419--1429. Van der Heyde, H., 1970. Early weaning and environment. Inter. Conf. Agric. Eng., Gent Ser., 25: 1--12. Voloschik, P. and Morozov, V., 1972. Temperature conditions for rearing piglets weaned early. Svinovodstvo, 12: 30--31. Voloschik, P. and Morozov, V., 1973. Metabolism in piglets weaned early. Zhivotnovodstvo, 4: 74--76.
RESUME Le Dividich, J. et Auma~tre, A., 1978. L'habitat et l'environnementclimatique du porcelet sevr~ pr~coc~ment. Livest. Prod. Sci., 5 : 7 1 - - 8 0 (en anglais). Cette revue rapporte les plus r~cents travaux concernant l'habitat et l'environnement climatique du porcelet sevr~ pr~coc~ment. Le porcelet sevr4 vers 3--4 semaines d'Sge est, pour des raisons 4conomiques, ~lev4, la plupart du temps, dans un b~timent de sevrage ~quip4 de cage ~ sol ajour~. La surface optimum par animal et la nombre de porcelets par case sont fonction de l'~ge et du poids au sevrage, et du poids des animaux ~ la sortie du batfment. Sur le plan sanitaire, les techniques de la conduite en bandes et du vide sanitaire se r~v~lent b~n~fiques pour les performances des porcelets. L'influence de quelques composantes de l'environnement thermique (temperature, hygrom~trie et vitesse de l'air) sur les performances de croissance et le m~tabolisme ~nerg4tique et azot~ du porcelet a ~t~ analys~. Les r~sultats font apparaitre notamment une interaction d'une part entre la temperature et le niveau alimentaire et d'autre part, entre la temperature et le mode d'~levage, sur sol avec liti~re ou sur caillebotis, individuel ou en groupe. Toutefois, on ne peut tirer de conclusion d~finitive quant aux conditions optimum d'environnement thermique pour le porcelet sevr~ pr~coc~ment. KURZFASSUNG Le Dividich, J. und Aumai'tre, A., 1978. Aufstallung und klimatische Bedingungen yon fr~h abgesetzten Ferkeln. Livest. Prod. Sc£, 5 : 7 1 - - 8 0 (in Englisch). Im vorliegenden Beitrag wird eine IJbersicht tiber neuere Forschungsergebnisse gegeben, die tiber die Aufstallung und die klimatischen Bedingungen ftir frtih abgesetzte Ferkel durchgefiihrt wurden. Die mit 3 bis 4 Wochen abgesetzten Ferkel werden meistens in Aufzuchtanlagen auf Drahtgittern aufgezogen. Die optimale Fl~iche pro Tier und die Zahl der Tiere pro Box
80
h~ingt vom Alter und Gewicht der Tiere bei Beginn bzw. beim Ende ihres Aufenthaltes in der Auzuchtanlage ab. Es zeigt sich, class die Rein-Raus-Methode das Wachstum der Ferkel verbessert. Der Einfluss einiger physikaliseher Komponenten der thermischen Umwelt (Lufttemperatur, Windgeschwindigkeit und relative Luftfeuchtigkeit) auf Wachstum, Energie- und NStoffwechsel der Ferkel wurde analysiert. Zwischen Lufttemperatur und Ftittemngsniveau einerseits und Lufttemperatur sowie Haltungssystem andererseits (Art des Stallbodens, Einzel- oder Gruppenhaltung der Ferkel) wurde eine Interaktion gefunden. Es k~nnen jedoch keine abschliessenden Schlussfolgerungen hinsichtlich der optimalen Umweltbedingungen fiir friih abgesetzte Ferkel gezogen werden.