39
1.2.1.
1.2.
THE RIEMANN BOUNDARY VALUE PROBLEM Formulation of the problem
12.1.
L e t L be a smooth c o n t o u r , G ( * ) and g ( . ) f u n c t i o n s d e f i n e d on L , b o t h s a t i s f y i n g a H 6 l d e r c o n d i t i o n , a n d G(t)#O
(1.1)
for every t E L
The Riemann boundary v a l u e p r o b l e m f o r L i s : D e t e r m i n e a f u n c t i o n @ ( . ) such that
(1.2)
@ ( z ) is r e g u l a r f o r z E L+
i.
,
i s c o n t i n u o u s f o r z E L U L+ ;
.. 11.
~ ( z is ) regular f o r
z E L-
-
,
is c o n t i n u o u s for z E L U L- ;
... 111.
O(z) +A f o r I z I
iv.
O+(t)
.+
= G(t)O-(t)
t
with
g(t)
A a constant ; for t
E
L,
with O+(t)
lim
:=
z + t E+L z EL
Note t h a t f o r G ( t ) = l ,
O(Z)
;
o-(t)
:=
lim ~ ( z ) . z + t E_L z EL
t E L a n d A=O t h e s o l u t i o n h a s b e e n g i v e n
i n section 1.7. The homogeneous problem ( i . e . , g ( t ) discussed i n section section (1.2)
4.
0, t E
L) w i l l be
3 , a n d t h e inhomogeneous problem i n
A s i m p l e g e n e r a l i z a t i o n of t h e boundary v a l u e p r o b l e m
i s considered i n s e c t i o n
5.
1.2.2.
1.2.2.
Introduction to boundary value problems
40
The index of C(t), t E L I n t h e a n a l y s i s o f t h e problem f o r m u l a t e d i n t h e p r e c e d i n g
s e c t i o n t h e concept i n d e x
x
o f G(.)
o n L i s needed. T h i s i n d e x
i s t h e i n c r e m e n t of t h e argument of G ( t ) , when t t r a v e r s e s L Once i n t h e p o s i t i v e d i r e c t i o n , d i v i d e d by 2 ~ Because . G(')
i s c o n t i n u o u s on L i t i s s e e n t h a t
x
(2.1)
hence
x
1
= indG(t.1 = -
J
2TI t E L
d{argG(t)}
i s an i n t e g e r i f G ( t ) # 0 f o r e v e r y t
C o n s i d e r t h e case t h a t G(t), of a function G(z),
1
E
a f i n i t e number o f p o l e s i n L
d{lUgG(t)j,
L.
t E L i s t h e boundary v a l u e
z E Lt which i s r e g u l a r i n L t
J
t EL
. Then
t
except f o r
t h e i n d e x o f G ( ' ) on L i s
e q u a l t o t h e number o f z e r o s o f G(- ) i n Lt l e s s t h e number of poles i n L
t
, the
zeros and poles counted according t o t h e i r
m u l t i p l i c i t y , f o r a p r o o f see 111 p. 99.
1.2.3.
41
m e Riemann boun&ry value problem
12.3.
The homogeneous problem In this section the homogeneous problem (1.2) of section 1
is discussed, i.e. we consider here g(t).
(3.1)
0
,
It follows from ( 1 . 2 )
t E L iv and (3.1) that for t E L :
Because of (1.2) i,ii the relation (3.2) implies that
x
(3.3)
N++N-,
with Nt the number of zeros of a ( . )
L-, with
x
in L
+ , N-
t E L is the
the index of G(-), note that @'(t),
boundary value of a function regular in L
,
i
that of @ ( in- I
similarly
for
O-(t) with L+ replaced by L-. Consequently we should have,
which implies that if
x
indG(-)
<
0
then the homogeneous
problem has no solution, except for the trivial null solution. The cases x=O and
x>0
are discussed separately.
Case A. x = O . Hence N+n N- = 0, so that logO(z) has no z e r o s f o r z E L+, and also no zeros in L-.
Consequently, it follows from (1.2) i , ii, iii with A # O that (3.5)
i.
log O(z) should be regular for z
L
E
t
,
continuous €or z E L
t
U
L,
ii. log @ ( z ) should be regular for z E L-, continuous for z
E
bounded for I z I
m.
+
L- u L,
42
1.2.3.
Inttoduction to boundary value problem
Next n o t e t h a t G ( . )
s a t i s f i e s on L t h e H - c o n d i t i o n a n d
d o e s n o t v a n i s h on L s o t h a t log G ( t ) s a t i s f i e s on L t h e H-cond i t i o n ( s e e s e c t i o n 1 . 3 and [ 7 1 p. 16,E’).
Hence by w r i t i n g
( 3 . 2 ) as
it i s s e e n t h a t t h e problem of d e t e r m i n i n g a f u n c t i o n f y i n g ( 3 . 5 ) and ( 3 . 6 )
t h e homogeneous p r o b l e m
( w i t h ( 3 . 1 ) ) i n t h e c a s e x - 0 i s u n i q u e and g i v e n by
(1.2)
= Ae Note t h a t i n ( 3 . 7 )
is
satis-
i s i d e n t i c a l with t h a t formulated i n s e c t i o n
I t f o l l o w s t h a t t h e s o l u t i o n of
1.7.
@(-)
y
z E L-,
it i s i r r e l e v a n t which b r a n c h of log G(t)
chosen. Obviously, i f A=O, c f .
(1.2)
iii, t h e n t h e n u l l
s o l u t i o n i s t h e only solution.
If f o r t h e homogeneous p r o b l e m t h e c o n d i t i o n ( 1 . 2 )
Remark 3 . 1
iii i s r e p l a c e d by l O ( z ) l rn O ( l z l k )
(3.8)
for IzI-+m, k
>
0 , an integer, then
t h e general solution reads @(z)
(3.9)
where
P
k
(2)
r.o(z) = e P,(z),
z E
L + U L-,
i s a n a r b i t r a r y p o l y n o m i a l i n z of d e g r e e
k and
z E L+U L U L-.
43
The Riemann b o u n b y value problem
1.2.3.
O b v i o u s l y @ ( z ) as g i v e n by ( 3 . 9 )
Proof
PS f o r m u l a s , c f .
(1.6.4),
satisfies (3.8).
a p p l i e d t o ( 3 . 9 ) y i e l d for t E L,
@ + (=t )e i l o g G ( t ) + I ' O ( t ) P k ( t )
(3.11)
= ,-;log
@-(t)
and h e n c e ( 1 . 2 )
i,
...,i v
The
G(t)
+
3
r3(t)pk(t),
with g ( t ) = O and ( 1 . 2 )
by ( 3 . 8 ) a r e s a t i s f i e d . The
iii r e p l a c e d
uniqueness of t h e s o l u t i o n f o l l o w s
s i m i l a r l y as i n s e c t i o n 1 . 7 . Case B.
x>
0
Take t h e o r i g i n o f t h e c o o r d i n a t e s y s t e m i n L t and
0.
rewrite ( 1 . 2 )
i v with g(t)=O, c f .
(3.l),as
O b v i o u s l y on L (3.13)
indCt-XG(t)l
Put
r
(3.14)
X
(2)
:=
-
0
1 J 2 ll.l t E L
L + u L u L-
log I t - x G ( t ) l d t , t-z
n o t e t h a t log { t - X G ( t ) ] s a t i s f i e s t h e H - c o n d i t i o n on L.
,
Hence
from ( 1 . 6 . 5 )
C o n s e q u e n t l y from ( 1 . 2 )
i v with g ( t ) = O ,
Because
r
X
(2)
i s r e g u l a r f o r z E L+ u L-
,
i s continuous and f i n i t e f o r z
it i s seen t h a t ( 1 . 2 )
i , ii and ( 3 . 1 6 )
E
L
imply
+ U L-,
r
that @(z)/e
(z)
,
Introduction to boundary value problems
44
Z E
L'and
r
zXO(z)/e
( 2 ) 9
1.2.3.
zEL- areeach other'sanalyfic continuations.
Further ( 1 . 2 ) i i i implies Iz%(z)/e
(3.17)
r
X
(z)
1
= J A J J z J X for
JzI-tm.
Consequently L i o u v i l l e ' s theorem i m p l i e s t h a t
(3.18)
r
e X
O(Z)
r
e X
with
l i m Z-XP
(3.19)
I z I-
X
(2)
(2)
P
X
for z
(2)
z-XpX(z)
(z) =
E
L+,
f o r z E L-,
A
where P ( . ) i s a n a r b i t r a r y p o l y n o m i a l o f d e g r e e
X
x
satisfying
(3.19). T h e r e l a t i o n s (3.14), ( 3 . 1 8 ) and (3.19) p r e s e n t t h e g e n e r a l s o l u t i o n o f t h e homogeneous b o u n d a r y v a l u e p r o b l e m (1.2)
f o r t h e case
x
= ind G ( - )
>
coordinate system l i e s i n L
0,
+.
but note t h a t t h e o r i g i n of t h e
45
The Riemann bounday value problem
1.2.4.
1.2.4.
The nonhomogeneous problem In this section it will again be assumed that the origin of the
coordinate system lies in L i.
x>O.
Recalling ( 3 . 1 4 ) ,
t
. i.e.
so that
the relation ( 1 . 2 )
ivy t E L,
may be rewritten as,
Because g ( - ) satisfies the H-condition on L and so does e cf. lemma 1 . 6 . 1 , which is alwavs nonzero on L, we
may and do write
so that ( 4 . 4 ) becomes for
t E
L:
r+(.) x
Introduction to boundary value problems
46
Because eri(z) is never zero for z
-
z E
erx(’),
L
U
E
L
U
L+, and similarly for
L-, it follows that (note
e-r x ( 2 )
(4.8)
O(z)
(4.9)
zX~(z) e
h
r
z=O E
L
+
and
x
2 O),
+
is regular for z E L , is continuous for z E L u L + ,
Y(Z)
x (‘1 -
12.4.
~ ( z )
is regular for z E L-, is continuous for z E L
IJL-,
lzX~(z) e-rx(z) - ~ ( z ) Consequently ( 4 . 7 ) together with ( 4 . 8 )
and ( 4 . 9 )
imply that
the expressions in (4.8) and (4.9) a r e each other’s analytic continuations, and the asymptotic relation in ( 4 . 9 )
together with
Liouville’s theorem implies that
or
with P
X
(.)
(4.11)
an arbitrary polynomial of degree
x>
0 and such that
lim z-X P ( z ) = A. /zI+m
X
Consequently, f o r t h e c a s e
x
2 0
t h e r e l a t i o n s (4.10) and (4.11)
r e p r e s e n t t h e g e n e r a l s o l u t i o n o f t h e inhomogeneous boundary v a l u e p r o b l e m (1.21, it contains (apart from A ) X arbitrary
constants (coefficients of P ( - ) I . It is readily verified that
X
it is the unique solution (apart from thex arbitrary constants). ii.
x < 0.
In this case the relations ( 4 . 7 ) , . . . ,
(4.9) still hold;
The Riemann boundaty value problem
1.2.4.
47
together with Liouville's theorem they imply that
Because Y(z),
cf. (4.51, possesses in a neighbourhood of
a convergent series expansion in powers of z-h , h=0,1,... , i.e. Y ( -1) is regular in a neighbourhood of 2-0,
z
m
we may write
Y(z)
(4.13)
t-lchz-h for
m
[zI sufficiently large.
Hence if (4.14) then
c the
-X
=A,
ch=O for h = l,.... , -x-1,
x
-1,
inhomogeneous boundary value problem (1.2) has
a unique solution which is then given by (4.12); it is insoluble if (4.14) does not hold.
Introduction to boundary value problems
48
1.2.5.
A variant of the boundary value problem (1.2)
1.2.5.
The boundary value problem (1.2) may be generalized in several directions. We shall discuss here a simple generalization, see further
[6]
and [ 7 1 for more complicated cases.
Let again L be a smooth contour, g ( . ) and G(.) functions defined on L, both satisfying a H-condition on L and with G(-) non-vanishing on L, L
t
x
will be the index of G(-) on L, and
contains the origin or the coordinate system. It is required to construct a function @ ( * I such that i. ~ ( z )is regular for z
(5.1)
E L+U
L-;
is continuous from the left and right at L ; is bounded for t
ii. 0 (t) =
I zI +
-G(t) @-(t) (t-B)P
with a E L, B E L, a + B ,
m;
t
g(t),
t
E
L,
and m and p positive
integers. With for t
E
rX (z) as
defined:-n (4.1) we rewrite (5.1) ii as:
L,
with
As before we obtain by applying Liouville’s theorem that
The Riemann boundary value problem
1.2.5.
with P
X+m
(.)
49
a polynomial of degree X+m and satisfying the condi-
tions : (5.5)
+
i. t=B is a zero of multiplicity p of Y (t) + P
X +m
ii. t=a is a zero of multiplicity m of Y-(t) + P
X +m
(t) ; (t)
If the conditions (5.5) i,ii can be satisfied by a proper choice of the coefficients of P
X +m
(-),
then (5.4) represents the solu-
tion of (5.1) which is bounded for IzI + m . or p > l the relations of section 1.10
Note that if m
>
are needed, and g ( . )
should possess the relevant derivatives.
1
.