Advances i n HoZomorphy, J.A. Barroso led. )
0 North-Holland Publishing Company, 1979
IDEALS OF HOLOMORPHIC FUNCTIONS ON F ~ C H E TSPACES JORGE MUJICA
1. INTRODUCTION
In this paper we are concerned with the study of certain ideals of holomorphic functions or holomorphic germs on infinite dimensional spaces.
More precisely, we consider
the ideal generated by a family of holomorphic functions without common zeros.
And likewise for holomorphic germs.
Throughout the paper we keep in mind the following finite
Let
dimensional result due to Cartan [l]:
#(U)
denote the
algebra of all holomorphic functions on a domain of holomorphy U
in - Cn,
and let
without common zeros. dense in
#(U)
the family
3
a
C
#(U)
be a family of functions
Then the ideal
8
generated by
$
for the topology of compact convergence. is finite, then the ideal
8
equals
is -
If
#(U).
Sections 2 and 3 of this paper are of preparotory nature.
In section 2 we establish some properties of certain
classes of topological algebras,
In section 3 we collect
some results concerning approximation of holomorphic functicns by continuous polynomials. The main results appear in sections 4 and 5 .
563
In
5 64
J. MUJICA
4
section
we d e a l w i t h t h e a l g e b r a
germs on a p o l y n o m i a l l y
convex compact s u b s e t of a Fre'chet
space with the approximation property. e v e r y complex homomorphism on p o i n t of
K.
of a l l holomorphic
#(K)
Then we prove t h a t
i s an e v a l u a t i o n a t a
#(K)
A s a c o r o l l a r y we g e t t h a t t h e i d e a l g e n e r a t e d
by a f a m i l y of germs i n
w i t h o u t common z e r o s , e q u a l s
#(K),
n(K). I n s e c t i o n 5 we d e a l w i t h t h e a l g e b r a
of a l l
#(U)
holomorphic f u n c t i o n s on a p o l y n o m i a l l y convex domain i n a Fre'chet s p a c e w i t h t h e a p p r o x i m a t i o n p r o p e r t y . d e n o t e s t h e Nachbin t o p o l o g y on every
T
w
a
w i t h o u t common z e r o s , i s dense i n the ideal family
8
a
# #(u)
8
u)
#(U)
i s an
A s a c o r o l l a r y we g e t t h a t t h e
U.
g e n e r a t e d by a f a m i l y
d
r
t h e n we prove t h a t
- c o n t i n u o u s complex homomorphism on
e v a l u a t i o n a t a p o i n t of ideal
#(U),
If
need n o t e q u a l
of f u n c t i o n s i n #(U)
#(U)*
for
- u )
T
.
#(U), I n general,
I n t h e , c a s e where t h e
i s f i n i t e , we do n o t know whether t h e s i t u a t i o n can a c t u a l l y o c c u r .
F o r t h e convenience of t h e r e a d e r we have made t h i s p r o v i n g most o f t h e r e s u l t s we
paper n e a r l y s e l f - c o n t a i n e d , use.
The o n l y e x c e p t i o n s a r e theorem 3.2,
S c h o t t e n l o h e r i n [ll], and theorem 5 . 1 ,
2.
proved by
proved by us i n [ y ] ,
LOCALLY m-CONVEX ALGEBRAS AND Q-ALGEBRAS By an a l g e b r a we mean t h r o u g h o u t t h i s p a p e r a
commutative complex algqbrar w i t h u n i t e l e m e n t . homomorphism on a n a l g e b r a
A
By a complex
we mean a n a l g e b r a homomorphism
IDEALS
T: A
+
OF HOLOMORPHIC
565
ON FRECHET SPACES
FUNCTIONS
which i s n o t i d e n t i c a l l y z e r o .
C
A t o p o l o g i c a l a l g e b r a i s a n a l g e b r a and a t o p o l o g i c a l
v e c t o r space s u c h t h a t r i n g m u l t i p l i c a t i o n i s s e p a r a t e l y continuous.
The spectrum o f a t o p o l o g i c a l a l g e b r a
s e t o f a l l c o n t i n u o u s complex homomorphisms on
A
is the
A.
I n t h i s s e c t i o n we e s t a b l i s h some p r o p e r t i e s of two i m p o r t a n t c l a s s e s of t o p o l o g i c a l a l g e b r a s , t h e l o c a l l y m-comx a l g e b r a s and t h e Q - a l g e b r a s ,
t o be d e f i n e d below.
The main
r e f e r e n c e s f o r t h i s s e c t i o n a r e [ 5 ] and 1 2 3 . A t o p o l o g i c a l a l g e b r a i s l o c a l l y m-convex
2 . 1 DEFINITION
i t h a s a 0-neighborhood b a s e c o n s i s t i n g of convex s e t s with
V
2
if
V
c V.
Thus t h e t o p o l o g y of a l o c a l l y m-convex a l g e b r a g e n e r a t e d by a d i r e c t e d f a m i l y of seminorms p(xy) g p ( x ) p ( y )
for all
x, y
in
p
A
is
such t h a t
P r o p o s i t i o n 2.2
A.
below i s proved i n [ 2 , p.
163, P r o p . l . 4 1 .
2 . 2 PROPOSITION
be a l o c a l l y m-convex a l g e b r a . Then:
(a)
Let
A
E v e r y c l o s e d i d e a l of
i s contained i n a c l o s e d
A
maximal i d e a l . (b)
Every c l o s e d maximal i d e a l of
i s t h e k e r n e l of a
A
c o n t i n u o u s complex homomorphism, PROOF
The t o p o l o g y of
of seminorms in
A.
and l e t
p
Let A
P
A
such t h a t
(A,p)
i s g e n e r a t e d by a d i r e c t e d f a m i l y p(xy)
S
p(x)p(y)
denote the alge b ra
A,
for a l l
x, y
seminormed by
d e n o t e t h e c o m p l e t i o n of t h e normed a l g e b r a
(A,p)/p”(O),
Thus i f
mapping, t h e n
n (A) P
rr : A P
3
A
P
denotes the canonical
i s a d e n s e s u b a l g e b r a o f the Banach
p,
J. MUJICA
566 algebra
and
6
A
P‘
Let
I
>
such t h a t t h e open s e t
0
be a c l o s e d i d e a l of
I.
d i s j o i n t from
Then
r(
P
np(I)
of
A
P
.
Since
A
A
nP(I)
of
I
i n
i s contained i n t h e k e r n e l of
c o n t i n u o u s complex homomorphism o n I
i s maximal,
2.3
then necessarily
A
i s a closed i d e a l
P
np(I)
i s contained
A.
Toll
P’
T
on
A
T h i s proves ( a ) .
I = k e r Ton
P’
P
.
which i s a If
proving (b).
A t o p o l o g i c a l a l g e b r a i s a Q-algebra
DEFINITION
is
and i s
r(,(A)
i n t h e k e r n e l o f a c o n t i n u o u s complex homomorphism Then
p
o f c e n t e r 1 a n d r a d i u s S.
P
i s a Banach a l g e b r a ,
P
p(x-1) < g)
Ex E A :
( I ) i s a n i d e a l of
d i s j o i n t from t h e open b a l l i n Thus t h e c l o s u r e
Then t h e r e e x i s t
A.
if
the
i n v e r t i b l e e l e m e n t s form a n open s e t .
2.4 PROPOSITION
hood
If V
the closure of every ideal
I n p a r t i c u l a r , e v e r y maximal i d e a l i s c l o s e d .
is an ideal.
PROOF
I n a Q-algebra,
A
i s a &-algebra, t h e n t h e r e e x i s t s a n e i g h b o r -
of 1 c o n s i s t i n g o n l y of
i s a n y i d e a l of
A,
then
c o n s e q u e n t l y the c l o s u r e
2 . 5 COROLLARY
I
I
i n v e r t i b l e elements.
i s d i s j o i n t from
of
I
V,
If
I
and
c a n n o t c o n t a i n 1.
If a t o p o l o g i c a l a l g e b r a i s b o t h l o c a l l y m-
convex a n d a Q - a l g e b r a , t h e n e v e r y complex homomorphism i s continuous. P r o p o s i t i o n 2 . 6 b e l o w gives a l a r g e c l a s s o f t o p o l o g i c a l a l g e b r a s which a r e b o t h l o c a l l y m-convex a n d Q-algebras. P a r t ( b ) of p r o p o s i t i o n 2 . 6 i s proved i n [ 2 , p.165, A s f o r p a r t ( a ) , t h e proof
of [ 7 , Th.7.11;
Prop.151.
i s a n a b s t r a c t v e r s i o n of the proof
s e e a l s o [ 8 , Th.11.
567
I D E A L S OF HOLOMORPHIC FUNCTIONS ON FRIfCHET S P A C E S
2 . 6 PROPOSITION
Let
be a n a l g e b r a which i s t h e l o c a l l y
A
convex i n d u c t i v e l i m i t of a n i n c r e a s i n g s e q u e n c e o f normed
u A j=1 j ' m
algebras
A
with
j
A =
i n c l u s i o n mapping
A . CA j+l J
and suppose t h a t e a c h
h a s norm one.
Then:
i s a l o c a l l y m-convex a l g e b r a .
(a)
A
(b)
If each
A
i s a Banach a l g e b r a , t h e n
j
is also a
A
Q-algebra.
( a ) Let
PROOF 0
<
6
j
of center
0
c .
be a s e q u e n c e of numbers
j =O
j
let
U
and r a d i u s
Sj,
and l e t
For each
1.
I:
m
(cj)
with
J
d e n o t e t h e open b a l l i n A
j
d e n o t e t h e convex
U
m
u
h u l l of
j=1
ponding s e t s
Uj. U
A s t h e sequence
form a 0-neighborhood b a s e i n
i s c e r t a i n l y convex.
U
We c l a i m t h a t
U
2
Each
A. Given
C U..
U
x, y
in
we can w r i t e
.
where t h e sums a r e f i n i t e and
C Clk = 1, k
xj
E
Uj,
E
~k
and s i n c e
E
Fix
Since
U
J
Uk*
XY =
xy
varies, the corres-
(E j )
c
j ,k
i s convex and
j, k
A
j
and assume
j
s k.
uk
2
0,
xj
Clk
C
hlrk
= 1,
x j Yk
= 1,
xjyk
Then
C k j
Thus
j ,k i t s u f f i c e s t o show t h a t
U
z 0,
E U
xjyk
E
t o show t h a t for all
Ak
i s a Banach a l g e b r a , e v e r y e l e m e n t o f
j , k.
and
1
+
V
j
is
J. MUJICA
5 68
Let V = LJ Vj. Since j' j=1 is a convex 0-neighborhood in
invertible in every
V
j,
1+V
element of Let
W
in
A
A
x
is invertible in
E A
be invertible.
such that
= x( l+x-'h)
E V
x'lh
V. c J
A
v ~ for + ~
and every
A. We choose a 0-neighborhood
for every
is invertible for every
h
h
E W.
Then
x+h =
E W.
3 . POLYNOMIAL APPROXIMATION ON COMPACT SETS
E
From now on
stands for a complex Fre'chet space U
with the approximation property, sets of
K
E, and
U,
functions on
V
denote open sub-
denotes a compact subset of
E.
denote the algebra o f all holomorphic
u(U)
Let
and
and let
continuous polynomials on
P(E) E.
denote the subalgebra of all
We refer to the monographs by
Nachbin [9] and Noverraz [lo] for the definitions and basic properties of holomorphic functions and polynomials on infinite dimensional spaces.
3.1 DEFINITION
For
K C E
we define
We say that K is polynomially IIPIIK = sup lP(x) 1 . x€K convex if K = 2. We say that U C E is polynomially convex
where
if
i n u
is compact for every
'3.2 THEOREM
function K
f
Let
K C E
K
c
be polynom ally convex.
Then every
which is holomorphic on an open neighborhood of
can be approximated uniformly on
nomials on
U.
E.
K
by continuous poly-
569
IDEALS OF HOLOMORPHIC FUNCTIONS ON F a C H E T SPACES
Theorem 3.2 is due to Schottenloher; for the proof see
[ 11, Th.21.
A weaker form of this theorem had been previous-
ly given by Noverraz; see [lo, p.76, Th. 4.3.21.
Theorem 3.2
yields the following corollary; see [ll, Cor.31.
3.3 COROLLARY
ii c u
for every
PROOF U
K c
Let
U C E
Let
be polynomially convex.
K c U.
u,.
Since
ii
U (k\U),
2n
U
and
U
is also compact.
f , holomorphic on a neighborhood of
by putting f
f
equal to one on a neighborhood of
every
IIf-PIl; < 1/2. x E k\U.
We define
r?
(Gnu) U
=
equal to zero on a neighborhood of
Theorem 3.2 there exists a continuous polynomial that
2\~.Since
is compact, s o is
n
is polynomially convex
a function
Then
This yields
r?\U.
P
such
llPllK C 1/2 C IP(x)l
This is a contradiction, unless
By
for
t\U
is
empty. We also need the following standard lemma.
3.4
LEMMA
each
f: E
Let
K c E
and
E
+
>
C
u: E
+ E
such that
Since
K
is compact,
f
<
If(x)-f(y)l
E
g
for every
x E K
and
x.
in
E
with
such that x-y
W.
has the approximation pro erty, there exists a
x-u(x) E W
E
W
y E E
continuous linear mapping of finite rank
x
C g
is uniformly continuous on
and thus there exists a 0-neighborhood
Since
(f(x)-fou(x)l
x E K.
for every
K
Then for
there exists a continuous linear
0,
mapping of finite rank
PROOF
be a continuous function.
for all
x E K.
Thus
u: E
f(x)-fou(x)l
+ E < e
such that for all
J. M U J I C A
57 0 Pf(E)
Let
f i n i t e t y p e on
i . e . t h e s u b a l g e b r a of
E,
E'
by t h e d u a l
d e n o t e t h e a l g e b r a of a l l p o l y n o m i a l s of
E.
of
P(E)
generated
3.4 y i e l d s t h e f o l l o w i n g
Then lemma
corollary.
Pf(E)
3 . 5 COROLLARY
P(E)
i s dense i n
f o r t h e t o p o l o g y of
compact c o n v e r g e n c e , PROOF
P E P(E),
Let
B y lemma
K C E
and l e t
u: E + E
such t h a t
F = u(E)
<
C
for all
Since
O i E F'
such t h a t P(Y) =
y E F.
n
c
C$qY)I
x C E
mi
i=1
Hence
i= 1 for all
be g i v e n .
0
E Pf(E).
Pou
i s f i n i t e dimensional, t h e r e e x i s t
(i=l,.,,,n)
for a l l
>
IP(x)-Pou(x)l
Thus i t s u f f i c e s t o p r o v e t h a t
x E K.
8
3 . 4 t h e r e e x i s t s a c o n t i n u o u s l i n e a r mapping o f
f i n i t e rank
4,
and
and
1.
Pou E P f ( E ) .
I D E A L S O F HOLOMORPHIC GERMS
For
V C E
we l e t
d e n o t e t h e Banach a l g e b r a
#"(V)
o f a l l bounded h o l o m o r p h i c f u n c t i o n s o n t h e supremum.
Then for
of h o l o m o r p h i c germs on
K
c
K,
we define
w i t h t h e norm of
#(K),
t h e space
a s t h e l o c a l l y convex i n d u c t i v e
l i m i t of the Banach a l g e b r a s t h e open n e i g h b o r h o o d s of
E
V,
K.
#"(V)
,
Since
where
E
V
v a r i e s among
i s m e t r i z a b l e , we
571
IDEALS OF HOLOMORPHIC FUNCTIONS ON FRE?CHET SPACES
K.
d e c r e a s i n g f u n d a m e n t a l s e q u e n c e o f open n e i g h b o r h o o d s o f Then p r o p o s i t i o n 2 . 6 y i e l d s t h e f o l l o w i n g ,
4 . 1 PROPOSITION
g(K)
K c E,
F o r any
i s a l o c a l l y m-convex
a l g e b r a and a Q-algebra.
We have a l r e a d y g i v e n a d i r e c t proof t h a t
4.2 REMARK
i s l o c a l l y m-convex;
[ 7 , Th.7.11
see
o r [ 8 , Th.11.
#(K)
On t h e
o t h e r hand, i t i s q u i t e easy t o give a d i r e c t proof t h a t # ( K )
E
i s invertible,
i s a Q - a l g e b r a , as f o l l o w s ,
If
f
then
K,
and t h e r e f o r e t h e r e e x i s t s
E
>
d o e s n o t v a n i s h on
f
such t h a t
0
b = { g
E
> c
If(x)l
# ( K ) : )Ig-fllK
<
#(K)
for all
Then t h e s e t
x E K.
i s a neighborhood of
C)
i n g o n l y o f germs which do n o t v a n i s h on
K.
f
Thus
consistconsists
b
o n l y of i n v e r t i b l e germs. Next w e c h a r a c t e r i z e t h e s p e c t r u m o f p o l y n o m i a l l y convex.
#(K)
I n t h e p r o o f of t h e o r e m
when
K is
4.3 b e l o w a n d
i t s c o r o l l a r y 4.4 w e u s e most o f t h e t o o l s d e v e l o p e d i n s e c t i o n s 2 and 3.
4 . 3 THEOREM
Let
K C E
a complex homomorphism point
E
a
PROOF
K
for all
on
t h e r e e x i s t s a unique
#(K),
T(f) = f(a)
f o r every
f
E #(K).
14,
4 . 1 and c o r o l l a r y 2 . 5 ,
T
continuous.
>
T
T h e n , given
The p r o o f i s b a s e d on i d e a s of I s i d r o ; d e e
a n d Prop.41.
c(V)
such that
b e p o l y n o m i a l l y convex.
0
By p r o p o s i t i o n Hence f o r e a c h
V 3 K
Prop.3
is
t h e r e exi.sts a constant
such t h a t
f E #"(V).
and l e t t i n g
n +
LO
IT(f)l 5 c(v>
IIfllV
Replacing
by
we get t h a t
f
fn,
taking nth root
J. MUJICA
57 2
for all
f
#"(V).
And since
V 3 K
is arbitrary this
implies that
< lIfllK for all
f
E #(K).
restriction of
Thus we get in particular that the
T
compact convergence. p.205,Th.l],
for all
E'
to
is continuous for the topology of
Hence, by the Mackey-Arens Theorem [: 3 , a E E
there exists a unique point
9 E E' ,
generated by
E'
Since
,
Pf(E)
such that
#(K)
is the subalgebra of
it follows that T ( P ) = P(a)
for all dense in
P E Pf(E). P(E)
But since by corollary 3 . 5 ,
P,(E)
is
for the topology of compact convergence, we
get that T(P) = P(a) for all
P E P(E).
But this implies that
*
/)'(TI
= for all
P E P(E)
and therefore
Schottenloher theorem 3 . 2 , each
K
ed uniformly on
a E
lIP/IK
= K.
f E #(K)
Finally, by
can be approximat-
by continuous polynomials on
E.
Thus we
get that
T(f) = f(a) for all
f E #(K).
4.4 COROLLARY
Let
K
C E
be polynomially convex.
Let
573
I D E A L S OF HOLOMORPHIC FUNCTIONS ON FFfE!CHET SPACES
$
be a f a m i l y of germs w i t h o u t common z e r o s i n
c H(K)
Then t h e i d e a l
Thus t h e r e a r e germs such t h a t
Since
f E 3,
ness o f
and
3
equals
g l , . ..,g
#(K).
E #(K) K.
i s c o n t a i n e d i n a maximal i d e a l
8
h
i s c l o s e d , a n d i n view of
4.3,
is the evaluation a t
T
f E h,
Therefore, each
would v a n i s h a t t h e p o i n t
4 . 5 REMARK corollary
then
B y theorem
T.
#(K)
i s t h e k e r n e l of a c o n t i n u o u s complex
h
a E Kr
some p o i n t
fp E
i s a Q-algebra,
#(K)
homomorphism
...,
in
P f p g p = 1 on a neighborhood of
+...+
proposition 2 . 2
each
fl,
8 f #(K)
If
PROOF
h.
flgl
3
g e n e r a t e d by
8
K.
a,
and i n p a r t i c u l a r a contradiction.
It makes no d i f f e r e n c e ' t y h e t h e r t h e f a m i l y
in
3
4.4 i s f i n i t e o r i n f i n i t e , f o r due t o t h e compact-
K,
if
common z e r o s i n
3
i s a n a r b i t r a r y f a m i l y o f germs w i t h no
K,
t h e n t h e r e always e x i s t s a f i n i t e sub-
f a m i l y w i t h t h e same p r o p e r t y .
5 . IDEALS OF IIOLOMORPHIC FUNCTIONS
Let
U C E.
compact s e t
K C U
e x i s t s a constant
A seminorm
i f f o r each c(V)
> 0
p
on V
#(U)
with
such t h a t
The Nachbin t o p o l o g y on
i s p o r t e d by a
K C V C U, p ( f ) 5 c(V) #(U),
there
)IfllV
for
d e n o t e d by
all
f E #(U).
Tu,
i s t h e l o c a l l y convex t o p o l o g y d e f i n e d by a l l s u c h s e m i -
norms.
5-11THEOmM vex a l g e b r a .
F o r any
U C E,
( # ( U ) ,Tu)
i s a l o c a l l y m-con-
J. M U J I C A
574
F o r a p r o o f w e r e f e r t o [ 7 , Th.7.21 a l s o t h e announcement i n [ 6 ] . t h e s p e c t r u m of
Theorem 5 . 2 b e l o w c h a r a c t e r i z e s
when
(#(U),T~)
see
o r [ 8 , Th.21;
u
i s p o l y n o m i a l l y convex.
4.3 and w i l l
The p r o o f i s s i m i l a r t o t h a t o f t h e o r e m
be o m i t -
ted.
Let
5.2 THEOREM
U C E
be p o l y n o m i a l l y convex.
a c o n t i n u o u s complex homomorphism e x i s t s a unique p o i n t f
a
E
T
on
there
(#(U),T~),
such t h a t
U
Then, given
= f(a)
T(f)
for all
E #(U).
5.3 COROLLARY
Let
common z e r o s i n
The p r o o f
PROOF
(#(U),Tu))
g e n e r a t e d by
8
i s s l i g h t l y d i f f e r e n t from t h a t o f c o r o l l a r y
i s not a Q-algebra.
If
w e r e a proper i d e a l ,
then
c o n t a i n e d i n a c l o s e d maximal i d e a l o f p r o p o s i t i o n 2.2.
Thus
! !
f
5.2,
a contradiction.
&!
(#(U),T~).
a E U,
i s not t r u e ,
not even i n f i n i t e dimensional spaces. i n Corollary
gp(U
g cop
E #(C)
= l7- (1 n= p
x
by
-7 ) n
(A E c).
u)
I n other
T h i s example i s a n
a d a p t a t i o n o f a n example o f C a r t a n ; see [ l , p . 6 0 ] . define
f o r (#(u),T
5.3 i s n o t n e c e s s a r i l y
c l o s e d , a s t h e f o l l o w i n g example shows.
p = 1,2,3,...
Hence
by theorem
The e x a c t a n a l o g u e o f c o r o l l a r y 4 . 4
8
of
would b e
5.4 REMARK
words, t h e i d e a l
8
would be c o n t a i n e d i n t h e k e r n e l
would v a n i s h a t a f i x e d p o i n t
all
the closure
( # ( U ) , T ~ ) , by
of a c o n t i n u o u s complex homomorphism on
E
in
3
(#(U),Tu)).
4.4 f o r ( # ( U ) , T ~ ) in
Then t h e i d e a l
U.
i s dense i n
#(U)
be a f a m i l y of f u n c t i o n s w i t h o u t
U C E
For
)
575
IDEALS OF HOLOMORPHIC FUNCTIONS ON F ~ C H E TSPACES
0 E E',
Let
#
@
and define
0,
Thus a0
fp(X) = Each E C
x E E
2 x = n xo
+
y
0. Thus
x = Axo
f
P
fp = gpo@.
by
(x E E).
+
y,
where
= l,X
@(xo)
fp vanishes only at the points
n = p, p+l, p+2,
with
Thus the functions in
n=p
(1
can be written
y E Ker
and
iT
fp E #(E)
(p=1,2,3,.. . )
...
and
y
E Ker
@.
have no common zeros
E, but the functions in any finite subfamily have in-
finitely many common zeros.
Hence the constant function 1
does not belong to the ideal generated by the functions In the example above, the family finite.
is in-
Thus the following problem remains open.
5.5 PROBLEM family
m
f P'
3
Under the hypotheses of corollary 5 . 3 ,
is finite, does it follow that the ideal
generated by
3
equals
if the 8
#(U)?
REFEm NCE S
1. CARTAN, H. Id6aux et modules de functions analytiques de
variables complexes, Bull, SOC. Math. France 78
(1950),
29-64. 2. GUICHARDET,A.
Special topics in topological algebras,
Notes on Mathematics and its Applications, Gordon and Breach, New Y o r k , 1968.
3. HORVATH, J.
Topological vector spaces and distributions,
vol. I, Addison-Wesley, Reading, Massachusetts, 1966.
576
J. MUJICA
4. ISIDRO, J.M.
Characterization of the spectrum o f some
topological algebras of holomorphic functions, these Proceedings,
5. MICHAEL, E.A.
Locally multiplicatively-convex topological
algebras, Memoirs Amer. Math. SOC., number 11, 1952.
6. MUJICA, J.
On the Nachbin topology in spaces of holomor-
phic functions, Bull, Amer. Math, soc. 81 (1975))
904-906.
7.
MUJICA, J.
Spaces of germs of holomorphic functions,
Advances in Math., to appear.
8. MUJICA, J.
Holomorphic germs on infinite dimensional
spaces, Infinite dimensional holomorphy and applicaticns, Notas de MatemGtica, North-Holland, Amsterdam,
1977,
~~.313-321* 9. NACHBIN, L. Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik and ihrer Grenzgebiete, Band
47, Springer 10. NOVERRAZ, Ph.
Verlag, Berlin, 1969.
Pseudo-convexit6, convexit6 polynomiale et
domaines dlholomorphie en dimension infinie, Notas de Matemitica, North-Holland, Amsterdam, 1973. 11. SCHOTTENLOHER, M.
Polynomial approximation on compact
sets, Infinite dimensional holomorphy and applications, Notas de Matemgtica, North-Holland, Amsterdam,
PP. 979-3910 INSTITUTO DE MATEMATICA UNIVERSIDADE ESTADUAL DE CAMPINAS
CAIXA POSTAL 1170 13.100 CAMPINAS, SP BRASIL
1977,