Identities for the E2,1 -transform and their applications

Identities for the E2,1 -transform and their applications

Applied Mathematics and Computation 187 (2007) 1557–1566 www.elsevier.com/locate/amc Identities for the E2;1-transform and their applications David B...

193KB Sizes 0 Downloads 22 Views

Applied Mathematics and Computation 187 (2007) 1557–1566 www.elsevier.com/locate/amc

Identities for the E2;1-transform and their applications David Brown a, Nesße Dernek b, Osman Yu¨rekli a b

a,*

Department of Mathematics, Ithaca College, Ithaca, NY 14850, USA Department of Mathematics, University of Marmara, Istanbul, Turkey

Abstract In the present paper the authors introduce the E2;1 -transform with kernel the exponential integral function. It is shown that the third iterate of the L2 -transform is the exponential integral transform, and some identities involving the new transform, the L2 -transform and the Widder potential transform are given. Using the identities, Parseval–Goldstein type results involving these transforms are proved. Some illustrative examples are also given. Ó 2006 Elsevier Inc. All rights reserved. Keywords: E2;1 -transforms; L2 -transforms; Laplace transforms; Widder potential transform; Stieltjes transforms; Mellin transforms; K-transforms; Hankel transforms; Fourier sine transforms; Parseval–Goldstein type theorems

1. Introduction In this paper, we introduce the E2;1 -transform as Z 1 E2;1 ff ðxÞ; yg ¼ x expðx2 y 2 ÞE1 ðx2 y 2 Þf ðxÞ dx;

ð1:1Þ

0

where E1(x) is the exponential integral function defined as Z 1 xt Z 1 u e e du ¼ dt: E1 ðxÞ ¼ EiðxÞ ¼ u t x 1

ð1:2Þ

The L2 -transform L2 ff ðxÞ; yg ¼

Z

1

x expðx2 y 2 Þf ðxÞ dx;

0

*

Corresponding author. E-mail address: [email protected] (O. Yu¨rekli). URL: http://www.ithaca.edu/osman (O. Yu¨rekli).

0096-3003/$ - see front matter Ó 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2006.09.139

ð1:3Þ

1558

D. Brown et al. / Applied Mathematics and Computation 187 (2007) 1557–1566

is introduced in [12] and the Widder potential transform Z 1 xf ðxÞ dx; Pff ðxÞ; yg ¼ 2 þ y2 x 0

ð1:4Þ

is studied in [6]. It is well known that the second iterate of the L2 -transform is the Widder potential transform; that is, L22 ff ðxÞ; yg ¼ L2 fL2 ff ðxÞ; ug; yg ¼ Pff ðxÞ; yg;

ð1:5Þ

provided that integrals involved converge absolutely, (cf. [12, Eq. (2.1)]). These transforms were studied in [7,8,10,11]. The L2 -transform and the Laplace transform are related by the identity pffiffiffi 1 L2 ff ðxÞ; yg ¼ Lff ð xÞ; y 2 g; 2 in which the Laplace transform is defined as Z 1 Lff ðxÞ; yg ¼ expðxyÞf ðxÞ dx:

ð1:6Þ

ð1:7Þ

0

The Widder potential transform and the Stieltjes transform are related by the identity pffiffiffi 1 Pff ðxÞ; yg ¼ Sff ð xÞ; y 2 g; 2 in which the Stieltjes transform is defined as Z 1 f ðxÞ dx: Sff ðxÞ; yg ¼ x þy 0

ð1:8Þ

ð1:9Þ

In this paper, it is shown that the third iterate of the L2 -transform is a constant multiple of the E2;1 -transform as defined in (1.1). Using the identities, Parseval–Goldstein type theorems relating these integral transforms are proved. As an application of the identities and theorems, some illustrative examples are given. 2. The main theorem In the following lemma, we show that the third iterate of the L2 -transform is essentially the E2;1 -transform. Lemma 1. The identities 1 1 L32 ff ðxÞ; yg ¼ PfL2 ff ðxÞ; ug; yg ¼ L2 fPff ðxÞ; ug; yg; 2 2

ð2:1Þ

1 L32 ff ðxÞ; yg ¼ E2;1 ff ðxÞ; yg; 4

ð2:2Þ

and

hold true, provided that the integrals involved converge absolutely. Proof. The proof of identity (2.1) easily follows from (1.5). In order to prove (2.2), we use (2.1) 1 L32 ff ðxÞ; yg ¼ L2 fPff ðxÞ; ug; yg: 2 Using the definitions of the L2 -transform (1.3) and the Widder potential transform (1.4) we have Z 1  Z 1 1 u2 y 2 xf ðxÞ 3 L2 ff ðxÞ; yg ¼ ue dx du: 2 0 x 2 þ u2 0

ð2:3Þ

ð2:4Þ

D. Brown et al. / Applied Mathematics and Computation 187 (2007) 1557–1566

1559

Changing the order of integration, which is permissible by absolute convergence of the integrals involved, and using definition (1.4) once again, it follows from (2.4) that Z 1  Z Z 1 1 u expðu2 y 2 Þ 1 1 3 L2 ff ðxÞ; yg ¼ xf ðxÞ du dx ¼ xf ðxÞPfexpðu2 y 2 Þ; xg dx: ð2:5Þ 2 0 x 2 þ u2 2 0 0 Utilizing (1.8), the last equation (2.5) can be written as Z 1 1 3 L2 ff ðxÞ; yg ¼ xf ðxÞSfexpðuy 2 Þ; x2 g dx: 4 0

ð2:6Þ

Making use of the formula [2, Entry (11), p. 217] and (1.2) 2

Sfeuy ; x2 g ¼  expðx2 y 2 ÞEiðx2 y 2 Þ ¼ expðx2 y 2 ÞE1 ðx2 y 2 Þ;

ð2:7Þ

where RðyÞ > 0. Now assertion (2.2) follows upon inserting (2.7) into (2.6) and then using definition (1.1) of the E2;1 -transform. h Some illustrations of the identities in Lemma 1 are contained the following examples. Example 2. We show that mp  m 1 p m1 E2;1 fx ; yg ¼ sec C þ y m1 ; 2 2 2 2

ð2:8Þ

where 1 < RðmÞ < 1. Proof. If we set f ðxÞ ¼ xm1

ð2:9Þ

in Lemma 1, and then substitute (2.9) and the formula mp p Pfxm1 ; yg ¼ sec y m1 ; 2 2 where 1 < RðmÞ < 1, (cf. [9, (A1), p. 248]), into identity (2.1) we obtain mp  m 1 p 3 m1 L2 fx ; yg ¼ sec C þ y m1 : 8 2 2 2

ð2:10Þ

ð2:11Þ

Now assertion (2.8) follows when we use (2.11) in (2.2). h The following example contains results involving the error functions. The error function and the complementary error function are defined as Z x 2 ErfðxÞ ¼ pffiffiffi expðt2 Þ dt; ð2:12Þ p 0 and 2 ErfcðxÞ ¼ 1  ErfðxÞ ¼ pffiffiffi p

Z

1

expðt2 Þ dt;

ð2:13Þ

x

respectively. Example 3. We show that     2 p p1=2 a a a exp Erfc E2;1 fsinðaxÞ; yg ¼ 2 1  2y 2y 2y 4y 2

ð2:14Þ

and E2;1

cosðaxÞ ;y x



   2 p3=2 a a ¼ exp  Erfc 2 2y 2y 4y

ð2:15Þ

1560

D. Brown et al. / Applied Mathematics and Computation 187 (2007) 1557–1566

Proof. We set f ðxÞ ¼ sinðaxÞ

ð2:16Þ

in Lemma 1. Using the formula p PfsinðaxÞ; ug ¼ expðauÞ; ð2:17Þ 2 (cf. [9, (A3), p. 248]), then applying the L2 -transform to both sides of (2.17), we obtain p L2 fPfsinðaxÞ; ug; yg ¼ L2 fexpðauÞ; yg: ð2:18Þ 2 Using identity (1.6) on the right-hand side of (2.18), we get p L2 fPfsinðaxÞ; ug; yg ¼ Lfexpðau1=2 Þ; y 2 g: ð2:19Þ 4 Substituting (2.16) and (2.18) to identity (2.1) of Lemma 1 then using the formula [1, Entry (31), p. 146] we deduce     2 p p1=2 a a a 3 exp : ð2:20Þ L2 fsinðaxÞ; yg ¼ 2 1  Erfc 8y 2y 3 2y 4y 2 Now assertion (2.14) follows when we use relationship (2.2) of Lemma 1 in (2.20). The proof of assertion (2.15) is similar. We set f ðxÞ ¼

cosðaxÞ x

ð2:21Þ

in Lemma 1 and make use of the formulas [2, Entry (55), p. 221] and [1, Entry (33), p. 147]. h In the next example we evaluate the E2;1 -transform of the Bessel function of the first kind Jm(x) defined as m 1 x mþ2m X ð1Þ : ð2:22Þ J m ðxÞ ¼ m!Cðm þ m þ 1Þ 2 m¼0 Example 4. We show that E2;1 fxm J m ðaxÞ; yg ¼

 2   am Cðm þ 1Þ a a2 exp C m; ; 4y 2 4y 2 2mþ1 y 2mþ2

ð2:23Þ

where RðmÞ > 1. Proof. We set f ðxÞ ¼ xm J m ðaxÞ

ð2:24Þ

in Lemma 1. Using the formula Pfxm J m ðaxÞ; ug ¼ um K m ðauÞ;

ð2:25Þ

(cf. [9, (A8), p. 249]), then applying the L2 -transform to both sides of (2.25), we obtain L2 fPfxm J m ðaxÞ; ug; yg ¼ L2 fum K m ðauÞ; yg;

ð2:26Þ

where Km(x) is the Macdonald function. It is defined as K m ðxÞ ¼

p I m ðxÞ  I m ðxÞ ; 2 sinðmpÞ

in which Im(x) is the modified Bessel function defined as 1 x mþ2m X ð1Þm : I m ðxÞ ¼ m!Cðm þ m þ 1Þ 2 m¼0

ð2:27Þ

ð2:28Þ

D. Brown et al. / Applied Mathematics and Computation 187 (2007) 1557–1566

1561

Using identity (1.6) in the right-hand side of (2.26), we get 1 L2 fPfxm J m ðaxÞ; ug; yg ¼ Lfum=2 K m ðax1=2 Þ; y 2 g; ð2:29Þ 2 Substituting (2.24) and (2.26) to identity (2.1) of Lemma 1 then using the formula [1, Entry (36), p. 199], we deduce  2   am Cðm þ 1Þ a a2 L32 fxm J m ðaxÞ; yg ¼ mþ3 exp C m; ; ð2:30Þ 4y 2 4y 2 2 y 2mþ2 where RðmÞ > 1. Now assertion (2.23) follows when we use relationship (2.2) of Lemma 1 in (2.30).

h

We now state our main result. Theorem 5. The Parseval–Goldstein type relations Z Z 1 1 1 yL2 ff ðxÞ; ygPfgðuÞ; yg dy ¼ xf ðxÞE2;1 fgðuÞ; xg dx 2 0 0 and

Z 0

1

1 yL2 ff ðxÞ; ygPfgðuÞ; yg dy ¼ 2

Z

ð2:31Þ

1

ugðuÞE2;1 ff ðxÞ; ug du

ð2:32Þ

0

hold true, provided that the integrals involved converge absolutely. Proof. We only give the proof of (2.31), as the proof of (2.32) is similar. From definition (1.3) of the L2 transform, we obtain Z 1  Z 1 Z 1 yL2 ff ðxÞ; ygPfgðuÞ; yg dy ¼ yPfgðuÞ; yg x expðx2 y 2 Þf ðxÞ dx dy: ð2:33Þ 0

0

0

Changing the order of integration, which is permissible by absolute convergence of the integrals involved, we find from (2.33) that Z 1  Z 1 Z 1 yL2 ff ðxÞ; ygPfgðuÞ; yg dy ¼ xf ðxÞ y expðx2 y 2 ÞPfgðuÞ; yg dy dx: ð2:34Þ 0

0

Now assertion (2.31) follows from (2.1) and (2.2).

0

h

3. Useful corollaries Interesting consequences of the main theorem will be given in this section. Useful Parseval-type identities for the L2 -transform and the Widder potential transform are contained in Corollary 6. If the integrals involved converge absolutely, then we have  Z 1 Z 1 1 mþ1 f ðxÞ y m L2 ff ðxÞ; yg dy ¼ C dx; 2 2 xm 0 0 where RðmÞ > 1, Z 1 mp Z 1 gðuÞ PfgðuÞ; y g p sec dy ¼ du; ym 2 2 um 0 0 where 1 < RðmÞ < 1, and  Z 1 Z 1 Pff ðxÞ; yg 1 m  dy ¼ C y m L2 ff ðxÞ; yg dy; ym 2 2 0 0 where RðmÞ < 1.

ð3:1Þ

ð3:2Þ

ð3:3Þ

1562

D. Brown et al. / Applied Mathematics and Computation 187 (2007) 1557–1566

Proof. We set gðuÞ ¼ um1

ð3:4Þ

in relation (2.31) of Theorem 5, then use (3.4), (2.8), and (2.10) in the Parseval–Goldstein identity (2.31). Similarly, we put f ðxÞ ¼ xm1

ð3:5Þ

in relation (2.32) of Theorem 5, then use (3.2), (2.8), (1.6), and the identity     pm 1 m 1 m C þ C  ¼ p sec 2 2 2 2 2 for the gamma function in the Parseval–Goldstein identity (2.32).

ð3:6Þ

h

Remark 7. The Mellin transform is defined as Z 1 Mff ðxÞ; yg ¼ xy1 f ðxÞ dx:

ð3:7Þ

0

If we use the definition above, then the relationships in Corollary 6 can be expressed as   1 mþ1 MfL2 ff ðxÞ; yg; m þ 1g ¼ C Mff ðxÞ; m þ 1g; 2 2 where RðmÞ > 1, MfPfgðuÞ; yg; m þ 1g ¼

mp p sec MfgðuÞ; m þ 1g; 2 2

ð3:8Þ

ð3:9Þ

where 1 < RðmÞ < 1, and

  1 m MfPff ðxÞ; yg; m þ 1g ¼ C  MfL2 ff ðxÞ; yg; m þ 1g; 2 2

ð3:10Þ

where RðmÞ > 1. More useful Parseval-type identities for the L2 -transform, the Widder potential transform and the E2;1 -transform are contained in Corollary 8. If the integrals involved converge absolutely, then we have  Z 1 Z 1 m 1 PfgðuÞ; yg xm E2;1 fgðuÞ; xg dx ¼ C þ dy; 2 2 0 ym 0 where RðmÞ > 1, and Z 1 mp Z 1 um E2;1 ff ðxÞ; ug du ¼ p sec y m L2 ff ðxÞ; yg dy; 2 0 0 where 1 < RðmÞ < 1, Z 1 mp  m 1 Z 1 f ðxÞ p m u E2;1 ff ðxÞ; ug du ¼ sec dx; C þ 2 2 2 2 0 xm 0

ð3:11Þ

ð3:12Þ

ð3:13Þ

where 1 < RðmÞ < 1. Proof. Setting f ðxÞ ¼ xm1

ð3:14Þ

in relation (2.31) and gðuÞ ¼ um1

ð3:15Þ

D. Brown et al. / Applied Mathematics and Computation 187 (2007) 1557–1566

1563

in relation (2.32), then using relationship (1.6), we obtain assertions (3.11) and (3.12). Assertion (3.13) is obtained when we combine (3.1) and (3.12). h Remark 9. Using the definition of the Mellin transform given in (3.7), the relationships in Corollary 8 can be expressed as   mþ1 MfE2;1 fgðuÞ; xg; m þ 1g ¼ C MfPfgðuÞ; yg; m þ 1g; ð3:16Þ 2 where RðmÞ > 1, MfE2;1 ff ðxÞ; ug; m þ 1g ¼ p sec

mp 2

MfL2 ff ðxÞ; yg; m þ 1g;

ð3:17Þ

where 1 < RðmÞ < 1, and mp 1 m MfE2;1 ff ðxÞ; ug; m þ 1g ¼ p sec C þ Mff ðxÞ; m þ 1g; 2 2 2

ð3:18Þ

where 1 < RðmÞ < 1. In the following corollary, a Parseval–Goldstein type identity is given. The identity relates the L2 -transform, E2;1 -transform, the Bessel function of the first kind Jm(x) and the modified Bessel function of the second kind Km(x) as defined in (2.22) and (2.27), respectively. Corollary 10. We have Z Z 1 1 1 mþ1 y mþ1 K m ðzyÞL2 ff ðxÞ; yg dy ¼ u J m ðzuÞE2;1 ff ðxÞ; ug du 2 0 0

ð3:19Þ

provided that the integrals involved converge absolutely, RðmÞ > 1=2, and Re(z) > 0. Proof. We set gðuÞ ¼ um J m ðzuÞ

ð3:20Þ

in Theorem 5, then use (3.20) and (2.25) in the Parseval–Goldstein type relationship (2.32), we obtain assertion (3.19). h Remark 11. If we recall the definitions of the Hankel-transform Z 1 pffiffiffiffiffi Hm ff ðxÞ; yg ¼ xy J m ðxyÞf ðxÞ dx;

ð3:21Þ

0

where Jm(x) is the Bessel function of the first kind as defined in (2.22) and the K-transform Z 1 pffiffiffiffiffi Km ff ðxÞ; yg ¼ xy K m ðxyÞf ðxÞ dx;

ð3:22Þ

0

where Km(x) is the modified Bessel function of the second kind as defined in (2.27), we obtain the following identity involving the Hankel transform, the K-transform, the L2 -transform, and the E2;1 -transform n 1 o 1 n 1 o Km y mþ2 L2 ff ðxÞ; yg; z ¼ Hm umþ2 E2;1 ff ðxÞ; ug; z : ð3:23Þ 2 Remark 12. If we recall the definition of the Fourier sine transform Fs ff ðxÞ; yg ¼

Z 0

1

sinðxyÞf ðxÞ dx;

ð3:24Þ

1564

D. Brown et al. / Applied Mathematics and Computation 187 (2007) 1557–1566

and the special cases of the Bessel function of the first kind (2.22) and the K-transform rffiffiffiffiffi rffiffiffiffiffi 2 2 expðxÞ and K 1=2 ðxÞ ¼ sinðxÞ; J 1=2 ðxÞ ¼ px px respectively, then identity (3.18) takes the form n 1 o 1 n 1 o L y mþ2 L2 ff ðxÞ; yg; z ¼ Fs umþ2 E2;1 ff ðxÞ; ug; z : 2

ð3:25Þ

ð3:26Þ

4. Illustrative examples An illustration of the Parseval–Goldstein type relation (3.1) of Corollary 6 is given in the following example. Example 13. We have Z 1 pl al l C y l1 expða2 y 2 ÞErfcðayÞ dy ¼ sec ; 2 2 2 0

ð4:1Þ

where 0 < RðlÞ < 1. Proof. We set 1 f ðxÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi x2 þ a2

ð4:2Þ

in relation (3.2) of Corollary 6, then using relation (1.6) and the formula [1, Entry 18, p. 135], we have o pffiffiffi p 1 n 2 1=2 2 expða2 y 2 ÞErfcðayÞ: ;y ¼ ð4:3Þ L2 ff ðxÞ; yg ¼ L ðx þ a Þ 2y 2 Substituting (4.2) and (4.3) into (3.2) of Corollary 6, we find  Z 1 Z 1 1 l 1 xl pffiffiffiffiffiffiffiffiffiffiffiffiffiffi dx: þ y l1 expða2 y 2 ÞErfcðayÞ dy ¼ pffiffiffi C 2 2 0 p x 2 þ a2 0 The integral on the right-hand side has the value (cf. [3, Eq. (2), p. 171], and [5, Eq. (29), p. 163])   Z 1 xl al 1l l pffiffiffiffiffiffiffiffiffiffiffiffiffiffi dx ¼ ; ; B 2 2 2 x 2 þ a2 0

ð4:4Þ

ð4:5Þ

where B(x, y) is the beta function and it is defined as Bðx; yÞ ¼

CðxÞCðyÞ  Cðx þ yÞ

If we use definition (4.6) of the beta function, then (4.4) simplifies to     Z 1 al 1 l l 1 l þ C C  y l1 expða2 y 2 ÞErfcðayÞ dy ¼ C : 2 2 2 2 2 2p 0

ð4:6Þ

ð4:7Þ

Using formula (3.6) for the C-function on the right-hand side of (4.7), we obtain assertion (4.1). h Remark 14. The formula    2 Z 1 l pl x x xl1 exp sec Erfc pffiffiffi dx ¼ 2ðl=2Þ1 C 2 2 2 2 0 pffiffiffi from [1, Entry (9), p. 325] is obtained when we set a ¼ 1= 2 in result (4.1) of Example 13.

ð4:8Þ

D. Brown et al. / Applied Mathematics and Computation 187 (2007) 1557–1566

1565

Example 15. We have   Z 1 pm p mþ2k1 1  2k  m 1 2km 2 2 2 2 y expða y ÞCðk; a y Þ dy ¼ a ½Cð1  kÞ C sec ; 2 2 2 0

ð4:9Þ

where 1 < RðmÞ < 1, RðkÞ < 1, and Rð2k þ mÞ < 1. Proof. We set gðuÞ ¼ u2k expða2 u2 Þ

ð4:10Þ

in relation (3.2) of Corollary 6, then using relation (1.4) and the formula [2, Entry (17), p. 217], we have Cð1  kÞ 2k 1 y expða2 y 2 ÞCðk; a2 y 2 Þ: PfgðuÞ; yg ¼ S uk expða2 uÞ; y 2 ¼ 2 2

ð4:11Þ

Substituting (4.10) and (4.11) into (3.2) of Corollary 6, we find Z 1 mp Z 1 p 2km 2 2 2 2 sec y expða y ÞCðk; a y Þ dy ¼ u2km expða2 u2 Þ du: Cð1  kÞ 2 0 0

ð4:12Þ

Using definition (1.3) of the L2 -transform and (1.6), the integral on the right-hand side has the value   1 1 1  2k  m 2kþm1 2km1 ð2km1Þ=2 2 L2 fu ; yg ¼ Lfu ;y g ¼ C : ð4:13Þ y 2 2 2 Assertion (4.9) follows upon substituting (4.13) into (4.12). h Remark 16. Setting k = 1/2, m = l in (4.9) and using   pffiffiffi 1 C ; a2 y 2 ¼ p ErfcðayÞ 2

ð4:14Þ

we obtain result (4.1) of Example 13. Example 17. We have   Z 1 am 1 m m1 2 2 p ffiffiffi y expða y ÞErfcðayÞ dy ¼ m C  CðmÞ; 2 2 2 p 0

ð4:15Þ

where 0 < RðmÞ < 1. Proof. We set f ðxÞ ¼

cosðaxÞ x

ð4:16Þ

in relation (3.13) of Corollary 8, and upon using identity (2.15) and the definition of the Mellin transform (3.7), we have

   2 Z 1 lp l 1 cosðaxÞ p3=2 a a p sec þ ; l : ð4:17Þ exp yl dy ¼ C M Erfc 2y 2 2 2 2 x 2y 4y 2 0 Simplifying and using the formula [1, Entry (21), p. 319] yields      2 Z 1 a a al l 1 p ffiffiffi þ C y l1 exp dy ¼ CðlÞ; Erfc 2y 2 2 4y 2 p 0 where 1 < RðlÞ < 0. Making the substitutions m = l and x = 1/2y, we obtain assertion (4.15).

ð4:18Þ h

1566

D. Brown et al. / Applied Mathematics and Computation 187 (2007) 1557–1566

Remark 18. Setting l = 2z and combining the results of Examples 13 and 17, we have a derivation of the wellknown identity pffiffiffi 22z1 CðzÞCðz þ 1=2Þ ¼ pCð2zÞ ð4:19Þ (cf. [4, p. 3]). We conclude that many other infinite integrals can be evaluated in this manner by applying the lemma, the theorem and its corollaries considered here. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

A. Erdelyi et al., Tables of Integral Transforms, vol. 1, McGraw-Hill Book Company, 1954. A. Erdelyi et al., Tables of Integral Transforms, vol. 2, McGraw-Hill Book Company, 1954. M.L. Glasser, Some Bessel function integrals, Kyungpook Math. J. 13 (1973) 171–174. N. Lebedev, Special Functions and their Applications, Prentice-Hall, 1965. H.M. Srivastava, O. Yu¨rekli, A theorem on Stieltjes-type integral transform and its applications, Complex Var. Theory Appl. 28 (1995) 159–168. D.V. Widder, A transform related to the Poisson integral for a half-plane, Duke Math. J. 33 (1966) 355–362. S. Wilson, O. Yu¨rekli, A new method of solving Bessel’s differential equation using the L2 -transform, Appl. Math. Comput. 130 (2002) 587–591. S. Wilson, O. Yu¨rekli, A new method of solving Hermite’s differential equation using the L2 -transform, Appl. Math. Comput. 145 (2003) 495–500. O. Yu¨rekli, A Parseval-type theorem applied to certain integral transforms, IMA J. Appl. Math. 42 (1989) 241–249. O. Yu¨rekli, New identities Involving the Laplace and the L2 -transforms, Appl. Math. Comput. 99 (1999) 141–151. O. Yu¨rekli, Theorems on L2 -transforms and its applications, Complex Var. Theory Appl. 38 (1999) 95–107. O. Yu¨rekli, I. Sadek, A Parseval–Goldstein type theorem on the Widder potential transform and its applications, Int. J. Math. Math. Sci. 14 (1991) 517–524.