111. HOPF BIFURCATION I N R 2 .
1. Standard Hopf b i f u r c a t i o n .
L e t us consider a map
that
0
F
i n B2
)L
i s a fixed point of
F
)I
, where
and t h a t
p
i s a r e a l parameter, such
D F (0) = A
X P
following assumption. H.l.
ho#+l
-
has two conjugated eigenvalues
.A
and
Xo
s a t i s f i e s the
w
xo
, with
, we assume t h e so-called Hopf-condition: l e t h ( p ) ,
eigenvalues of and a r e
=1 ,
.
To be sure t h a t some eigenvalues escape from t h e u n i t d i s c when 0
lXol
A
P
for
whenever
p
near
0
, such
h(0)
be the
x(p)
= k
0
crosses
.
They e x i s t
from the c l a s s i c a l perturbation theory 1191.
F
is
C2
W e can w r i t e , if F
is
c2 near
C1
that
p
Then, we assume
o
:
and define
W e can choose a b a s i s
*
i n R2
*For t h i s , we choose the b a s i s
such t h a t
{Xr,Xi] 27
where
F
P
j
written as:
A (X + i Xi) = x(p) (Xi + iXi)
i
~
r
.
B i f u r c a t i o n of Maps a n d A p p l i c a t i o n s
28
where
We i d e n t i f y B2 and
z
by s e t t i n g
C
a s independent v a r i a b l e s .
r
LemL.
The map
F
F
i s of c l a s s
assumptions H.l, H.2 hold, and t h a t k-4
exists a
:C
C
-t
i s now
F
Ck
An
0
#
, k 2 5 near
1 for
0
,
that the
n=1,2,3,4
.
Then t h e r e
p-dependent change of coordinates, such t h a t i n t h e new
C
coordinates
P
has t h e form
Fpb)
(5)
with
R'
5
can make
where
+ i y and considering z and
Canonical form.
Let us assume t h a t
Proof.
P
z =x
of c l a s s p(p) = 0
Ck-5
,
and
z = r e2 i q
.
Let us w r i t e
AG(p,z)
can w r i t e
is homogeneous of degree
4. i n
(2,;)
, G
= 2,3,4
.
We
,
2
Hopf b i f u r c a t i o n i n iR
.
W e make t h e change of coordinate i n
C
:
i s homogeneous of degree
C
in
where
5
are
P9
y&(p,z)
P
(7)
by s o l v i n g
(8)
z =
for
p
near
(2,;)
, G2
2
; we w r i t e
satisfies:
t h e new map F'
z'
Ck-&
0
and t h e
29
-
2'
:
.
y i ( p , z ' ) + O(/Z'IG+l)
This l e a d s t o F P' ( z ' ) = FiL (z')
(9)
Let us t a k e
,
&=2
A;(I.L,z')
- k(p)yt(p,z')
+Y&[P,A
the new q u a d r a t i c terms are
= A2(W')
- h(P)Y2(C1>Z1)
+
Y2[P,A(W)Z'1
,
that i s t o say f o r t h e new c o e f f i c i e n t s :
Kpq 1
(10) Now, because near
0
:k
#
-
-
Ipq
1 for
, such t h a t
5'
Pq
-
(A-APX9Y
Pq
n = 1 and (p) = 0
:
3
, we can choose Yps€
Ck-2
for p
30
Bifurcation of Maps and Applications
Ypq(P)
(11)
=
(Id
5
!dxq( p)
h( d -AP(
( t h e denominator i s never
A f t e r t h i s change of v a r i a b l e s (7) with
terms of order > 2
, we
spq(p)
previous change of v a r i a b l e s .
rd
=
# 1
4,=4
3
, are
Ckm3
Then, because
even a f t e r t h e
A:
#
A'(p,z)
3
1 for
Fpq(p)
,
order, we make another change of v a r i a b l e s
remarking t h a t
4 (modified by t h e previous changes).
. .
5,,
(14) a r e now Ck-4 f o r Pq We can again choose t h e
5
We can choose
Y~~ , Y~~ ,. Y~~ , y13
yPs
yO4 a s (11) if
Hence t h e lemma i s proved.
i s defined by ( 5 ) as a f u n c t i o n of t h e c o e f f i c i e n t s
Exercise 1. If a ( p )
where
.
p+q = 3
After t h i s change of 3-
a s (11) f o r
A;
=
as (11) f o r yj0 , Y= , ya3 . For yPs t h e denominator i n (11) vanishes f o r p = 0 and we cannot suppress t h i s
of t h e form (7) w i t h
+q
, p +q
$=3
4 , we can choose
and
term.
p
has modified t h e
We obtain f o r t h e c o e f f i c i e n t s of
t h e same equations (10) with
yP1
)
can make another change of v a r i a b l e s (7) w i t h
L e t us remark t h a t t h e new
n = 2
, which
L=2
0
Show t h a t
= 5pq(0)
.
Let us now write our map F 2incp
z = r e
,
~
~
P
(
i n polar coordinates:
=2 R ) e
2irrl
.
Hopf bifurcation in W
2
31
where
a:
=
-Re ( a ( o ) X o )
Let us assume t h a t
a: f 0
.
Then the map
Fo
i n p o l a r coordinates, t a k e s
t h e form
2 4 R = r ( l -ar ) + O ( r )
* = c p + ~ ~ + O2() r
and if
a: >
0
, t h e o r i g i n i s asymptotically s t a b l e , rhereas
if
a: <
0 th
o r i g i n i s unstable. We assume now
H.3
a >
0
3
and we change coordinates t o o b t a i n t h e p r i n c i p a l p a r t of t h e i n v a r i a n t closed curve of t h e map (14) :
32
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
X1 and
Ipl
are
, where
[ -1,1]x Tlx [ 0,6) means t h a t
Ck-5
X1 and
@,
are
with respect t o
T I = Xl,hZ,
x = u(tp,p)
form
for
cpE T1
and
p
i n t h e domain
i s t h e one dimensional t o r u s , which
1-periodic i n
We now want t o show t h a t t h e map
'I2)
(x,q,p
tp
.
(17) has a n i n v a r i a n t manifold of t h e small enough.
I n t h e case when
we can make t h e s i m i l a r change of coordinates
I n t h i s case we have
where
<
0
.
Let us prove t h e following. ~~
(X)
See a t paragraph
~
8 t h e proof t h a t any i n v a r i a n t b i f u r c a t e d closed curve
l i e s in t h e annulus 1x1 4 1 .
Hopf b i f u r c a t i o n i n W
2
33
Theorem 1.
L e t us assume
t o be of class
F
H.l , H.2 hold w i t h
assumptions
holds ( s o t h a t
0
f o r t h e map
i n R2
=
H.3'
, b i f u r c a t i n g from 0
holds (so t h a t
neighborhood of t h e map
For
p
F
P
>
0
p = 0
1,2,3,4
.
Then, i f
H.3
) , there exists a right
p = 0
exchange of t h e s t a b i l i t i e s of t h e f i x e d p o i n t If
, k 2 6 , and t h e
0
, i n which t h e r e i s a n i n v a r i a n t a t t r a c t i v e c i r c l e
p = 0
k
near
:k f 1 , n
is attractive for
neighborhood of F
Ck
i s repelling f o r
0
.
I n t h i s case t h e r e i s a n
0 and t h e i n v a r i a n t c i r c l e . p = 0
) , there exists a l e f t
, i n which t h e r e i s a n i n v a r i a n t r e p e l l i n g c i r c l e f o r
, b i f u r c a t i n g from t h e f i x e d point t h e f i x e d point
0
0 which i s s t a b l e t h e r e .
i s unstable.
Moreover, i n a s u i t a b l e system of coordinates corresponding t o t h e normal form, t h e i n v a r i a n t c i r c l e can be expressed a s :
I
with
and
E
small enough
(6. J
>
o
,j
= 1,2)
.
Remark 1. Except f o r t h e r e g u l a r i t y r e s u l t i n
p
, t h i s theorem
was proved
independently by R . J . SACKER [28] and by D . RUELLE and F. TAKENS 1271 Remark 2.
The case
0
= 0
, will be s t u d i e d
i n theorem 2.
a
34
B i f u r c a t i o n of Maps and Applications
Proof of Theorem 1. lSts t e p : we assume f3
, and a > 0 , and just prove t h e e x i s t e n c e of t h e i n v a r i a n t c i r c l e
= 0
yIL
.
After t h e change of v a r i a b l e s (16), our map t a k e s t h e form X = (1-2pRe kl)x + p3'2X
where
k z # 1 , s o t h a t we may t a k e
XI and
1
(x,(p,p)
*1E $ - 5 J
Let us consider t h e following complete metric space
with , d i s t ( u , u ' ) = l/u-u'I/ = sup lu(cp) -u'(cp)I
.
cpE T1 Let us s t a r t from uE U x = u(q)
that i f
we have
.
X =
We then show t h a t we can define
G(Q) .
Thus we w i l l have a map
and we will show t h a t it i s a s t r i c t c o n t r a c t i o n i n
a unique s o l u t i o n gives X1
*
X = u (0)
and
us d e f i n e
*
u
.
Il i n C 0 ' l
in U
*
of u = $u*)
U
(x,cp)
9: U+U
,
, so that there exists
*
, which means t h a t x = u (cp)
We f i r s t do the proof f o r a f i x e d with r e s p e c t t o
;I€U such
p
>
0
, and assume
, uniformly i n s m a l l
p : let
Hopf b i f u r c a t i o n in W L
35
which means
and t h e same for
@l
*
Let us w r i t e
tu
and show t h a t For
_>
cp
,
cp'
i s a b i l i p s c h i t z -homeomorphism of
if we consider t h e map
<
1
Iu(cp+l) = fiU(cp) + 1
.
We assume
that
2p>/2
@il($+1)
=
*;I(;)
.
Then
1Pu
iPu
in W
T1 onto T1
( i n s t e a d of
T
1
i s s t r i c t l y increasing i n R
This leads t o the e x i s t e n c e of
4-l :R + R
u
,
),
, and such
+I , and
(21)
Hence we can reconsider
@,
&I€
T1
NOW
.
4-l on U
T1 , which a l s o s a t i s f i e s (21) , f o r
Bifurcation of Maps and Applications
36
defines a function X =
for
p
6(+) ,
where
u :T A
1
-t
R
.
16(*)1 5 1 - 2pRe hl
5
+ PP3/2
small enough
5 I@1-@21 if
(l-;-1pite hl + 2 p d 2 ) ( 1 - 2 p p
small enough.
Hence
6€U
.
'I2) -'<- 1
vj We have
-1 = iPu 0) j
*
r e a l i z e d if
We then have defined a map 3 : uH
Let us show t h a t it i s a c o n t r a c t i o n :
where
, which i s
6
p
in
is U
.
1
Hopf b i f u r c a t i o n i n W
enough.
*
3: u
2
37
We can conclude the existence of.a unique fixed point i n =
U
for
.
Z(U*)
2nd = s t e p : Regularity r e s u l t . Now, l e t us assume uniformly i n
X1 and
.
pE ( 0 , 8 )
the sup i s taken f o r a l l
in
CL71
We again define pE ( 0 , s )
, 1x1 5
with r e s p e c t t o
(x,cp)
P=s~p(llX~il~,~,IlS~ll,,~ , where 1 . 1 , cpE T
The new function space i s now: UL = cu : T l X R + R ; l!ull.e,l with
)t
dist(u,u') =
sup 'pE T1
5 13
lu(cp,p) -u'(cp,p)I
.
We want t o see t h a t t h e
ii.E (P11P2)
map
3: u w
in
UL
and
Q
defined before f o r
uniformly i n
>
pLE (pl,p2f
*This
small enough, i s i n f a c t a contraction
where
p1 = h16
,
p2 = h 2 c
0 small enough.
I n f a c t , we have f o r
where
p
-1 cp = Iu (cp)
-___---
cp
_> cp'
leads t o
metric space i s complete because of t h e Ascoli theorem.
with
h2 > h1 > 0
38
Bifurcation of Maps and Applications
Let us show t h a t
I;(*)
u,
GE
I -< 1-2C
if uE UL
:
- 1 for c small enough <
61ReA1+ 0(P3/‘)
D G ( # ) = (1-2p62ehl)Du. Dr;1+$/2[DlXl.Ilu
(25)
D2G(*) = ( 1 - 2 p 0 e A l ) [ D 2 ~ ( D I ; 1 ) 2 + D u . D
-
2..
\ID u / \ ~5 , 1~ 26
then
fjl
u,
, uniformly
U ,
for
c
PE (pl, p2)
y
uE 2
Re A1 + O ( C ~ / ~ < ) 1 for
It i s now easy t o see t h a t f o r
GE
+D2X1]D@U -1
~~D~~5 \ o1 , l- 2 c 61Rei1 + O ( C ~ / < ~ )1 f o r
then
NOW,
and
small enough.
c
1
] + O(E‘/*)
uE
small enough, and
.
.
9 : UHG
y
and
UE U,
E
,
small enough.
we have
i s a contraction i n
, because we saw i n ( 2 3 ) t h a t
(26) Then, because of t h e completeness of the space, t h e r e i s a unique f i x e d point
u
*
*
, the convergence of the i t e r a t i v e process being uniform i n
= S(u )
PE (P14*)
a
Hence, i f in
CL,l
p”
X1( , a
0
a s functions of
fixed point
* u
such t h a t
,
and
p)
(x,cp) pH
al( , by
* u (*,p)
For more r e g u l a r i t y , l e t us assume t h a t to
(x,cp,T)
where we note
7
= Afor
*, *
,p) a r e continuous, taking values
the uniform convergence, we have a i s continous, taking values i n
X1 and commodity.
are
CL’l
We l o o k f o r
(J,
with respect
-
Hopf b i f u r c a t i o n in W !I?Y [ 11,$1 ;R)
uE C"'(
, where 'dl = (
2
39
~ 6 ~ )
enough. For i n s t a n c e , l e t us consider t h e f u n c t i o n space
l€ (0,fj1I2) , xE We a l r e a d y know t h a t f o r
.
1
[-1,1], cpE T
uE U;
, and
G
small enough, we have
GE
\b .
Now we e a s i l y o b t a i n
ac
-(@,TI)
(27) where
a7
cp
= 1 1-2v2&e hl + 0($)1ii$(cp,~
i s expressed a s a f u n c t i o n of
function of
au (u,- cp,T)) acp'
.
Moreover (25) g i v e s us
For
u€
'J1
('3,v)
+
by
aU
function of ( u 9 z , c p , ~ )
(19) and
we can show t h a t
O(3)
is a
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
40
and (27) leads t o
K1 , K2 u
i n (28) and (29) a r e constants which remain bounded f o r
(instead o f
i n U1
on M o
O(E 3'2)
and
O ( e3'2)
U; ) , whereas K' and
i n (30) depend a l s o
.
Now, l e t us f i r s t take
1+2etj1&le al+o(G 3/2)
e
small enough such a s t h e c o e f f i c i e n t s
i n (28) and (29) are
<
1
.
Then t h e r e e x i s t s
Mo
l a r g e enough such t h a t (28) and ( 2 9 ) gives
Mo
being fixed, we can now choose
-
1 2 e ?j1Re
Now
A1+
O(e3/*)
, perhaps smaller, so t h a t
< 1 i n (30) , and
5
l a r g e enough t o have
6E U'
1 '
The map u
-t
6
U;
topology i n
i s a contraction i n
.
*
U; , by
( 2 6 ) , i f we choose t h e
Co
This space i s complete, hence t h i s ensures t h e existence
of a unique fixed point i n
(34)
E
u = Z(U*)
*
:
Hopf b i f u r c a t i o n i n lR2
For
L
>1
)
Ip ,
pi
constants
and Iv$
)
.
< pl
progressive a s f o r
! a2 ~ IM,l
a"; a$a$
we use an equation s i m i l a r t o (27) f o r
where t h e non-written terms a r e f u n c t i o n of lp'l
41
5
ap'u P; P;
.
For i n s t a n c e f o r
.
9 1
with
av acp
4, = 2
, we f i r s t know t h a t
We w i l l f i n d s u c c e s s i v e l y t h e L i p s c h i t z
, M4 such t h a t :
This gives t h e r e s u l t of theorem 1, f o r a k F cC
s t a b i l i t y r e s u l t , because i f
>
0
, hz #
, k 2 6 , we
1
, except t h e
know t h a t
Moreover, we can a l s o s a y t h a t p-
,
(X1(*;,p)
hence continuous i n
k-6,l
C
3
The choice of t h e constants i n t h e f u n c t i o n space i s
L = 1
I$! a'
u,...
, P l > l
@l(*,s,p,))
.
is
Co
taking values i n
Let us remark t h a t
Ckm5
,
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
42
3rd-steg.
a >
Stability result for
, h50 # 1
0
.
We have a l r e a d y proved more than t h e s t a b i l i t y of t h e i n v a r i a n t c i r c l e of
F
.
P
x = u(cp)
I n f a c t , we have shown t h a t i f
i t e r a t i n g t h e map, we f i n d that t h e manifold
*
uniformly t o t h e graph of that
lxol
5 1 , we
I
i n f lxn- u (cp) CppE T1
F
P
i n R2
.
1
Gn(cp); cpE T
Hence f o r a s t a r t i n g p o i n t x = xo
xo
u
as
tends
,
in
(p,
such
Uo
.
.
, kz # 1
We have t h e system (17') with the map
, then,
Uo
, and t h e s t a b i l i t y i s proved.
0
-+
n+
Case a < o
bth-step.
{xn =
can consider the constant
3+
Hence
.
u
is i n
,
@(o)= 0
Let us consider
F
-1 !J
< 0 , which r e p r e s e n t s
p
which i s of t h e form:
3 9
a >0 ,
We can do e x a c t l y what we d i d i n t h e case for
< 0 ($e Al> 0)
.
p
>
CL
t h a t t h i s i n v a r i a n t c i r c l e i n r e p e l l i n g for
O(p)
vo .
,
Po
w
P
I n any t u b u l a r neighborhood of
0
-+
n+
m
y
P
of
.
Po?\
(x1 9 ~ 1 )i n
dist(F-"(xl,cpl),YP)
F
.
But, t h i s means
I n f a c t l e t us consider
of t h e i n v a r i a n t c i r c l e
Consider a t u b u l a r neighborhood
Take a p o i n t
, b u t here
Hence we f i n d a n i n v a r i a n t a t t r a c t i v e c i r c l e f o r
F-l , with t h e r e g u l a r i t y p r o p e r t i e s of t h e previous case.
t h e domain of a t t r a c t i o n
0
yP
yP
.
I t s width i s
, s t r i c t l y included i n
We have
. , we can t h e n f i n d
(X~,Q,)
such t h a t
2
Hopf b i f u r c a t i o n i n Z?
does not 'belong t o
Fn(x ,cpo) G
O
y
u n s t a b i l i t y of Case -
5th-stee.
7,
for
n
43
l a r g e enough.
This i s e x a c t l y t h e
.
P
~5 0
= 1
.
I n t h i s case we s h a l l f i n d a change of v a r i a b l e s t o p u t t h e map i n t h e form (18) f o r
a >
0
, o r t h e corresponding form
if
a <
0
.
We s t a r t w i t h
t h e map i n t h e form (17) or ( 1 7 ' ) , which we r e w r i t e a s :
f(cp+1/5)
where
= f ( Q j i s of c l a s s
cF0 ,
and
~ O ~ E. Z
We make a change of v a r i a b l e s :
with
g
Then
2
of period =
x +g(@)
Let us assume
we have
provided t h a t
1/5
.
s a t i s f i e s t h e equation
g
t o be
Cm
.
Then because
Bo
i s a m u l t i p l e of 1/5
,
44
Bifurcation of Maps and Applications
t h a t i s t o say
It i s then always p o s s i b l e t o f i n d a s o l u t i o n
@;€ Cm
of p e r i o d l/5
of
Hence t h e new map i s of t h e form (18) with t h e same r e g u l a r i t y as
(ItO).
before.
This ends t h e proof of theorem 1.
2. Non-standard Hopf-Bifurcation. We now i n v e s t i g a t e what happens when and ( 1 2 ) of l., i s
0
.
0
, defined by t h e f o r m l a s (15)
To s i m p l i f y t h e study, l e t us assume t h a t
f o r s u f f i c i e n t l y many numbers
.
n
An
0
#
1
Then we have
L e m 2. Let
F be of c l a s s
#
hold, and l e t
Ck
1, n=1,
, k 2 2p + 3 , l e t t h e assumptions H . l , H.2
...,2 p + 3 .
Then t h e r e e x i s t s a
p-dependent change of coordinates, such t h a t
where and
%p+3(z,z'p)
z = r e2irrCP i n a neighborhood of
Proof.
L.e
= r 2P+3 R&,+3(r,v,~)
with 0
.
F
P
k-2p-2
C
i s p u t i n t o t h e form
of c l a s s R' 2~+3
$-2~-3
>
This i s a d i r e c t consequence of t h e p o s s i b i l i t y of f i n d i n g a s o l u t i o n
of t h e equation
(2) suchthat
I
%e
-
- ?9e
5' = 0 9E
-
(A -1qXp)y
,
for
4r
,
q+L<2p+2
because of t h e condition on
-
, q#e+l
.
This can be done
Hopf b i f u r c a t i o n i n lRL
Let us now w r i t e t h e map F
{
(3)
P
+
i n p o l a r coordinates a s before, we have:
o ( ~P ~ 3 +r I P ~ 2 r 3+ I &+3
where t h e choosen orders f o r the w r i t i n g of
.
a2q+l # O(qL1)
the f i r s t
45
R
and
8
Theorem 1 t r e a t s t h e case
+
.4q
+
3)
a r e determined by Q: # O
3
.
L e t us
show t h e following. Theorem 2 . Assume
F
# I,
hold, and l e t for
p = 0
k C
t o be of c l a s s
,
k
-.
2
.
n =1,2,. ,4q+3
of t h e non-linear terms i n
4.9 + 4
r
, l e t t h e assumptions H . l , H.2
If t h e first non-zero c o e f f i c i e n t
i n t h e normal form of
R
i s Q: 2q+l
then Q : ~ < ~ 0 + ~,
(i) i f
neighborhood of for
F
for
p
(ii) i f
0
P
0
and t h e r e exists a r i g h t
0
.
The f i x e d point
0 loses i t s attractivity
.
a2q+l >
neighborhood of F
P = 0
, i n which t h e r e i s an i n v a r i a n t a t t r a c t i v e circle
b i f u r c a t i n g from
P
>
P = 0
0 is attractive for
0
, 0 i s repelling f o r
IJ. = 0
, and t h e r e e x i s t s a l e f t
i n which t h e r e i s a n i n v a r i a n t r e p e l l i n g c i r c l e f o r
b i f u r c a t i n g from t h e f i x e d point loses its s t a b i l i t y f o r
p = 0
p
>
0
.
0 which i s s t a b l e t h e r e .
Note t h a t
Moreover, i n a s u i t a b l e system of
coordinates corresponding t o t h e normal form ( 3 ) , t h e i n v a r i a n t c i r c l e can be
I
expressed a s :
'
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
46
I
1
where
ro i s t h e s o l u t i o n of t h e equation:
I p j l = ~6~
,
j
=1,2 , b j > 0
,
Remark 1. If t h e r e does not e x i s t
L
small enough.
a2q+l # 0
problem of f i n d i n g an i n v a r i a n t c i r c l e
yP
t h e n even i f
FE Cm
, the
and t h e 'problem of i t s s t a b i l i t y
i s open. Example : the map
i
R = (l+p)r
+ p r3
B = ( p + B
has no i n v a r i a n t n o n - t r i v i a l c i r c l e f o r for
li. =
0
#
0
, b u t it
.
Proof of Theorem 2 . Let us s t a r t with t h e map i n t h e form (3) and put
We e a s i l y o b t a i n :
has i n f i n i t e l y many
H o p f b i f u r c a t i o n in W
2
47
Now, (4) g i v e s us
.
where
p
has t h e s i g n of
'a2q+l
This l e a d s t o t h e map
where
p
has t h e s i g n of
- C X ~ ~ , + ~ X1
and
Ipl
are
Ck-4q-3
m e same technique a s i n theorem 1, then gives t h e theorem 2. A p r e c i s e computation of t h e i n v a r i a n t closed curve i s p o s s i b l e .
Remark 2 .
For t h i s , see t h e paragraph 7 of t h i s chapter.
3 . Rotation number of t h e diffeomorphism r e s t r i c t e d t o t h e i n v a r i a n t b i f u r c a t e d closed curve and weak resonance.
L e t us consider t h e map "circle"
yP
of paragraph 1 which has a n i n v a r i a n t
F
li.
b i f u r c a t i n g from t h e f i x e d p o i n t
(a i s defined by t h e equations of t h e i t e r a t e s
Fi(n)
,n
-t
pi
" r o t a t i o n nuthber" of t h e map on
0
, in
t h e case
0
#
0
(12) and (15) of paragraph 1). The behavior
is related t o the P We g i v e i n t h i s paragraph some r e s u l t s
of any point
y
I-1
.
xE y
on t h e r o t a t i o n number which l e a d t o the n e c e s s i t y t o cofnpute p r e c i s e l y t h e i n p o l a r coordinates.
closed curve
So, we a l s o give a systematic way t o
o b t a i n t h e d e s i r e d p r e c i s i o n on t h e i n v a r i a n t curve, even i f Let us w r i t e t h e curve t h e map
f
P:
cp++
,d
on
yP
i n p o l a r coordinates
yIJ. can be considered i n
IR
n 0
r = r((p,p) :
= 1
.
,n25 Then
.
Bifurcation of Maps and Applications
48
where
.
g P ( ( p + l ) = gli.((p)
Thanks t o t h e equation
(17) of paragraph 1, we
have :
where
gl
i s lipschitz-continuous i n
a homeomorphism of R homeomorphism of
T1
Q
,
and
lpl
small. Hence
passing t o t h e q u o t i e n t R/a = T1 which preserves t h e o r i e n t a t i o n .
f
P
is
, and l e a d s t o a
We now g i v e two
important r e s u l t s u s e f u l h e r e a f t e r , t h e proofs of which a r e c l a s s i c a l , and can b e found i n [ 8 ] i n more g e n e r a l and more p r e c i s e s t a t e m e n t s . Theorem (H. Poincarg) Let
B
? be a homeomorphism of T1 , whose l i f t i s a homeomorphism of
o f t h e form
f n - Id number of Moreover
?
f = I d + g with a Z - p e r i o d i c
converges uniformly t o a constant
.
p(?) = p/q
p(?)q Q
i f f t h e map
i f f the map
The r o t a t i o n number
p(?)
V H
Then when
p(?)
n
0)
, c a l l e d the r o t a t i o n
'pefq((p) mod 1 has a f i x e d p o i n t
q
for
f
),
mod 1 has no p e r i o d i c p o i n t .
fq((p)
'p
,
P(?)a Q
.
i s i n v a r i a n t under a change of the v a r i a b l e
and i s a continuous function of
r-I
.
(Id z i d e n t i t y ) .
( p e r i o d i c point of o r d e r and
g
?
i n the
Co
topology.
Theorem (A. Denjoy) Let
b e a diffeornorphism of
Then t h e r e e x i s t s a homeomorphism 6
T1 of c l a s s of
C2
T1 such t h a t
, and
let
Hopf bifurcation i n R
?
- -1R p o h-
, where R p :
= h
cpH
f
So, by a change of v a r i a b l e , t h e map
i t e r a t e s of any p o i n t
a r e dense on
tp
2
49
rp+ P(7) mod 1
is just a rotation
T1
. , and
Rp
the
.
These theorems g i v e an i n t e r p r e t a t i o n of t h e r o t a t i o n number of terms of a r o t a t i o n asymptotically equivalent t o
f .
? in
The main t o o l of t h i s paragraph i s t h e following Lemma 3 .
7
1
Assume t h a t t h e homeomorphism f
where
0
>
0
t a k e s t h e form
, and g i s uniformly bounded when
r o t a t i o n number
of
p(p)
P ( d = e(P)
Proof.
P
+
f
iL
/pI
i s small.
Then t h e
satisfies
o(lPla)
-
This follows d i r e c t l y from t h e formula
We can now prove Theorem 3 . Let t h e map
.
p = 1,2,. . , n - 1
F
P
be of c l a s s
,n25
.
Ck
,k > - n + l , and assume t h a t :1 #
Then t h e r o t a t i o n number
p(p)
of
f
P
1
is a
continuous f u n c t i o n o f p i n t h e neighborhood of 0 where y& e x i s t s , and n-2 i s a polynomial i n p of degree p(p) = Ol(p) + O( p [ y, , where 0 1(P)
[91
I
( i n t e g e r p a r t of -_
2 n-3 1.
,
Bifurcation of Maps and Applications
50
Proof. Let us f i r s t assume t h a t
kT3
= 1
,
p
2
1 , k 12p+4
.
Then
proceeding i n t h e same m y a s i n paragraphs 1 and 2 t o o b t a i n normal forms, we make a change of v a r i a b l e s i n FP
C
, which leads t o t h e new form of the
:
Fp(z) = A ( P ) [ Z +
(3)
P
m=l
a2m+l(pL) z
m+l-m
z +b
2P+2
(pL)~2p+21 +O(lzl
2P+3)
I n polar form, t h i s leads t o
a2p+l
(cp,p)
and
both a r e of t h e form
!32P+l(rp,p)
A cos[2n(2p+3)cp] + B sin[2n(2p+3)tp] Let us note
2 then a2(o)rO(p)
ro(w) t h e unique
+ p R e X1
>
0
.
s o l u t i o n of the equation:
+ higher order terms = 0
(recall that
Cx
2
(0)
#
0)
Let us do now the change of v a r i a b l e s :
where
e
a2(o) = -lcr2(o)l
f o r a s u b c r i t i c a l one).
(Q
=+1 f o r a s u p e r c r i c i a l b i f u r c a t i o n ,
E
= -1
.
Hopf b i f u r c a t i o n in B'
51
The map takes the new form:
o( I
+
To be s u r e t h a t
x(cp)
i s bounded we may do the same a s we d i d f o r
l.2 = 1
.
So we change variables
where
xo(cp) has the form ( 5 ) and s a t i s f i e s t h e d i f f e r e n t i a l equation
where
6,
i s defined b y
The map i s now:
form ( 5 ) .
The technique of the proof of theorem 1 a p p l i e s here because and
= u(cp)
3/2
i s then bounded by 1. So, by using t h e lemma 3 , we g e t
- Y> 1 ,
52
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
where we only keep the terms of degree
5p
in
el(&)
.
This i s t h e r e q u i r e d
result. Now, if we assume t h a t
:k
# 1 ,m
. . , 2 p +3
= 1,.
, t h e r e a r e no
a2 p + l ’ P2p+l i n ( 4 ) , and (13) holds i n an e a s i e r way, because i n t h i s case
Let us now assume t h a t
= 1
, p
2 1,
k
2 2p+5
.
We do t h e same a s
previously t o o b t a i n
where a 2 ( o ) =
(17)
-Q:
# 0 , and
012p+;!(~.~)
B2p+2
C + A cos[2~(2p+4)lp]+ B sin[21~(2p+4)(pI
We can define
ro(p)
( c p , ~ ) both a r e of the form
.
by (6) and do t h e change of v a r i a b l e s :
The map t a k e s the form:
Hopf b i f u r c a t i o n i n iRL
53
A s i n t h e previous case, w e pose
where
xo(cp)
has t h e form
(17), and
Q,i s defined by
(11). The map
becomes:
where
has t h e form, (17). A s previously t h i s l e a d s t o a bounded
with
el(p)
polynomial of degree
Now, i f we assume t h a t %p+2
B2p+2
i n (lg), and
p
in
Am # 1 , m xo(cp)
s(cp)
p
.
and t o
This i s t h e required r e s u l t .
.
= 1,. .,2p+4
,
i s now independent of
t h e r e a r e no cp
, so
54
Bifurcation of Maps and Applications
el
with
of degree
p + l
in
p
( t h i s r e s u l t i s a l i t t l e b e t t e r than i n
I. theorem 3 , because here we assume i n f a c t
Theorem
4
2
k
2p + 5 = n
.
(weak resonance).
Let us make t h e assumptions of theorem 3 h2p+3 = 1
( i ) if
)
0
O,(p)
f
,p 2
1
,
Then,
i s of degree
el(p)
.
p
The c o n d i t i o n
, which means t h e n u l l i t y of p c o e f f i c i e n t s , i s
BO(= m/2p+3)
necessary and i n g e n e r a l s u f f i c i e n t t o g e t the r o t a t i o n number i n independent of
of p e r i o d i c points of p e r i o d
2p+3
.
I n t h i s case
and t h e r e e x i s t t w o f a m i l i e s
p
for
p(p) = Oo
f
.
P
On t h e curve
yP
one
family of points i s a t t r a c t i v e , t h e o t h e r one r e p e l l i n g .
!(ii)If
I
iI
I
!
I _
~ 2 O p +=~ 1 , p 2 1 , 0
6 (p)
1
p(p) = Oo
i n general
.
i s of degree
P(p) =
B0
The c o n d i t i o n
, and we have the two f a m i l i e s of p e r i o d i c p o i n t s
a s i n (i) , and one i s a t t r a c t i v e on The n e c e s s i t y of t h e condition
theorem 3 .
.
If furthermore a n a d d i t i o n a l i n e q u a l i t y (33) i s r e a l i z e d ,
-
Proof.
p
i s necessary but i n g e n e r a l not s u f f i c i e n t t o g e t
0 ( = m/2p+4) 0
(P)
Assume t h a t
Y
P
el(+)
Xo2P+3 = 1 , p
2
, t h e o t h e r one r e p e l l i n g . 5
0
1 and
0
i s obvious, because of Ol(p)
f
Bo
, t h e n thanks
t o ( 1 2 ) , we have
Assume that
B2p+l(d
i s not identically
0
, which i s t h e g e n e r a l case, s o
Hopf b i f u r c a t i o n i n lR2
with
55
cpio'
# 0 . Let us introduce t h e two s o l u t i o n s
IAl + IBI
and
'p2 (0)
NOW t h e equation
because of t h e L i p s c h i t z c o n t i n u i t y i n
'p
thanks t o the c o n t r a c t i o n p r i n c i p l e i n R continuous i n
p
.
, uniformly i n , and t h e cpi(p)
To s t u d y t h e s t a b i l i t y on
f;('pi(p))
is
The r e s u l t follows. properties!
of
,
f
P
i = 1,2
, and are
So, we have two f a m i l i e s of p e r i o d i c p o i n t s of p e r i o d
2p+3 b i f u r c a t i n g from the o r i g i n f o r t h e map
so
p
y
12
F
P
.
, we can j u s t remark t h a t
> 1 f o r one family,
< 1 f o r t h e o t h e r , because of (28).
The r o t a t i o n number i s t h e n
O o = m/2p+3
from i t s b a s i c
B i f u r c a t i o n of Maps and Applications
56
ky4
Assume now, t h a t yp
= 1
,
>1
p
and
0,(p)
B0
E
,
t h e map on
i s now:
where
e2p,(cp)
(32)
=
c +A
cos[2n(2p+b)q~l+ B sin[2a(2p+b)(p]
Let us assume t h a t
(33)
<
ICI
2 1/2
then t h e equation The case when
,
(A*+ B )
1 CI
02p+2 (cp) = 0
> (A2+
B2)1'2
,
1 5 cp < 2pi4
0
has two s o l u t i o n s
w i l l be s t u d i e d i n theorem 5 .
a s It can be e a s i l y seen i f we i n t e r p r e t t h e equation i n t e r s e c t i o n of t h e l i n e ';p+2
(O))
('Pi
Ax+By
+C
= 0
0
2P+2
(0)
'91
'
(0)
9
Now we have
('9) = 0 as t h e
, with t h e u n i t c i r c l e and
a s t h e dot product of t h e normal t o t h e l i n e with t h e tangent t o
the c i r c l e a t the intersection points. Hence, the proof of the existence (and uniqueness!) of two f a m i l i e s of p e r i o d i c points of period
2p+4
, b i f u r c a t i n g from t h e orgin f o r F
the same a s i n t h e previous c a s e . same because o f ( 3 4 ) , and of course Remark 1. The cases when
, is
The r e s u l t on t h e s t a b i l i t y i s a l s o t h e p( p) = B o = m/2p+4
hn = 1 f o r 0
w
n
54
chapter, they a r e t h e "strong resonance" case.
i s independent of
w i l l be s t u d i e d i n next
p
2
Hopf b i f u r c a t i o n i n IR
If t h e b i f u r c a t i o n occurs f o r
Remark 2.
p <: 0
57
, the periodic points a r e
r e p e l l i n g , because t h e i n v a r i a n t c i r c l e i s i t s e l f r e p e l l i n g , t h e “ a t t r a c t i v e “
% .
family i s only a t t r a c t i v e on and t h e assumptions of theorem
If t h e b i h c a t i o n occurs f o r
p
>
,
0
4 a r e f u l f i l l e d , t h e r e i s one a t t r a c t i v e family
of p e r i o d i c p o i n t s .
It remains t o g i v e a very p r e c i s e r e s u l t on t h e r o t a t i o n number P ( w ) of when t h e condition of theorem n theorem 3, when h = 1 , n 0 Theorem 5 Let t h e map (i)
If
P
i2p+3 = 1 0
identically
(34)
F
el(p)
.
be of c l a s s
Ck
11 , assume
Oo ; so t h e r e i s = eo+pqe
9
,
k
l a r g e enough.
t h a t t h e polynomial
q € [ l , p ] and
0
#
4
0
where y = inf(3p-q,3~-29+3) and = 1
not i d e n t i c a i l y
1
,p2
1
eo ,
el(p)
i s not
such t h a t
.
+
Then, t h e r o t a t i o n number of the diffeomorphism f
(ii)I f
P
4 a r e not s a t i s f i e d . This r e s u l t completes t h e
25
p
f
E
P
satisfies:
=+,1 according t o t h e s i d e of t h e b i f u r c a t i o n .
, assume t h a t e i t h e r t h e polynomial el(,) or
e1( p )
I
80
and
being defined by (32). Then, t h e r o t a t i o n number of
f
P
satisfies
ICI
>
( A 2 + B 21/2 )
is
, A , B , C
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
58
#
Remark 1. We saw i n theorem 3 t h a t if :k has an asymptotic expansion i n powers of Remark 2.
1 for a l l
n
, then
P(p)
.
p
h2p+3=l, the theorem 5 g i v e s a p r e c i s e idea on
I n t h e case when
0
t h e asymptotic .expansion of
i n powers of
p(p)
I pI1I2
.
For i n s t a n c e , we
have f o r
if
= Go
9
1
(see theorem 4)
= 0
,
and f o r =
o
2 o +3p 2
+pel+p 0
=
[
B + p e 2 + p3 e + p
3
0
if
= O0
.
p
4+ p e.4 + p7B + (ep)11/2~6+
5
e4 + ( € P ) 9 / 2 85 + . . . i f
2
e +Jo
e
=
eo+p o2+p
=
OO
0
+pe + p
2
1
2
if
Proof of Theorem 5 .
3
3
e +...
el
= 0
6 Xo =
+...
and
Let u s f i r s t assume
i s t o e x p l i c i t a t e the map
N+1) (p
,d on
e2# 0
i s always an expansion
(cI
> (A2 +
2 1/2 B )
2 2 1/2 (A + B )
h2p+3 = 1 0
1
+o
O ~ = O and
ICl <
8 = 0 ,
, we have
el
if
if
3
1
P(p)
... if el+
.
( s e e theorem 4)
B1 - 0 2 = O
For i n s t a n c e f o r
=
up t o the order
3
h20p+4 = 1 , t h e result f o r
I n t h e case when i n powers of
e
, p _>
1
.
h r f i r s t aim
, with no unknown f u n c t i o n yp (see Lemma 4 f o r t h e r e s u l t ) . f p : 9-
r(q)
o
Hopf b i f u r c a t i o n i n W
Using t h e usual change of v a r i a b l e s i n
i1
~ ~ ( =z i ()p ) [ z
(35)
+
2P k$o ‘2p+2k+4
where t h e
a
j
3p + l
+
c
m=l
zm+l-m a 2m+1
2p+k+kzk
+
C
,
2
we can w r i t e
’
2p+l +
59
k=0 b2p+2k+2z
p-l k-bp++k I:0d4p+2k+5z k=
k-2p+k+2
+
F
P
as:
+
’
p-2 z4~+k+7;k k=0e4p+2k+7
,b , c ,dj , e a r e r e g u l a r f u n c t i o n s of j j j
p
+
.
I n p o l a r coordinates, t h i s l e a d s t o
where a c a r e f u l examination shows t h a t a l l t h e f u n c t i o n s of @2m+l
a r e p e r i o d i c of period
have a
0 mean value.
’2 p+2k+2
and
except
a6p+3
a2m+l , @2m+l
hence of mean value
a2m+l
a r e combined with t h e terms i n
‘2p+2k+4
and
and such t h a t
:a
and
a
B.2m+l
a
2m+1
or with
’ @6p+3 t o get the a2m+l and @2m+l * are of t h e form A c o s 2 n . ( 2 p + 3 ) ~ + B s i n 2 ~ ( 2 p + 3 ) r p ,
a6p+3
@6p+3 which a r e products of 3 similar expressions, 0
p
2m’ 2m+l’ 2m’
This i s due t o t h e form of (35) where t h e terms with
themselves (only for t h e terms Hence, a l l the
1/2p+3
rp
.
60
Bifurcation of Maps and Applications
Let us note
then, because of
#
a,(O)
2 ro(P) = EP
(38)
t h e unique p o s i t i v e s o l u t i o n of t h e equation:
ro(p)
( b a s i c assumption i n a l l t h i s paragraph 3 ) ,
0
m a
Re
hl
+ 0(g2)
,
with
E =-sgn(a2(o))
.
Let us do now t h e change of v a r i a b l e s (analogous t o ( 7 ) ) .
The map i s now expressed a s :
where
k2
3,k 6 , h l ,
h 4 , h6
B s i d 2 r [ ( 2 ~ + 3 ) ~, ] and a l l t h e
neighborhood of zero.
a r e a l l of the form
h a r e r e g u l a r f u n c t i o n s of p j' j The form (40), (41) of t h e map F i s j u s t an k
11.
improvement of ( 8 ) . Let us do t h e change of v a r i a b l e s (42)
x = xo(cp) +
( 5 ) A cos[2r[(2p+3)cp] +
E
,
in a
Hopf bifurcation i n R
where
xo(cp)
!d = cp+zl(d
(45)
where
has t h e form
-
k2
-
,
:Plh,(cp,~)x
.
,
-
-
, k3 , k6 , hl , h 4 ,
Let us assume t h a t
where
x,(cp)
p
61
(5) and solve (lo), i . e
+ ( 6 ~ p+l/2) hl(cp,F)
+
2
+ $ph5(p)-2x
h6
+$pc2(cp3P)
+(EL4
(cdp+1’2h3(p):
3p-1’2h6(cp)
a r e a l l of the form
22 ,
+
(Xo(cp)
+z)2+ O( I pi3’)
(5).
t h e n we do t h e change of v a r i a b l e s :
has t h e form (5) and solve
+
,
62
Bifurcation of Maps and Applications
2 ,
where
If
5 ,$ ,6, ,
P =1
hd
a r e a l l of the form
(5).
, the map (44) , (45) gives
i n s t e a d of (42). A l l t h e functions
\(cp)
a r e of t h e form ( 5 ) , and t h e y a r e
s o l u t i o n s of d i f f e r e n t i a l equations a s (43) and (47). t h e map f o r
p
_>
2
is
The new expression of
Hopf b i f u r c a t i o n i n R
where
- - _ k2
, k3 , hl , h4 , h6
2
63
(5).
a r e of t h e form
We do now a change of v a r i a b l e s of new type:
(54)
1/22
where
2 0
(55)
i s p e r i o d i c of period
x P
1/2p+3
,
b u t i n g e n e r a l of mean value
, and i t v e r i f i e s 2ReA
1
x ( c p ) + 6 x’(cp) P 1 P
-
eF,+(’p,o) = 0
.
It i s not d i f f i c u l t t o s e e t h a t t h e r e always e x i s t s a unique s o l u t i o n of (55) (even i f
Pl
= 0 )
.
I n t h e case
p
_> 2 ,
(57)
where
G2 ,
5 ,-hl , -
I n t h e case
h4
, h6
p = l
,
a r e of t h e form (5) t h e map i s
I
x,(cp)
the map i s now expressed:
B i f u r c a t i o n o f Maps and A p p l i c a t i o n s
64
.-. k 2 , fi1 ,
where
L4 , h6
a r e of t h e form ( 5 ) .
We now do a g a i n a similar change of v a r i a b l e s :
xptlis p e r i o d i c o f period
where
So, i f
p
xp+l = x2
22
i s of t h e form ( 5 ) , b u t i f P+l has a non-zero mean value.
?
El
, and v e r i f i e s
, x
I n t h e case
where
1/2p+3
p = 1
I n t h e case
p
, i n general
, t h e map becomes
= (1-2pRehl)2
i s of the form
p =1
+ O(lpI 3/2)
( 5 ) and x2((p) has i n g e n e r a l a non-zero mean value.
22 ,
t h e map becomes
Hopf b i f u r c a t i o n i n R
’;3 , Cl, I i 4 , h6
where
I n t h e case
p
_>
a r e of t h e form 2
2
65
(5).
, we d i d t h e two changes (54) and (60) t o
t h e formulation (52), (53) t o t h e formulation (63), ( 6 4 ) . do
go from
I n f a c t , we can
(p-1) times t h i s double operation, s o t h a t we have
i n s t e a d of (54) and (60).
I n (65) t h e f u n c t i o n s
a r e o f t h e form ( 5 ) because of p e r i o d i c of period lk,,+((p,
p)
.
1/2p+3
5(3(cp,
PI)
x p+1
’ Xp+3 * . . , xp+;lk+l’ * *
, and x , xpe,. P
b u t i n g e n e r a l of mean value
..,xpek
#
0
, because
where
2
of
They a l l a r e s o l u t i o n s of equations of type ( 5 5 ) and (61).
The map ( 5 2 ) , (53) becomes a f t e r t h i s change of v a r i a b l e s
(66)
are
= (1-2p R e
fil, i4, h6
Al):
+ ?kl(
p):
a r e of t h e form
+ ( cP)~’~$((P,
(5)
P)
+
$;8(Cp)
(p
+
22
) :
o( I P15/2)
9
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
66
p = 1 t o g e t (58), (59) and (62) from
Now, we can do t h e same as when
(491, (so):
and x a r e p e r i o d i c of period 1/2p+3 , and i n g e n e r a l x 3P-2 3P-1 of non-zero mean value, and s o l u t i o n s of equations o f t h e type (61). The
where
new expression of the map i s :
where
fi
1
has t h e form ( 5 ) .
if we do i n (62) t h e change
This form of the map i s a l s o v a l i d f o r
.
= (cp)’y
Now
p =1
,
(69), (70) g i v e a bounded
a s i n t h e u s u a l proof, s o we have proved:
y(cp)
L e t t h e map 0
=
1 , p
F
P
11
be of c l a s s
.
,
Ck
Then t h e map
f
Ir,
k
large enough, and assume
on t h e i n v a r i a n t curve
yli.
, takes
t h e form
(71)
fP(cp)
=(p+Z1(d
+ (6P)p+1/2hl(cp,p)
+Zph2(cp,p) +
+
+ o(pN+l) where
hl
, h2 , h3
are periodic i n
cp
of period
1/2p+3
,
polynomials i n
Hopf bifurcation i n R
2
67
Remark 1. We changed t h e n o t a t i o n s t o w r i t e (71), s o hl , h e , h3
are new
functions here.
I n (70) w e had a term
Remark 2 .
more r e g u l a r i t y on
F
P
.
O ( l ~ 3p-1/2+y) l
It i s c l e a r t h a t , w i t h
, we can push t h e expansion a s f a r a s we wish.
An
i n t e r e s t i n g problem would be t o know, i n what c a s e s we can see t h a t t h e term can be incorporated i n t h e o t h e r terms, i . e . i n what c a s e s t h i s term
O(pN+’)
has period
1/2p+3
?
The idea i s now t o change of v a r i a b l e
N+1
a map with no cp up t o t h e o r d e r
p
.
rp
in
, such a s t o o b t a i n
T1
Hence, by lemma 3 t h i s w i l l
give the r e s u l t of theorem 5 i n c a s e ( 1 ) . A s sume t h a t
t o not b e i n t h e case of theorem
4.
The new v a r i a b l e i s defined by
where
h
w i l l be of t h e form ( T ) , and r e g u l a r i n
diffeomorphism of R becomes
GI--+
with
p
which passes t o t h e q u o t i e n t on
.
So, we have a
T1
.
The map (71)
B i f u r c a t i o n o f Maps and A p p l i c a t i o n s
68
then
(74)
+
a d d i t i o n a l terms of same kind a s those i n
We choose now
of t h e form
h(cp,p)
(5), as hl
as a s o l u t i o n of t h e equation
, t h i s i s always p o s s i b l e because eq(o) #
and because t h e terms w i t h d e r i v a t i v e s of order S o t h e map
’9, 2,
2,
and h
4
g2 ,
c3 ,$ a r e polynomials
9 .
have
1-11
f
i n factor.
i n 1-1 and p e r i o d i c o f period
has a 0 mean value.
Now we can change t h e v a r i a b l e of
22
0
f w t a k e s t h e new form
where the new f u n c t i o n s 1/2p+3 i n
( ~ p ) ~ ” ’ - ~ and
(p s o t h a t
Let us consider t h e f i r s t s t e p
2
(Gyp) becomes independent
Hopf b i f u r c a t i o n in a7
where
4,
i s t h e s o l u t i o n of mean value
Doing t h i s type of change of
G+
@ again
2
69
0 of t h e equation
times we o b t a i n i n f a c t a map
p-1
such t h a t A
&q+e
(80) where
- ( q , p )+p3'+ldq P +( Ev ) 3p+lJ2-q h3
61(p)
c 2 ( q , p )+(
i s now a polynomial of degree 3 p - q
h4(y, p ) +0(uN+'
3p-2q+5/2
and
hS(j,O) s t i l l
has a 0 mean
value. In t h e case when q 2 3, we may do a similar change o f v a r i a b l e on t h e c o e f f i c i e n t of
( E ~ L ) ~ ~ - by ~ ~a +term ~ ' ~of
order p
. Then,
-
'Q
t o replace
by a s t e p by s t e p
change of v a r i a b l e i n c r e a s i n g t h e power i n ( ~ p by ) 1/2 a t each s t e p , we g e t t h e
r e s u l t of ( i )of theorem 5. Let us now consider t h e case evenness of such t h a t
2p+4 n+m
= 1
, p
21 .
Because of t h e
it i s c l e a r t h a t i n F ( z ) we w i l l have powers CL
i s odd: n - m - 1 = 4,(2p+4)
.
So, i n t h e p o l a r form t h e map i s expressed as
)
znim
Bifurcation of Maps and Applications
70
where a2p+2 and
B2,,
are of t h e form
We saw t h e changes of v a r i a b l e s (18) and (20).
I n f a c t we can f i n d t h e
following change :
where
ro(d
defined a s p e r i o d i c s o l u t i o n s of period
l/2p+4
(21).
After t h a t t h e map t a k e s t h e form
where
6
2Pt.2
xk a r e s u c c e s s i v e l y
i s defined by ( 6 ) , and t h e functions
i s a polynomial i n
i s defined by ( 2 3 ) , and
p e r i o d i c c o e f f i c i e n t s of p e r i o d
of equations of t h e type
p
.
1/2p+4
with
Let us f i r s t assume t h a t 31(~) =
oo
+
15 5
Pqeq(w)
then we can do t h e same change on 32p+2 , 8
P
9
a s i n t h e case
cp
i n functions independent of
cp
.
SO,
+o
(0)
A2p+3
61( p )
3
00
= 1 t o transform
i n t h i s c a s e t h e theorem
i s proved.
Let us now assume t h a t
0
,
, we know t h a t
Hopf bifurcation i n R
(85)
c +A
=
e2p+2(lp)
2
71
cos[2fi(2~+4)cpl+ B sin[2fi(2p+4)(pl
.
To avoid t o be i n t h e case (33) where t h e r e i s weak resonance, we assume t h a t
then
0
keeps
(cp)
2P*
8
constant s i g n when
cp
So we do t h e change
varies.
of v a r i a b l e s :
where
h
has period
l/2p+4
, i s of mean value
0
,
and i s t h e s o l u t i o n
of t h e equation
where
K
#
0
i s d e f i n e d by
We v e r i f y t h a t
1+h'(cp)
>
0
, so
we have a diffeomorphism.
The new
expression of the map i s :
(90)
-@ = c -p
+
0
+ p P + l K + ppe8(G,p)
and u s u a l change of v a r i a b l e on
+ O ( p N+1)
(P l e a d s t o a
8
3
independent o f
(p
,
and
t h e theorem 5 i s proved.
4.
Hopf b i f u r c a t i o n f o r f i e l d s i n R
2
.
There e x i s t many ways t o t r e a t t h e problem solved h e r e a f t e r .
We j u s t
want t o use t h e t o o l of t h i s c h a p t e r t o f i n d t h e closed t r a j e c t o r y and t h e period of the b i f u r c a t e d s o l u t i o n .
Bifurcation o f Maps and Applications
72
Let us consider the following d i f f e r e n t i a l equation i n R2
(1)
dx =
L
dt
P
L
where the
are
Npyq
,
X + Np(X)
where we assume
and
N
:
sufficiently regular i n
2
q - l i n e a r symmetric i n 1R
p
and
X
.
We w r i t e
.
We denote t h e s o l u t i o n of the Cauchy problem f o r (1)with
X(0) = Xo
,
by (3)
X(t) = X(X,,P,t)
*
It i s well known t h a t (3) i s defined f o r
small enough [ 7
1.
t E [-T,T]
provided t h a t
Moreover we can f i n d (3) i n the following way:
I/Xol/
is
(1)i s
equivalent t o
(4)
X(t) = e
t L
'x0
+
J
t (t-s)L e
0
'
N&X(s)lds
,
and we can solve (4) by the fixed point theorem i n a s u i t a b l e function space. This leads t o a m c t i o n X s e r i e s of
( 51
X
near
X(Xo,
(O,O,to)
)I,t ) =
which i s regular i n
(Xoyp,t)
i s given by:
Loto e xo +B(Xo,Xo)
+
+AIXo + (t-to)A;Xo
.
The Taylor
2
73
Hopf b i f u r c a t i o n i n lR
where
is
BP””
r - l i n e a r symmetric i n
B2 ,
and
i
This givks t h e p o s s i b i l i t y t o e x p l i c i t e l y use t h e map
t o look f o r t h e b i f u r c a t i o n from t h e f i x e d p o i n t system (1). If t h e i n v a r i a n t closed curve by t h e r e s u l t of e x e r c i s e 2 of chapter
F
0 )I
FLL
:
of a c y c l e for t h e
i s i s o l a t e d , then following
I, t h i s w i l l b e a c l o s e d t r a j e c t o r y f o r
(1)*
For t h i s study, we have t o assume t h a t +koo -
.
with
s(0) = 0
For
p
near
,
0
,
~ ( 0 =coo )
L
To f i n d t h e eigenvalues of
(9)
A
P
has two conjugated eigenvalues
has t h e eigenvalues
P
>
Lo
.
0
D F (0) = A * P P
= eLoto + p A 1 + O ( p )2
.
,
we remark t h a t
74
Bifurcation of Maps a n d Applications
The eigenvalues of eLoto
kn0 # 1 for n
=
are
iwoto
A
= e
0
1
and
.
1,2,3,4 (this is true for almost all
to to realize this). Writing A(,)
(10)
= Xo(l +P
hl)
2
+ O(P
) = e
Y(I4tO
,
we obtain
and the Hopf-condition H . 2 becomes
Let us define the eigenvectors of A
where A*
P
(1’1 1
is the adjoint of A
xo =
z
c(,)
+
z’ S ( d
will be still written F (z) 1L
.
12
Now we write
9
.
IJ. : < ( p )
We have
,
c(p)
We can assume that to
, and we choose
Hopf bifurcation i n R
2
75
and by i d e n t i f i c a t i o n :
where as i n .paragraph 1, Ak(p,z)
z i z j (i + j = k)
of
We need t o compute e
Lit
*
-iw0t
co=e
*
,
Y
, 5.
Sij = s i j ( 0 )
.(p)
1J
.
, I , , , Zo2 , t2,
due t o the f a c t t h a t
Lot * Lot (e ) = e
,
being t h e c o e f f i c i e n t s i n
For t h i s we can use
**
*
LOCO =-i0 0 50
Let us note
then
Now, Lo? Lor NO’*(e cO,e c O ) d T = 0
+-
-
C
3uu0
2iws
(e
0
-e
-iws 0
2kos
a (e lu! 0
15,
3
0
- e
icus
and t h a t
76
Bifurcation of Maps and Applications
gives us
+2ab (1- A o )
(2x0-1)
2
-
(I)
(I)
0
0
We can now compute t h e p r i n c i p a l p a r t of t h e i n v a r i a n t c i r c l e :
where a. i s given by formulas (15) and (l2) of paragraph 1. We have
a = - Re(cY(o)io) , ReAl
which i s independent of
to
=
clto
, (assume a # 0) ,
.
The expression (22) has i t s p r i n c i p a l p a r t e x p l i c i t l y known, and independent of
to
.
Moreover, because of t h e uniqueness of t h i s i n v a r i a n t closed curve f o r F
c1
, t h i s i s i n f a c t a c l o s e d t r a j e c t o r y f o r t h e system (l), s o a p e r i o d i c
bifurcating solution. It i s now e s s e n t i a l t o be a b l e t o compute t h e p e r i o d of t h i s p e r i o d i c solution.
Hopf b i f u r c a t i o n i n ii?
L
77
To do t h i s , we have t o consider t n e angular p a r t of
where
go =
1
= 211 -1u t
e
-a t 211 0 0 '
, Real
i n v a r i a n t closed curve i s expressed a s in
T
1
.
51to
r = r(cp, p)
:
12
So, when t h e
i n ( 2 4 ) , we have a map
.
$ = g(tp,p,to)
: 'p*
=
F
The n a t u r a l idea t o o b t a i n t h e period would be t o consider
t
t o look f o r assumed
moto =
e 231
i r r u0
such t h a t 0
#
n =
1 for
.
+ O(p)
.
g(O,p,to) = 1
and
The t r o u b l e i s here t h a t we
1,2,3,4 , and t h a t
So we look f o r
cp = 0
toE(0,25r/ho)
g(O,b,to)
= 1 leads t o
9P
and consider t h e map
which a l s o have t h e same i n v a r i a n t c i r c l e and corresponds t o t h e map (7) with
5t0
,
9P
The angular p a r t of
For cp = 0 , t h e equation with r e s p e c t t o
.
to
i s noted
!b5)= 1
g5)
,
and we have
gives t h e period
T = 5t0
, by s o l v i n g
We o b t a i n
Exercise l e f t t o t h e reader. (i) Compare t h e r e s u l t s obtained here i n (22), (23), (26) with those
obtained by t h e method of Lyapunov-Schmidt [17]
, [29l ,
[121
(ii)Show, using t h e study of paragraph 3 , t h a t t h e expansion of contains powers of Hint: obtain
assume
p
(no
t o €(0,211/m0)
T =nto
.
I
for instance). with
n
l a r g e , and s o l v e
.
$
6.)
only
= 1
to
B i f u r c a t i o n o f Maps and A p p l i c a t i o n s
78
Remark on the s t a b i l i t y . We know, by t h e g e n e r a l theory t h a t t h e b i f u r c a t e d closed curve i s
>
a t t r a c t i v e i f it b i f u r c a t e s f o r
0
.
I n f a c t , we have more: f o r any
i n i t i a l data c l o s e enough t o t h i s closed curve, t h e r e e x i s t s a “ l i m i t phase”
6
such that
llx(t) exponentially, where and
Xo(t,p)
- X0(t+6,P)ll X(t)
+
0
t + w
i s t h e s o l u t i o n of t h e e v o l u t i o n problem (l),
the bifurcated periodic solution.
For t h e proof, s e e chapter
11.3. 2 -dimensional i n v a r i a n t t o r u s f o r a non-autonomous d i f f e r e n t i a l equation.
5 . Bifurcation i n t o a
We consider t h e d i f f e r e n t i a l equation i n R
where we assume t h a t
L
and
N
2
.
are sufficiently regular i n
depend p e r i o d i c a l l y , with a p e r i o d
T
, on t h e v a r i a b l e
t
.
p,
t ,X
and
We assume
also that N P( t , X ) = N 0 , z (t;X,X) +No,3(t;X,X,X) + I J . N ~ , ~ ( ~ ; X , X+ )O(I/X1/*(1
(2) where
2
and
It1
5
T
Z(Xo,p, 0) = Xo
f o r i n s t a n c e , where
.
X(X0,p;)
The fundamental matrix
+
liXll)2)
.
are q - l i n e a r symmetric i n IR P>9 We have a map i n R2: X o H X(XO,p,t) , which i s d e f i n e d f o r N
PI
Xo
near
i s t h e s o l u t i o n o f (1)w i t h Sp(t)
satisfies :
0
,
Hopf b i f u r c a t i o n i n R 2
Then we have
+I
,
X( 0, p , t ) = S ( t ) P
0
(4)
X(X(Xo, k T ) , P , t )
79
and because of the
=
X(xo, P, t + T )
T
- periodicity
.
To study the asymptotic behavior of the t r a j e c t o r i e s near
, we can study
0
where
,
S (T,s) = S (T).S-l(s) P P P
NP(tZ) =
N(*)(t$T) c1
+ NP (3)(t$,X,X)
Now t o e x p l i c i t a t e t h e map i n E2 SP(T,s)
.
, we need t o know more on the a d j o i n t of
, because of a l l the s c a l a r products t o be done f o r projecting ( 5 )
on a b a s i s . Lemma 5 .
+ o(llxl14)
We prove the following lemma:
*
[ S P ( t ) ] = ['s,(t)]-l
where
( t ) i s the fundamental matrix of the
P
l i n e a r system:
(61
E-: - -
-... -.-
N.B.
*
LP(t)X
__ .-
-ic
, where L ( t )
The solutions of (6) a r e
P
i s t h e a d j o i n t of
X ( t ) = gU(t)XO
.
LP(t)
.
80
Bifurcation of Maps and Applications
Proof of Lemma 5 .
Let us consider t h e s c a l a r product
sp(~)[8p(t)l-1y) for
x
and
w
sp(T)[sp(t)l-lY) + (sp(T)X
I
,
i n pi2
Y
f(T)
=(Sp(7)X
,
f ' ( 7 ) = (L ( T ) S ~ ( T ) X,
then
- L ~ ( ~ ) ~ , ( 7 ) [ 8 ~ ( t ) ] - l=Y0)
.
P
Hence
f(o) = f ( t )
and
Let us do now the necessary assumptions t o g e t a Hopf b i f u r c a t i o n f o r t h e map
F
w
(5) when
The eigenvalues
crosses
p
h(p)
,
x(p)
.
0
of AP a r e t h e Floquet m u l t i p l i e r s of
t h e l i n e a r i z e d system from (1). We note A A
P
= S
P
(T)
* .=. ,Sp(-T) P
for
p
near
, such t h a t
To o b t a i n t h e map
,
0
and
(c(p),c
F
P
in
*( p ) ) c ,
t h e eigenvectors of
< ( p ) , <(p)
* -* 5 (p) , 5 (p) = 1
t h e eigenvectors of
.
we j u s t d e f i n e
z
by
and take the s c a l a r product:
expression which w i l l be now w r i t t e n of t h e c o e f f i c i e n t s of I
where x
a(p)
F
P
(2)
Fp(e)
.
To h e l p t h e e x p l i c i t computation
, we d e f i n e t h e p e r i o d i c vector f u n c t i o n s
i s t h e Floquet exponant*such t h a t
see paragraph 6, t h e computation of t h e expansion of
X(p)
.
Hopf b i f u r c a t i o n in R
We s e e t h a t
So, we have
and
5
P
and
*
5,
2
a r e r e s p e c t i v e l y T - p e r i o d i c s o l u t i o n s of
81
Bifurcation of Maps and Applications
82
The l a s t expression can be more e x p l i c i t i n R2 and
N(2)[T;<,(T),t&T)1 P
NP (2)[7;C,(~).5,('r)1
,
i f we decompose
on the b a s i s
C,(T)
,tJL(7)
.
I n f a c t , we have
and
So, we d e f i n e
and, f o r instance
s o the computation of (17) i s straightforward. Let us assume t h a t we have a b i f u r c a t e d i n v a r i a n t closed curve t h e map
F
JL
i n R2
.
The r e s t r i c t i o n of t h i s map t o
l i f t a s a diffeomorphisrn on R
where
gJL
is Z
y
P
yIL
i s such t h a t i t s
has t h e form
periodic (see paragraph 3 ) .
for
Now, i f we i d e n t i f y
(cp,l)
Hopf b i f u r c a t i o n in R
with
, where cpE T1 , and FP(rp)
(Fp(q).O)
quotient of
2
83
= f (cp)
P
mod 1
, we o b t a i n t h e
T h [ 0,1] by t h i s equivalence r e l a t i o n , which i s a t o r u s
8 .
I n f a c t we have t h e diagram
I T1
li.
1
1=
yp
diffeomorphism between
T1
where
{Xo(cp);cpE
T1
_____9
T
i s t h e i n v a r i a n t closed curve, and and
y
, and where 7
P
P
Xo
is a
i s isotopic t o a
r o t a t i o n because of t h e form of (20). L e t us consider
such t h a t
Y(cp,O)
Thus t h e function the torus
.
T2
=
*
t h e s o l u t i o n of (1)
Xo(cp)
Y(cp,s)
.
By c o n s t r u c t i o n
r e s p e c t s t h e equivalence r e l a t i o n used t o d e f i n e
This shows t h a t t h e s e t
3c
We shall very o f t e n f o r g e t t h e d i s t i n c t i o n between t h e l i f t projection
7
; s o we s h a l l w r i t e
(PE T1
or
q$W
f
and t h e
i n t h e same way.
B i f u r c a t i o n o f Maps and A p p l i c a t i o n s
84
8
i s diffeomorphic t o a torus
6.
, and i s i n v a r i a n t by (1).
(Theorem of Bohl)
7
I f t h e diffeormorphism a rotation
R
Po
such t h a t
of PO
T1 i s , f o r a
po
#
0
, conjugate t o
, t h e n t h e s o l u t i o n s of (1) on t h e t o r u s
pot Q
'
a r e p s i p e r i o d i c , w i t h two p e r i o d s .
-
L.--
See paragraph 3 f o r t h e conditions on
Remark.
?
needed t o s a t i s f y t h e
assumption of t h e lemma. We have a homeomorphism
of
such t h a t
T1
We now d e f i n e
where
Y
was defined by (21) and
5
h = I d + Z p e r i o d i c i s t h e l i f t of
Then w(u,v+l) = Y[h -1( v - p o u + l ) , u ] = Y[h-l(v-po~),u] = W(u,v) w(uf1.v) = Y[h-l(v-p0u =
- P,),u+l]
Y[h-dRp (v-pou-Po),u]
= Y[f
oh
PO
= W(U,V)
,
-1 (v-p,u-Po),u]
.
0
So the s o l u t i o n s of (1) a r e of t h e form
t
(24)
X(XO(CP),P>t) = W(+cp)
where W
i s Z2 p e r i o d i c .
+
Po
t $
,
The lemma i s then proved, s i n c e
Po$ Q
.
.
2
85
Hopf bifurcation i n iR
Comments. The r o t a t i o n number
.
p(o) = Q o
that
either
(i)
=
Q0
p(p)
of
?
P
i s a continuous f u n c t i o n of
p
such
Then t h e r e a r e two p o s s i b i l i t i e s :
&Q 9
and t h e conditions of theorem
( s e e paragraph 3 ) a r e
4
r e a l i z e d , and t h e r e a r e two one-sided b i f u r c a t e d p e r i o d i c s o l u t i o n s , t h e period of which i s
qT
.
Only one of t h e s e p e r i o d i c s o l u t i o n s can be
a t t r a c t i v e , and only when the b i f u r c a t i o n occurs f o r (iij
o r , i n t h e o t h e r case
p(p)
p
>0
.
i s n o t c o n s t a n t i n a neighborhood of
0
.
I n t h i s case, when p ( p ) E Q t h e r e a r e some p e r i o d i c s o l u t i o n s corresponding, a s f o r ( i ) , t o closed t r a j e c t o r i e s on t h e t o r u s considered a s b i f u r c a t i n g t r a j e c t o r i e s . po
.
Now, when
P(po)
4Q
3P
, b u t they a r e not
The period depends of course on
, t h e r e g u l a r i t y of t h e diffeomorphism allows
us t o use t h e Denjoy theorem ( s e e paragraph 3 ) and we can then use
3c1 .
Lemma 6 t o s a y t h a t we have a q u a s i p e r i o d i c s o l u t i o n on t h e t o r u s
The i n t e r e s t i n g f a c t , i n t h e case ( i i ) ,i s t o know f o r what values of we have
p(p)E
of M. Herman [
of
p
Q or $ Q ! An i n d i c a t i o n f o r t h i s i s given by t h e result
9
such t h a t
] which l e a d s t o t h a t i n a neighborhood of P(p)k
, the s e t
Q has g e n e r i c a l l y a p o s i t i v e Lebesque measure.
more c l a s s i c a l r e s u l t i s t h a t t h e s e t of general
p= 0
a p o s i t i v e Lebesque measure too.
p
such t h a t
P(p)E Q
A
has i n
So we cannot ignore t h e s e both
p o s s i b l i l i t i e s i n order t o i n t e r p r e t experimental r e s u l t s .
6.
B i f u r c a t i o n i n t o a two dimensional i n v a r i a n t t o r u s f o r an autonomous d i f f e r e n t i a l equation. L e t us consider t h e d i f f e r e n t i a l equation i n R3
2 dt
= Gp(X)
,
p
86
Bifurcation of Maps and Applications
s u f f i c i e n t l y r e g u l a r , and assume t h a t
G
tb+ Xo(t,p)
is a
T(p) - p e r i o d i c
s o l u t i o n of (1). Let us put,
then (1) becomes
where
L ( t ) i s a l i n e a r operator and P
t
T(p) -periodic i n
B ( t ,* ) P
a non-linear one, which a r e
, and such t h a t
Let us c o n s t r u c t the Poincare' map as i n d i c a t e d i n c h a p t e r 11.3. S ( t ) and we know t h a t 1 i s a n eigenvalue of
matrix i s noted
P
The fundamental S [T(p)] P
.
We assume now: S 0[ T ( O ) ] has t w o eigenvalues
[".' Then f o r
xo#
0
p
5 such t h a t
*
S&T(p)]
(p) t h e eigenvector of
S&T(p)]
(c(p),<
$4
(p)) = 1
P Y = 0 i s defined i f
P
i(p)
,
thanks t o t h e p e r t u r b a t i o n theory. t h e eigenvector of
c(p)
such that
\Xo\ =1
,
, 1 i s a sim2le eigenvalue of S [ T ( p ) ]
and t h e r e a r e two o t h e r simple eigenvalues functions of
KO
and
.
21
i n a neighborhood of
p
Xo
YER3
.
*
i(p)
Let us n o t e
,
Then t h e p r o j e c t o r 1 - P
, by
which a r e r e g u l a r
CL
on t h e plane
Hopf b i f u r c a t i o n
ip
R
2
(5)
Let us w r i t e the Poincard map on t h i s plane F (Y ) = A Y +A(2)(Yo,Yo) +A(3)(~o,Yo,Yo)+ o ( l l ~ 4 ~) J I
(6)
F
O
Now Yo = z 5(p) +
P O
<(p)
P
P
,
.
and we use t h e expressions given i n 11.3 t o o b t a i n
As i n paragraph 5, we can d e f i n e t h e p e r i o d i c vector f u n c t i o n s
where
e
We r e c a l l t h a t w e defined i n chapter 11.3 the eigenvector
5
P
related
t o t h e eigenvalue 1, s o we can d e f i n e too, t h e p e r i o d i c v e c t o r functions
Then we o b t a i n f i r s t (notations of 11.3):
88
B i f u r c a t i o n of Maps and Applications
All these q u a n t i t i e s a r e easy t o compute for expansion of
k(p)
expansion of
S [ T(p)] P
; this
p = 0
.
Now we need the
i s given by the perturbation theory once known the
.
F i r s t , we have, by a fixed point argument :
Hopf b i f u r c a t i o n i n R
Let us define
then
m
2
89
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
90
Now we can compute
with
These formulas can be used i n t h e non-autonomous case of paragraph 5 ,
Remark. by doing
T1=T2
=O
.
Let us assume t h a t the necessary assumptions t o g e t an i n v a r i a n t closed curve
yP
restriction
where
gP
f o r t h e map FP f
of the map t o
P
- periodic
is Z
The projection
i n the plane
T~ of
f
P
y
P
P Y = 0 P
, are realized.
The
i s such t h a t
(see paragraph 3 ) .
We parametrize
as a map from T~
= d onto ~ T-l
by
yP
tpER
is a
diffeomorphism. The quotient of (FP('p),O)
(here
1 T X [ 0,1] b y the i d e n t i f i c a t i o n of
cpE T
1
) , leads t o a torus
The s o l u t i o n of (1) such t h a t
(cp,l)
l?a s i n paragraph
X l t = o = Xo(rp)E yP
with
5.
, can be w r i t t e n
.
Hopf b i f u r c a t i o n in iR
Let us d e f i n e a vector valued f u n c t i o n
where
$ € C"(B)
for a l l
p
11
i s such t h a t
, and where
$(O) = 0 7(Xo(rp),p)
t r a j e c t o r y s t a r t i n g a t t h e point plane
P Y = 0 k
Y(rp,s)
Xo(cp)
2
for
91
, sE[O,l]
cpER
, $(l) = 1 , $ (P) ( 0 )
=
by
= 0
$(')(1)
i s t h e time of f i r s t r e t u r n of a for
t
= 0
, and r e t u r n i n g on t h e
( s e e chapteS 1 1 . 3 ) .
Thanks t o the f a c t t h a t
t h e map onto at
SH s
To + ( T ( X ~ ( V ) ) p) , -To) $(s) i s a
[ 0, T ( X o ( ( P ) , p) 1
s = O
and
s = l
Cm
diffeomorphism from
[ O,l]
whose d e r i v a t i v e s (of a l l p o s i t i v e o r d e r s ) a r e e q u a l
.
Now, we have by c o n s t r u c t i o n
Therefore we can extend t h e d e f i n i t i o n of
Y
for a l l
sER
and we o b t a i n a r e g u l a r vector valued f u n c t i o n defined on R2 t h e equivalence r e l a t i o n used t o d e f i n e t h a t o r u s function
$(s)
T2
.
,
using
which r e s p e c t s
W e introduced t h e
t o make t h e parametrization of t h e t o r u s d i f f e r e n t i a b l e .
have j u s t shown t h a t t h e s e t
We
92
Bifurcation of Maps and Applications
i s diffeomorphic t o
!?
, and i s i n v a r i a n t b y (1).
Let us assume t h a t t h e diffeomorphism
R
jugated t o a r o t a t i o n
with
Po$ Q
PO
.
of
1 ,
T
,
po# 0
PO
Then a s i n lemma
i s con-
6 (see
paragraph 5 ) we can d e f i n e t h e vector f u n c t i o n
which i s Z2 p e r i o d i c .
Any s o l u t i o n
X(t)
of
(1) on t h e i n v a r i a n t t o r u s
X2 has t h e form iL
with
v ( t ) = pou(t) + h(cp)
diffeomorphism of
R
,
and
h Z -periodic.
The f u n c t i o n
b u t i t i s not i n g e n e r a l of t h e form k t
.
u
So the
formula (32) does n o t g i v e us a q u a s i p e r i o d i c s o l u t i o n on the t o r u s .
L e t us consider t h e equation (1) on t h e t o r u s e x p l i c i t e l y t h e system
(I=
we j u s t have t o s o l v e t h e system:
dt
(34)
as
du
'0
[h-l(v-p0u),u]*
= G PJ(Y[h-'(v-p0u),u])
52 iL
.
is a
To o b t a i n
Hopf b i f u r c a t i o n in R
By c o n s t r u c t i o n we may assume
2
93
6 i s ZZ2-periodic (;sing (28) and f
6(u,v)
#
0 on B2
, because
i n a neighborhood of t h e closed curve new parametrization
(a,b)
Gp(X)
t++ Xo(t,p)
= h - h p 0 h) WO
#
which i s
0 on T20
.
and
w
We wish t o f i n d a
of t h e t o r u s such t h a t t h e s o l u t i o n of (1) on
2
TCL w i l l b e
where
k
i s a c o n s t a n t t o be determined.
The v e c t o r f u n c t i o n
Z
w i l l be
determined by
Now we a r e looking f o r a diffeomorphism of B2
where
m
and
p
a r e Z2 p e r i o d i c .
Let us introduce new v a r i a b l e s i n s t e a d of
i t i s c l e a r that t h e map us d e f i n e
of t h e form
(U,V)M
(7,s)
(u,v)
:
i s a diffeomorphism of
pi2
.
Let
B i f u r c a t i o n of Maps and Applications
94
then (33), (34) becomes:
I /
= 0
,
2
=
"U(5,v)
,
dt
We can define too
and because of (35) we have:
Moreover because of t h e Z2 p e r i o d i c i t y of
m , p . we obtain
Hopf b i f u r c a t i o n i n W 2
95
So, by c o n s t r u c t i o n
and because of t h e c o n t i n u i t y of
&(!)
p
and
= c o n s t a n t , t h a t we can pose t o be
t h e d e f i n i t i o n (37) o f
Now, because of satisfying
b
m
and
pot Q
, t h i s leads t o
0 a f t e r a n eventual t r a n s l a t i o n i n
.
p(u,v) = pom(u,v)
, we have j u s t t o determine E(~,TI)
(43), and da = k g i v e s t h e equation: dt
hence
(44)
aii
where t h e unknown a r e
(45)
+&
= -1
fii(597)
=
-11
k and fii +
JV
k
'
. d5
This equation l e a d s t o
+
r(5)
,
0
and the r e l a t i o n s (43) g i v e :
A necessary condition of s o l v a b i l i t y of (46) i s t h a t t h e mean value of t h e
second member i s t h e same as f o r t h e f i r s t member.
Hence
k
i s determined by
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
96
This i s not s u f f i c i e n t i n general t o g e t possible the r e s o l u t i o n of
(46),
which i s a problem of the form
where
s
i s a known Z
periodic function of mean value
0
.
L e t us give
the important Lemma 7.
,r
(small d i v i s o r condition).
Let us assume s 1 s(()dz = 0 , k 2 2
t o be a
, and _7
Ck Z - p e r i o d i c function and assume t h a t c
>
0 and
c > 0 such t h a t
Then there e x i s t s a unique continuous s o l u t i o n
(48) and
' ( 5 - Po) - r ( 5 ) = s ( T ) k-1-E (= Ck-2,1-~ rE C )
r
of the equation
J
*
The proof of such a lemma can be found i n [ 8 ] , b u t a simpler r e s u l t i s
obtain by mean of Fourier s e r i e s , where it i s easy t o see, thanks t o (49) that
(50)
r E Ck-3
.
I n Pact, i f we write
-2irrnpo
r n = (e
-l)-lsn
,
Hopf bifurcation i n R
2
97
and (49) l e a d s t o
f o r a good
.
K > 0
Let us now assume t h a t t h e r o t a t i o n number can f i n d a s o l u t i o n
Po
s a t i s f i e s ( 4 9 ) , t h e n we
of (48) and t h i s l e a d s t o t h e knowledge of
r
fi(5,T)
If we v e r i f y t h a t (37) i s a diffeomorphism, t h i s w i l l be t h e s o l u t i o n
by (45).
of our problem, because (45) i s equivalent t o (35). We have i n R
2
and t h e jacobian of t h i s map i s
by (44) and (47). i n R2
, which
So t h e map
(u,v)l-+ (a,b)
passes t o t h e q u o t i e n t on
i s a r e g u l a r change of v a r i a b l e s
T2 because of t h e r e l a t i o n s (43).
We have proved Theorem '7.
(Kolmogorov)
Assume t h a t for
.
po#o
, t h e r o t a t i o n number Po$
on t h e i n v a r i a n t b i f u r c a t i n g curve
yP
Q
of t h e diffeomorphism,
, s a t i s f i e s t h e small d i v i s o r c o n d i t i o n
(49), and assume t h a t t h i s diffeomorphism i s conjugated t o a r o t a t i o n t h e s o l u t i o n s of (1) on t h e i n v a r i a n t t o r u s
*
,
then
a r e quasi-periodic w i t h two T2 P
periods.
*see,
f o r t h i s condition, t h e Denjoy theorem and t h e t h e s i s of M. Herman f o r a r e g u l a r conjugation [ 8 I .
B i f u r c a t i o n of Maps and A p p l i c a t i o n s
98
Remark 1.
It i s a c l a s s i c a l r e s u l t (see [ 8 ] ) t h a t we have (49) f o r almost a l l
Po
(Lebesgue measure). Remark 2 . When (49) i s not v e r i f i e d it may be impossible t o f i n d a continuous s o l u t i o n of (48), hence t h e s o l u t i o n s of (1) need not be q u a s i p e r i o d i c i n such cases (see a counter-example i n [ 3 1 ] ) . Remark 3 . I n t h e case when t h e s o l u t i o n i s q u a s i periodic on t h e t o r u s , t h e two periods a r e
l/k
and
where
l/pok
k
i s determined by (47). Moreover,
thanks t o (40) we have
because i f we consider a t
-1
t = 0 , q 0 = h ([-Po)
we obtain a t
5=-1
3c
and t h i s period i s t h e mean value of t h e time of f i r s t r e t u r n of t h e t r a j e c t o r i e s on t h e t o r u s .
So,
l/k
is close t o
To
.
Comments. A s i n t h e case of paragraph
t h e r o t a t i o n number of the map
5, we have a continuous function
?
P
of
T1 such t h a t
gives a c i r c l e reduced t o a point!)
*It
-__(_-.-I___
l . _ _
--
~
--
p(o) =
? PO
(but
for p = o
~-
i s a mean value with t h e unique p r o b a b i l i t y measure on
under
e0
P(p)
(image of t h e Lebesque measure by
h-l
)
.
T1
invariant
Hopf b i f u r c a t i o n in R
(i) I n the case when
2
99
4
and t h e conditions of theorem
B o = p/qE Q
(see
paragraph 3) a r e r e a l i z e d , t h e r e a r e two one s i d e d b i f u r c a t e d p e r i o d i c s o l u t i o n s , t h e periods of which a r e
near
.
qTo
(hly one of t h e s e p e r i o d i c s o l u t i o n s 0
.
i s not constant i n a neighborhood of
0
can be a t t r a c t i v e , and only when t h e b i f u r c a t i o n occurs f o r (ii) I n t h e other c a s e p(po)€
p(p)
Q t h e r e a r e closed t r a j e c t o r i e s on t h e t o r u s
When
p(po)t
the t o r u s
.
, some a r e a t t r a c t i v e ,
7 we
32$ .
Now, i f
p(po)+ Q
but does not s a t i s f y t h e
do not know how i s t h e s t r u c t u r e of t h e flow on
9P .
I n f a c t , a n important r e s u l t of M. Herman [g 1 says t h a t t h e set of such t h a t
s a t i s f i e s t h e conditions of theorem
p(p)
p o s i t i v e Lebesgue measure.
We have t o o
{p;p(p)
E
$3
both p o s s i b i l i t i e s a r e observable i n experiments when
7.
Exercise.
7 has
and expressed i n
C
F
CI
generically a
p
varies.
%
*
i s a s r e g u l a r a s we wish f o r t h e computation,
by
Fp(z) = X(p)z + A2(prz) +
a s i n paragraph 1. Assume t h a t closed curve i s given by
p
of p o s i t i v e measure.
P r e c i s e computation of t h e i n v a r i a n t c i r c l e
Let us assume t h a t
(1)
When
Q and s a t i s f i e s t h e conditions of theorem 7 , t h e n t h e
flow i s quasi-periodic on conditions of theorem
>
So t h e flow s p i r a l s between two such closed
the o t h e r r e p e l l i n g on t h e t o r u s . curves.
3CL
p
0
#
... 0
.
Then show t h a t t h e i n v a r i a n t
So,
B i f u r c a t i o n o f Maps and A p p l i c a t i o n s
100
( ~ 1 ~ needs ’ ~
Show t h a t t h e term i n
-(aA3 0 , z ) z(cp,p)
,
u 2 -(O,z)
b
, Aj(O,z) ,
d2h ~ ( 0 ) For t h e computation of d!J it i s p o s s i b l e t o use t h e way of t h e f i r s t p a r t of the proof of
, Aq(O,z)
aiL
t h e c o e f f i c i e n t s of
, A5(0,z)
,
.
and
theorem 5 .
8. Domain of a t t r a c t i v i t y and uniqueness of t h e i n v a r i a n t c i r c l e . Let u s consider t h e map F
u
( 1 ) (F,(z)(
= IzI(1
+u
i n i t s canonical form ( l . 5 ) y then ( i f A 5 0
Rehl- alzl 2 + O(1zI4 +
L e t u s assume t h a t a> 0 ( i n t h e case a
1zI2 +
#
1)
Iu12)).
0 i t is easy t o modify t h e proof
t o g e t similar r e s u l t $ . We consider
I
E
> 0 and K
i f z€E1 ;
1
> 0 ( l a r g e enoughland we
d e f i n e t h e annuli E
1
IFv(z
(2)
We may choose E small enough [ s a y
E
6
) and 11-11 small enough t o show t h a t
Hopf b i f u r c a t i o n i n W
if zEE1
2
101
U E2, t h e r e e x i s t s n such tkiat
This completes t h e proof of theorem 1 , t o show t h a t t h e domain of a t t r a c t i v i t y of t h e i n v a r i a n t c i r c l e c o n t a i n s t h e a n n u l u s
I n t h i s proof we u s e t h e assumption X 5 # 1 , t o b e a b l e t o choose
E
=
t o e n t e r t h e frame of theorem 1 .
It i s n o t necessary i n f a c t . I n t h e case X5 = 1 , we may do t h e same proof a s at theorem 1 b e f o r e t h e 2nd-step i n posing t h e change of v a r i a b l e :
r = ro(u) (
+ p 1 l 4 x ) , ( p 1 i 4 i n s t e a d of p 1/ 2 )
.
It i s c l e a r i n ( 2 ) t h a t i f me r e p l a c e K l p l 2 by K[vi3/2 and the result
3) s t i l l h o l d s . . .
E
by p
1/4
Bifurcation of Maps and Applications
102
Comments on Chapter 111.
( s e e a l s o t h e comments a t t h e end of $111.5 and §111.6).
The type of b i f u r c a t i o n i n t h i s c h a p t e r i s c a l l e d Hopf b i f u r c a t i o k a u e t o the f a c t that
E. Hopf (1942) has f i r s t given an a n a l y t i c way t o compute
t h e closed o r b i t b i f u r c a t i n g from a f i x e d point f o r a f i n i t e dimensional vector f i e l d (see [ 251 f o r a t r a n s l a t i o n of h i s p a p e r ) . The proofs of Lemma 1 and theorem 1 come from 1221, [ 2 5 ] except f o r t h e regularity i n
of t h e i n v a r i a n t c i r c l e
further bifurcations.
.
yp
This one i s u s e f u l f o r
The use of normal forms i s due t o J. MCtjER.
They a r e
extensively used i n a l l t h i s chapter. Theorem 2 g i v e s a p a r t i a l answer t o an open q u e s t i o n which i s what happens if
CY =
O ? (a being defined by (l2), (15) of $1). See remark 1. This q u e s t i o n
i s r e l a t e d t o t h e following open problem:
assume
f i n d a change of v a r i a b l e s such t h a t t h e map
where
@;)L
F
LL
Xn
0
#
1 Vn€N\{O)
, then
t a k e s t h e form
i s smooth.
Theorem 4 ( t h e weak resonance case) i s t h e n a t u r a l c o n t i n u a t i o n of t h e study of chapter IV ( s t r o n g resonance).
The terminology i s due t o
V.I. ARNOLD [l]. Theorems 3,4,5 give a n i d e a o f t h e way t o compute t h e asymptotic expansion of t h e r o t a t i o n number of the r e s t r i c t i o n of
F
on t h e i n v a r i a n t c i r c l e
yP The only problem f o r t h e reader who wishes t o do t h a t i s t o f i n d enough t i m e
P
before h i s retirement. Nevertheless, the knowledge of t h e r o t a t i o n number a s a f u n c t i o n of
i s fundamental i f we wish t o understand t h e asymptotic behavior of t h e
I*] see
f o o t n o t e on n e x t page.
p
*
Hopf b i f u r c a t i o n i n R
diffeomorphism on I n paragraph
y
P
4 we
2
( s e e the comments of '$111.5 and
103
§111.6).
compute a l l t h e c h a r a c t e r i s t i c s of t h e p e r i o d i c s o l u t i o n
which b i f u r c a t e s , even t h e period, i n t h e aim t o show t h a t nothing i s impossible t o t h e one who i s awaked e a r l y morning. I n paragraph
5 and 6 we p r e c i s e t h e behavior of t h e t r a j e c t o r i e s and of
t h e s o l u t i o n s on t h e b i f u r c a t e d t o r i . from
Theorem
6 comes from [7] and theorem 7
[31].
(*) T h i s type
o f b i f u r c a t i o n f o r v e c t o r f i e l d s was first observed by Poincare (18921, l a t e r i n a s p e c i a l c a s e by Andronov (193o)j E.Hopf (1942) gave t h e f i r s t proof i n a more g e n e r a l case f o r t h e f i e l d s . F o r t h e maps Neimark (Ook1.129 (1959)) gave i n d i c a t i o n s on t h e r e s u l t , Sacker (1964) was t h e f i r s t t o g i v e t h e f u l l proof a n d t h e non resonant conditions ( s e e r e f e r e n c e s i n r251 a n d [ X i ) .