Important Results on External Cylindrical Plunge Grinding with Unusual Workpiece Peripheral Speeds and Speed Ratios q in the Range of -0.2 to -20 000 E. Salje ( l ) , H. Teiwes, H. Heidenfelder
The s p e e d r a t i o g i s d e f i n e d a s q u o t i e n t of c u t t i n g s p e e d v and workDiece p e r i p h e r a l speed v a t t h c p r i n c i p l e p o i n t D. The s p e e d r a t i o map be g e g a t i v e o r p o s i t i v e ( u p - g r i i & i n g o r down-grinding)
.
The g r i n d i n g p r o c e s s i s i n f l u e n c e d by t h e s p e e d r a t i o . The c u t t i n a t r a c e s of t h e s i n q l e g r a i n s a r e n e a r l y c i r c i l l a r f o r h i g h s p e e d r a t i o s and c a n b e e x t r f m e l v c y c l o i d i c f o r l o w speed r a t i o s . Speed r a t i o s q between $0 and 1 0 0 a r e n o r m a l l v used fo; most e x t e r n a l p l u n g e grinding operations. I m p o r t a n t c h a r a c t e r i s t i c q u a n t i t i e s of t h e g r i n d i n g p r o c e s s l i k e w o r k p i e c e r o u g h n e s s , c u t t i n g forces, q r i n d i n g t e m p e r a t u r e and wheel wear a r e p r e s e n t e d a s f u n c t i o n s of t h e s p e e d r a t i o . For t h e f i r s t t i m e t h e s p e e d r a t i o was v a r i e d between 0 . 2 and 2 0 0 0 0 . The wheel s p e e d and t h e m e t a l removal r a t e were c o n s t a n t . The i n v e s t i g a t i o n s were made w i t h aluminium o x i d e w h e e l s and w i t h a CBN-wheel i n c r e e p f e e d g r i n d i n g .
I r h r o d u c t iou G r i n d i n y p r o c e s s e s can b e d e s c r i b e d by c h a r a c t e r is t i c v a l u e s . Among o t h e r c h a r a c t e r i s t i c s t h e speed ral-io q and t h e r e l a t i v e s p e e d vrel a r e i m p o r t a n t . The r e l a t i v e s p e e d r e s u l t s from t h e g e o m e t r i c sum of p e r i p h e r a l s p e e d of t h e g r i n d i n g wheel and workpiece.
and vs speed vft
v
principal
60
ft
=
1 *-*v
-q
(1)
s
The c a s e of a c o n s t a n t p e r i p h e r a l vft
In u s u a l y r i n d i n g p r o c e sse s t h e speed r a t i o q lies between 20 and 100 / 1, 2 / . This a l s o applies t o
-
15 m/s. The w o r k p i e c e p e r i p h e r a l h a s a n e g a t i v e s l o p e f o r a double-logar i t h m i c scale and f o l l o w s t h e € u n c t i o n :
m/a
In e x t e r n a l c y l i n d r i c a l p l u n g e g r i n d i n g t h e
p e r i p h e r a l s p e e d of t h e w o r k p i e c e is t h e f e e d motion
s p e e d vg is c o n s t a n t . f o r example vs
ripheral
and
a
changing
workpiece
speed
p e r i p h e r a l w h e e l s p e e d v s is
also t h i n k a b l e b u t s h a l l , however, n o t b e d i s c u s s e d here.
h i g h s p e e d gr i n d i n g . For some y e a r s c r e e p f e e d g r i n d i n g is i n u s e .
This process c a n b e a p p l i e d for c o n t i n u o u s and d i s c o n t i nuous y r i n d i n g . C r e e p f e e d g r i n d i n g is c h a r a c t e r iz e d by s p e e d r a t i o s , which l i e o v e r 1000, sometimes up t o 20000. T e s t r e s u l t s f r o m c r e e p f e e d g r i n d i n y are well known and p u b l i s h e d i n l i t - e r a t u r e
The r a d i a l i n f e e d f r h a s a p r o p o r t i o n a l b e h a v i o u r Lo t h e s p e e d r a t i o q , a c c o r d i n g t o e q u a t i o n ( 3 ) . The p r o d u c t of r a d i a l i n f e e d f r and w o r k p i e c e p e r i p h e r a l s p e e d vft g i v e s t h e constant material remov a l r a t e p e r u n i t wheel w i d t h Q ' The r e l a t i v e s p e e d vrel
.
r e s u n s from:
/ 3 , 4 , 14 e t a l . / . Up(q
.,r- -
I
With t h e g r i n d i n g r e s u l t s shown h e r e it w a s a t t e m p Led
f o r t h e f i r s t t i m e t o enter i n t o other regions
of s p e e d r a t i o s q. T h i s is e x p l a i n e d i n f i g . 1. F i g u r e l a shows a n a r r a n g e m e n t of w o r k p i e c e and g r i n d i n g w h e e l w i t h t h e t w o v e c t o r s of t h e g r i n d i n g w h e e l p e r i p h e r a l s p e e d vg and t h e w o r k p i e c e p e r i p h e r a l s p e e d vCt (vw). A c c o r d i n g t o IS0 t h e wheel p e r i p h e r a l s p e e d is c a l l e d vc. Only i n t h e case of t h e c y l i n d r i c a l g r i n d i n g w h e e l examined h e r e , vc c o r r e s p o n d s t o v . The e x p e r i m e n t s were c o n d u c t e d under t h e p r e m i s e t h a t t h e material removal r a t e p e r u n i t w h e e l w i d t h
Q' and t h e g r i n d i n g w h e e l p e r i p h e r a l s p e e d vs and t h e r e f o r e t h e equivalent grinding thickness h reeq mained c o n s t a n t ( h -Q'/vs). 99 F i y u r e l b shows t h e
development
of
the
--c-
grinding
w h e e l p e r i p h e r a l s p e e d v : ~ ,t h e w o r k p i e c e p e r i p h e r a l s p e e d v T L , Lhe r e l a t i v e s p e e d vrel and t h e r a d i a l speed ratto - q
i n f e e d f r as a func-tion of t h o s p e e d r a t i o q . As u p - g r i n d i n g is u s e d , t h e s p e e d ratio y is n e g a t i v e . l o q a r i t h m i c s c a l e was c h o s e n t o b e a b l e t o show t h e whole r a n g e of t h e s p e e d r a t i o q.
-
A
F i g u r e 1:
G r i n d i n g wheel- and w o r k p i e c e p e r i p h e r a l speed,
In t h e c a s e c o n s i d e r e d h e r e t h e g r i n d i n g w h e e l
Annals of the CIRP Vol. 32/1/1983
pe-
r e l a t i v e s p e e d and r a d i a l i n f e e d
as a f u n c t i o n of t h e s p e e d r a t i o .
241
For speed r a t i o s Iql-, t h e r e l a t i v e speed vrel r u n s a g a i n s t vs a s y m p t o t i c a l l y and for speed r a t i o s lql-0 asymptotically against v f r . Only for speed r a t i o s q610 t h e r e l a t i v e speed v r e l d i f f e r s n o t i c e a b l y from t h e g r i n d i n g wheel p e r i p h e r a l speed v s . T h i s c o r r e s p o n d s t o t h e "new range" examined for t h e f i r s t time
10rEK60Kbke CkLSN
fad =
I
O.Lmm
The c o n d i t i o n s f o r q = -1 a l s o appear t o be i n t e resting. For a c o n s t a n t material removal r a t e Q ' t h e r a d i a l i n f e e d f r corresponds t o t h e e q u i v a l e n t yrinding thickness h
as t h e g r i n d i n g wheel p e r i -
eq'
p h e r a l speed vs is i d e n t i c a l t o t h e workpiece p e r i p h e r a l speed v f t . The t e s t s wheels i n
-
speed rotio - q I
OD1
were conducted w i t h aluminium o x i d e t h e whole range of t h e speed r a t i o men-
tioned. I n t h e range of c r e e p f e e d g r i n d i n g CBNg r i n d i n g wheels were a l s o t a k e n i n t o c o n s i d e r a t i o n .
0.1
1 10 rodial infeed 1,
I
300wO
1000 pm 10000
30
300
3
0.3
workpiece peripheral speed v,,
16977 0
Figure 2 :
3000
mmh
100
C a l c u l a t e d and r e a l geometric and matic c o n t a c t l e n g t h t h e speed r a t i o .
kine-
a s a f u n c t i o n of
SDeed R a t i o an-d Conditions of Contact between Grine i n a Wheel and Wor kDiece The speed r a t i o q is t h e q u o t i e n t of t h e wheel
pe-
r i p h e r a l speed and t h e workpiece p e r i p h e r a l speed q = vs/vft. I f , i n t h e c a s e of e x t e r n a l c y l i n d r i c a l plunge g r i n d i n g t h e speed r a t i o q is changed, w h i l e
F l f e ~ f - s_sr..th_eGrinal~-eroceev
t h e m a t e r i a l removal r a t e Q ' and t h e wheel p e r i p h e r a l speed vs a re h e l d c o n s t a n t . t h e n f r changes accord ingl y -
The e f f e c t s of t h e speed r a t i o on t h e workpiece roughness have t o be t a k e n i n t o c o n s i d e r a t i o n for
rr Q'
7
igt
-
vEr
-
* dw
7f
0
fr *
vft
(4)
The g e o m e t r i c length of engagement between workpiece and g r i n d i n g wheel is c a l l e d g e o m e t r i c a l contact length
1
4
.
Beside
this,
the
kinematic
2.
The i n f e e d per workpiece r e v o l u t i o n is g r e a t e r ILhan t h e workpiece rouyhness ( c r e e p f e e d g r i n rl ing ) The i n f e e d per
than
the
workpiece
workpiece
revolution
is
less
roughness ( " r e c i p r o c a t i n g
y r inding')
l e n g t h lk is of importance, e s p e c i a l l y i n
grinding
t h e c a s e of h i g h p e r i p h e r a l s p e e d s of t h e workpiece. T h i s g i v e s t h e l e n g t h of t h e c y c l o i d i c p a t h on t h e workpiece. The t h e o r e t i c a l geometric c o n t a c t l e n g t h is c a l c u l a t e d from / 5 , 6 / as: lg
-
(fr
deq)
1/1
tf
lg/vs
vs * Rz j=-=
.
into
-RZ
Iql
"ft * fr
(7)
lk lg (ltl/lql) (8) T h i s c a l c u a l t i o n b a s e s on i d e a l smooth b o d i e s .
takes
l e n g t h . The c h a r a c t e r i s t i c g r i n d i n g v a l u e J shows ILhe l e n y t h of g r i n d i n g wheel c i r c u m f e r e n c e , which
covered i n t h e d i r e c t i o n o€ t h e plunge motion.
(6)
with
The workpiece roughness is i n f l u e n c e d by t h e characteristlc g r i n d i n g v a l u e j and t h e c o n t a c t
has t o g r i n d a l o n g i t u d i n a l element of t h e workpiec e c i r c u m f e r e n c e , u n t i l t h e d i s t a n c e RZ h a s been
(5)
and t h e t h e o r e t i c a l k i n e m a t i c g r i n d i n g l e n g t h as:
one
two d i f f e r e n t r a n g e s : 1.
(3)
Q ' / V ~
WOrkp i_eceRo.w!!-ess
f
T h i s e q u a t i o n a p p l i e s f o r range If
c o n s i d e r a t i o n t h e a v e r a g e peak t o
v a l l e y roughness RZ of t h e workpiece, t h e n one obt a i n s t h e r e a l g e o m e t r i c a l c o n t a c t l e n g t h leg:
(
11)
r 2
("reciprocating
grinding"). I n range 1 ( c r e e p f e e d g r i n d i n g ) J = I q l , as t.he s u r f a c e of t h e workpiece h a s t o be ground over a t least once. A c o m b i n d i o n of t h e r e a l k i n e m a t i c g r i n d i n g l e n g t h
lek w i t h t h e c h a r a c t e r i s t i c g r i n d i n g v a l u e j r e sults i n t h e f o l l o w i n g e q u a t i o n Tor RZ:
I n t h e sdme way t h e
effective
kinematic
grinding
l e n g t h can be d e r i n e d :
F i y u r e 2 shows t h e behaviour of Lhe d i f f e r e n t conLact l e n g t h s as d f u n c t i o n of t h e speed r a t i o q . While 1 - lk -leg= leki n t h e area OF h i g h speed 9 r a t i o s . t h e y d i f f e r c o n s i d e r a b l y when t h e speed r a t i o q i s low. The g r e a t range which is covered by t h e c o n t a c t lengths increases i n proportion with t h e s q u a r e r o o t of t h e speed r a t i o q .
242
-
In ranye 1 w i t h RZ/fr 1 and a high speed r a t i o q , q u a t i o n ( 1 3 ) s i m p l i f i e s Lo:
ILions and t h e b e h a v i o u r of t h e g r i n d i n g wheel w i t h Lha t i m e . The k i n e m a t i c c o n d i t i o n s h a v e no more
From t h i s t h e r e r e s u l t s :
influence
on
this
value.
The development of t h e
r o u g h n e s s RZ/Rzmax as a f u n c t i o n of t h e s p e e d r a t i o shows a wide maximum i n t h e p r e v i o u s l y used r a n g e lJnUer t h e p r e m i s e t h a t t h e r e a l k l n e m a t i c l e n g t h lek is o n l y i n f l u e n c e d by R L , ( R / > 1 ) eyUdt.lon ( 1 3 ) becomes: L fr
grinding in range 2
( s h a d e d a r e a , f i g u r e 3 ) . If t h e c o n d i t i o n f r > R Z ( c r e e p t e e d ) was e x c e e d e d . t h e r o u g h n e s s d e c r e a s e d t.owards t h e b o r d e r v a l u e R zO/Rzmax. A break in t h e c u r v e o c c u r e d f o r aluminium o x i d e w h e e l s as w e l l a s for CBN-Wheels. The p o s i t i o n of t h e b r e a k is among o t h e r t h i n g s d e p e n d e n t on t h e c h o s e n s e t t i n g c o n d i -
In t h i s t h e
characteristic
grinding
value
in
J
e q u a t i o n ( 3 ) w a s i n s e r t e d i n t o e q u a t i o n (11). From c o n v e r s i o n and c o m b i n a t i o n t h e r e r e s u l t e d :
In t h e range t i o n s and t h e w h e e l s p e c i f i c a t i o n . t h e r o u g h n e s s d e c r e a s e d w i t h a d e c r e a s i n g q, fr
b o r d e r v a l u e RzO/RZmax.
The r a d i a l i n f e e d and t h e p e r i p h e r a l s p e e d of t h e workpiece have t o be considered f o r t h e border c a s e development of r o u g h n e s s for t h e s p e e d r a t i o s I q l - 0 and I q l --.
I n t h e upper p a r t of f i g u r e
3
calculated
of
development
the
theoretically
the
roughness
was p l o t t e d . A v e r y good a g r e e ment between t h e t h e o r e t i c a l and e x p e r i m e n t a l l y deRztheo/Rzmaxtheo
t e r m i n e d development of t h e r o u g h n e s s r e s u l t e d .
For a v e r y s m a l l q t h e t o o l is m u t i o n l e s s i n compa-
The r a d i a l i n f e e d p e r r i s o n t o t h e workpiece. w o r k p i e c e r e v o l u t i o n a p p r o a c h e s z e r o . The i n d i v i d u a l c u t t i n g p r o f i l e s s u p e r p o s e on a m u l t i p l e of t h e w o r k p i e c e c i r c u m f e r e n c e on n e a r l y one w o r k p i e c e diameter.
The r e s u l t i n g t r a n s v e r s e r o u g h n e s s R Z of
t h e w o r k p i e c e c o r r e s p o n d s t o t h e s p a r k o u t roughness. The l o n g i t u d i n a l r o u g h n e s s of t h e w o r k p i e c e
Gr i n d i n y F o r c e s and Energy Req_uu.g-e-m=nfs The g r i n d i n g forces a r e d e c i s i v e l y d e t e r m i n e d , among o t h e r t h i n g s . by t h e a c t i v e g r a i n c o u n t N act' which is engaged a t a n y moment. They are t h e p r o d u c t of r e a l g e o m e t r i c a l c o n t a c t a r e a Ak and t h e a c l i v e g r a i n c o u n t p e r u n i t a r e a Nacta
becomes n e a r l y z e r o on a c i r c u m f e r e n c e l i n e .
Nact
For v e r y h i g h s p e e d r a t i o s t h e w o r k p i e c e is m o t i o n l e s s r e l a t i v e t o t h e g r i n d i n g wheel.
nearly By Su-
p e r p o s i t i o n of t h e c u t t i n g p r o f i l e s af t h e g r i n d i n g w h e e l , t h e s p a r k o u t r o u g h n e s s / 7 / as a t r a n s v e r s e r o u y h n e s s is produced on a s h o r t s e c t i o n of t h e w o r k p i e c e c i r c u m f e r e n c e , i n s p i t e of t h e r a d i a l i n Coed.
The w o r k p i e c e roUghneSS on a w o r k p i e c e
cir-
c u m f e r e n c e l i n e a g a i n becomes z e r o . 0'= 3mm3/mm s
, v.
=
leg
Nact
(18)
Ak ' N a c t a
lu
'
*
Nacta
(19)
The c o m b i n a t i o n g r i n d i n g w h e e l - w o r k p i e c e ,
dressing
c o n d i t i o n s and t h e b e h a v i o u r of t h e g r i n d i n g w h e e l s w i t h t h e t i m e h a v e f u r t h e r i n f l u e n c e on t h e development of t h e g r i n d i n g f o r c e s . The normal- and t a n g e n t i a l f o r c e s shown i n f i g . 4 as a f u n c t i o n of t h e s p e e d r a t i o showed n e a r l y no A c h a n g e when q i n c r e a s e d f o r low s p e e d r a t i o s . marked i n c r e a s e was o n l y o b t a i n e d i n t h e r a n g e of
=60m/s
c r e e p f e e d g r i n d i n g . a s was a l s o found f o r
surface
g r i n d i n g / 3 , 4/ 0'
z
3mm3/mm s
,
y :60m/s,
d,, =lOOmm
/ 1-
I
a01
0.1
I
10
rodm I Infeed f.
300oW 8971 0
F i g u r e 3:
mm/s
3000 -workpiece
300
-
100
30
1000 pm 10000
3
0.3
e m
l
-
peripheral speed v,,
The i n f l u e n c e of t h e s p e e d r a t i o on workpiece roughness
the
I
L&-F;lEKl
I
0 -----id-.+-02 2 20
, on1
200
300000
-
2000
20000
I
I
2 m o
speed ratio - q
0.1
1
10
radial infeed f, 16975 0
F; lCBNl / - -
mm/s
3000
-workpiece
300
100
30
1000 pm 10000
3
0.3
peripheral speed w4,
The c o n s i d e r d t i o n of t h e b o r d e r c a s e showed t h a t i n bo1.h p o s s i b l e b o r d e r c a s e s of t h e s p e e d r d t i o t h e :=me rouyhness occurs,
which
corresponds
to
the
s p a r k o u t r o u g h n e s s . The s p a r k o u t r o u g h n e s s R L O is o n l y d e t e r m i n e d by t h e q r i n d i n q wheel s p e c i f i c a -
Figure 4:
C r i n d i n g f o r c e s d e p e n d e n t on t h e s p e e d r a t i o i n r e l a t i o n t o t h e c o n t a c t condi-
tions.
243
In t h e r a n g e examined t h e l e v e l of f o r c e a c h i e v e d by t h e CBN-grinding wheel was about 5 t i m e s h i g h e r
The p a r a m e t e r s of t h e p r o c e s s i n f l u e n c e t h e temper a t u r e s produced i n t h e c o n t a c t a r e a / 10, 11, 12/.
t h a n f o r t h e aluminium o x i d e wheel. CBN-grinding wheels have a number of c u t t i n g e d g e s , which is l o wer by a f a c t o r of 2 0 - 60 t h a n a comparable a l u -
R i s i n g t a n g e n t i a l f o r c e s r e s u l t in h i g h e r c o n t a c t a r e a t e m p e r a t u r e s and i n c r e a s e t h e danger of t h e r mal damage t o t h e s u r f a c e l a y e r
minium o x i d e wheel of t h e same g r i t s i z e / 8 / . In s p i t e of t h e g r e a t e r c h i p t h i c k n e s s caused by t h i s . g r e a t e r f o r c e s r e s u l t a c c o r d i n g t o / 8 / because of t h e c o n s i d e r a b l y h i g h e r bond h a r d n e s s . In a d d i t i o n Lhe f o r c e s a r e i n f l u e n c e d by t h e c h a r a c t e r i s t i c s of t h e workpiece m a l e r i a l . The q u a l i t a t i v e developments of t h e g e o m e t r i c cont a c t l e n g t h s 1 and 1 and t h e a c t i v e g r a i n count 9 eg per u n i t a r e a Nacta and Nact a r e shown i n f i g u r e 4 . When t h e speed r a t i o i n c r e a s e s t h e a c t i v e g r a i n count per u n i t area d e c r e a s e s w h i l e
the
In t h e
range
of
h i g h speed r a t i o s t h e number of c u t t i n g edges i n c r e a s e s more r a p i d l y t h a n t h e t o t a l f o r c e / 3 , 4 / . S m a l l e r normal f o r c e s c a u s e less d e f o r m a t i o n s of t h e system workpiece-tool-machine. The f a u l t s i n measurements and shape t h e r e f o r e d e c r e a s e i n c r e a s i n g speed r a t i o .
s u r f a c e of t h e workpiece a t a h i g h v e l o c i t y . Under comparable c o n d i t i o n s ,
especially
in
creep
f e e d g r i n d i n g . damages t o t h e s u r f a c e l a y e r a r e l o wer when using CBN-grinding wheels T h i s can be e x p l a i n e d by t h e lower g r a i n c o u n t .
geometric
c o n t a c t l e n g t h i n c r e a s e s (see f i g . 2). A s a f u n c t i o n of q t h e r e r e s u l t s a development of c u t t i n g edges a c t u a l l y engaged Nact, which is v e r y s i m i l a r t o t h e development of t h e f o r c e .
High p e r i p h e r a l s p e e d s of t h e workpiece reduce t h e danger of t h e r m a l damages i n t h e o u t e r l a y e r s of t h e workpiece. The s o u r c e of h e a t moves over t h e
with
an
The t a n g e n t i a l f o r c e is a measure f o r t h e energy required during t h e grinding process / 9 / . The
G r i n d i n g wheels wear d u r i n g g r i n d i n g i n g r a i n and A t t h e same t i m e t h e g r i n d i n g wheel topobond. graphy changes a s d f u n c c i o n of t h e t i m e . Transie n t and s t e a d y s t a g e s of t h e wear behaviour can be defined
A f t e r a c e r t a i n t i m e t h e wheel topography
remains c o n s t a n t , t h e s t e a d y s t a g e h a s been reached / 1 ? / . The wear behaviour of g r i n d i n g wheels is among o t h e r t h i n g s i n f l u e n c e d by t h e combinations of g r i n d i n g wheel dnd workpiece and t h e s e t t i n g
cut
Londitions. In t h e t r a n s i e n t s t a g e d r e s s i n g condit i o n s can have dn d d d i t i o n a l d e c i s i v e i n f l u e n c e .
One h a s t o d i f f e r e n t l a t e between t h e s p e c i f i c e n e r -
CBN- and aluminium o x i d e wheels d i f f e r i n t h e i r beh a v i o u r over t h e t i m e . With comparable g r a i n s i z e s t h e change i n topography of CBN-grinding wheels can occur a b o u t 20 times slower t h a n i n t h e c a s e of
s p e c i f i c energy ec n e c e s s a r y per
unit
volume
can be c a l c u l a t e d a c c o r d i n g t o :
gy on t h e s i d e of t h e g r l n d i n g wheel ecs , and on t h e s i d e of t h e t o o l ecw. The t o t a l e n e r g y 1s t h e
aluminium o x i d e wheels / 8 / .
sum of b o t h p a r t s .
The aluminium o x i d e wheels used i n t h e tests
While t h e p a r t ecw is n e g l i g i b -
l y s m a l l f o r low workpiece p e r i p h e r a l s p e e d s , it becomes d e c i s i v e f o r t h e t o t a l energy i n t h e c a s e of h i g h workpiece p e r i p h e r a l s p e e d s . There r e s u l t s
a bucket shaped c u r v e f o r ec a s a f u n c t i o n of t h e speed r a t i o ( f i g . 5 ) The s p e c i t i c energy ec inc r e a s e d c o n s i d e r a b l y f o r b o t h g r i n d i n g wheels i n t h e r a n g e of c r e e p f e e d g r i n d i n g While i n c r e a s e d power is r e q u i r e d f o r t h e g r i n d i n g wheel when g r i n d i n g w i t h a h i g h q , c o n s i d e r a b l y h i g h e r power is r e q u i r e d f o r d r i v i n g t h e workpiece if q i a small.
2ooiE K 6 0 KB'ke
-'
-. .
_.
CBN M252 SN l00N EVLCo
CkL5N
-1
5
still
showed i n s t a t i o n a r y behavlour f o r a g r i n d i n g t i m e of t c - 16 s . A f t e r t h i s t i m e t h e end of t o o l l i f e w a s reached f o r h i g h speed r a t i o s ( c r e e p f e e d g r i n ding).
The g r i n d i n g wheel
began
to
chatter
and
burn marks dppedred on t h e workpiece. T h i s i n d i c a t e d i n t e n s i v e b l u n t i n g processes during t h e g r i n d i n g p r o c e s s / 14/ G r i n d i n g could o n l y occur w h i l e d r e s s i n g w a s i n influence. From s t u d i e s of s u r f a c e c r e e p f e e d g r i n d i n g it is known Lhat o n l y g r i n d i n g wheels of low
h a r d n e s s and open s t r u c t u r e s h o u l d be used f o r
t h i s process.
The g r i n d i n g wheel used h e r e
had
a
h a r d n e s s t h a t was t o o h i g h f o r c r e e p f e e d g r i n d i n g . In t h e r a n g e of u s u a l and v e r y low speed r a t i o s (q<20) no e x c e s s i v e wear or i n t e n s i v e g r a i n hlunt i n g c o u l d be o b s e r v e d . After t h e grinding t i m e tc
= 2000 s t h e s t e a d y s t a was reached f o r CBN-grinding wheels. The g r i n d i n g wheel topography d i d n o t change any more dur i n g c r e e p feed g r i n d i n g .
ge
02
2
20
oar
,
3@JwO 1w7~D
Figure 5:
244
0.1
1 10 radial Infeed I,
-
mm/s
3000
300
-
2000
200 speed ratio - q
4
-
1M1 ,
30
20000 1000 vm
3
200000
The r a d i a l wear A r g was determined
10000
y r i n d i n g wheels. A r y w a s r e d u c e d , f o r example, by n e a r l y 5 0 p e r c e n t f o r dn i n c r e a s e of q - 100 t o g 12000.
0.3
workpiece peripheral speed v,,
S p e c i f i c energy of t h e q r i n d i n g p r o c e s s as a f u n c t i o n of t h e speed r a t l o .
for
the
CRN-
h e a t i n g - u p of t h e s u r f a c e l a y e r i n c r e e p f e e d g r i n d i n g w i t h CBN can l e a d Lo problems.
s.!um1 Y T e s t r e s u l t s from g r l n d l n q p r o c e s s e s , wh1r.h mainly r e f e r t o r o u g h n e s s , f o r c e s . wear and t e m p e r a t u r e development i n t h e s u r f a c e l a y e r s , a r e d e c i s i v e l y i n f l u e n c e d by t h e speed r a t i o q . For t h e f i r s t t i m e it h a s been shown h e r e , t h a t one can g r i n d w r t h d speed r a t i o of Iql C 10 In t h i s r a n g e
Ruughnesses, t h a t a r e i n t h e magnitude e q u a l t o t h o s e i n c r e e p f e e d g r i n d i n g , however w i t h o u t t h e o c c u r a n c e of e x c e s s i v e heating-up of t h e s u r f a c e l a y e r of t h e workpiece, r e s u l t from t h e new g r i n d i n g method w i t h s m a l l speed r a t i o s . tes
that
the
This
indica-
u s e of CBN-grinding wheels could be
g r i n d i n g r e s u l t s have been found which can be cons i d e r e d t o be e x t r a o r d m a r i l y advantageous. I t is t h u s I n d i c a t e d t h a t p r e v i o u s l y t h e k i n e m a t i c pro-
There e s p e c i a l l y a t t r a c t i v e for t h e new p r o c e s s . r e s u l t s a new f i e l d of u s e f o r CBN-grinding wheels.
c e s s e s of a r i n d i n q p r o c e s s e s which cannot have been o p t i m a l
When comparing d i f f e r e n t g r i n d i n g p r o c e s s e s w i t h d i f f e r e n t speed r a t i o s it must be p r e c o n d i t i o n , Lhat t h e o t h e r g r i n d i n g c o n d i t i o n s , i . e . t h e raw
occured
i n ranges
ex-
m a t e r i a l of t h e workpiece, t h e g r i n d i n g w h e e l s , t h e
I t i s . howt e r n a l c y l i n d r i c a l plunge g r i n d i n g e v e r , f a i r l y c e r t a i n t h a t they w l l l a l s o lead t o
I n i t i a l l y these new grinding r e s u l t s refer
t o
cooling conditions, but especially t h e material removal r a t e remain c o n s t a n t . The g r i n d i n g t i m e must
t h e same p o s l t i v e r e s u l t s f o r i n t e r n a l c y l i n d r i c a l plunge g r l n d i n g and f a c e g r i n d i n g o p e r a t i o n s .
a l s o be c o n s i d e r e d .
The r e s u l t s determined so f a r have shown: The roughnesses of t h e workpiece become e x c e e d i n g l y low
for s m a l l n e g a t i v e v a l u e s of t h e speed r a t i o q sim i l a r t o c r e e p f e e d g r i n d i n g . The h i g h p e r l p h e r a l s p e e d s of t h e workpiece which a p p l y f o r low speed r a t i o s q r e d u c e t h e danger of t h e r m a l damages i n Lhe s u r f a c e l a y e r s of t h e workplece. Models and measurements show t h a t t h e t h e r m a l s o u r c e moves over t h e s u r f a c e of t h e workpiece a t a h i g h e r speed and t h e t e m p e r a t u r e d e c r e a s e s i n t h e s u r f a c e l a y e r when t h e workpiece p e r i p h e r a l speed is h i g h e r . Und e r comparable g r i n d i n g c o n d i t i o n s lower f o r c e s r e s u l t e d from lower speed r a t i o s . Lower f o r c e s have t h e ddvantage t h a t d e f o r m a t i o n s d e c r e a s e w i t h them Advantages a l s o appeared f o r t h e wear, s i m i l a r as in creep feed grinding. D i s a d v a n t a g e s of c r e e p feed grinding respective t o t h e surface layer t e m p e r a t u r e s of t h e workpiece could n o t be found. In t h e f o l l o w i n g t a b l e t h e r e s u l t s have been summarized q u a l i t a t i v e l y f o r s e l e c t e d speed r a t i o s . vs
=
constant y
wor k p i e c e transverse roughness
-
Q' -1
'
-
constant
q
-100
-
high
i
low
q
1
-
e v e r , important consequences can a l r e a d y be
this HOW-
postu-
lated. F i r s t l y it must be s t a t e d t h a t t h e e x p e r i ments must be expanded t o o t h e r g r i n d i n g p r o c e s s e s . That
is e s p e c i a l l y t h e c a s e f o r i n t e r n a l c y l i n d r i -
c a l g r i n d i n g and f a c e g r i n d i n g . The experiments must a l s o be expanded t o o t h e r r a n g e s of material removal r a t e s . I t must be c l a r i f i e d where t h e l i m i t i n g m a t e r i a l removal r a t e s l i e and which c r i t e r i o n s d e t e r m i n e them. Then d i f f e r e n t workpiece mat e r i a l s have t o be examined w i t h d i f f e r e n t g r i n d i n g wheel s p e c i f i c a t i o n s f o r v i t r i f i e d g r i n d i n g wheels a s w e l l as f o r CBN-grinding wheels. A s it h a s been shown t h e c o n t a c t l e n g t h s i n c r e a s e
relatively
for
smaller as w e l l a s f o r h i g h e r speed r a t i o s . I t s h o u l d be examined how t h e c o n t a c t l e n g t h s i n f l u e n ce
wear,
forces
and t e m p e r a t u r e s , e s p e c i a l l y f o r
d i f f e r e n t workpiece m a t e r i a l s . An i m p o r t a n t f i e l d is t h a t of t o o l machine d e s i g n . With t h e new o p e r a t i o n , f o r example, t h e workpiece r o t a t i o n a l s p e e d s have t o be i n c r e a s e d c o n s i d e r a b l y i n e x t e r n a l c y l i n d r i c a l plunge g r i n d i n g . T h i s r e s u l t s i n new c o n d i t i o n s f o r t h e workpiece clamping.
-10000
low
1
I t m u s t b e p o s s i b l e t o a c c e l e r a t e t h e workpiece and
I
it down a g a i n w i t h i n t h e s h o r t e s t p o s s i b l e t i m e , so as t o keep t h e t o o l changing t i m e s low. I t seems a p p a r e n t t o u s e new workpiece d r i v i n g dev i c e s , as t h e power r e q u i r e d by t h e workpiece d r i v e i n t h e new g r i n d i n g p r o c e s s w i t h low speed r a t i o is i n t h e same magnitude as t h e main d r i v e . So f a r one c o u l d l e a v e t h e power r e q u i r e d t o d r i v e t h e workpiece unconsidered i n f i r s t a p p r o x i m a t i o n . For h i y h r o t a t i o n a l s p e e d s of t h e workpiece one must d l S 0 have a u t o m a t i c b a l a n c i n g . The c e n t e r s must be d r iven, too.
slow
g r ind i n g forces
wor kp i e c e surface layer temperature L
II 1I
I
I
I
shape d e v i a t i o n s as a r e s u l t of small t h e infeed s p i r a l
I
shape d e v i a t i o n s ds a r e s u l t of unbalance F i n d i n g wheel ear
large
lmedium
I
I
I
medium
medium high
small
I I
Because of t h e r e l a t i v e l y l a r g e c u t t i n g tances,
The f i r s t s e r i e s of experiments a c c o r d i n g t o new g r i n d i n g method g i v e r i s e t o h i g h hopes.
relatively
small
c
I
1
low
edge
dis-
l a r g e roughnesses are produced
w i t h CBN-yrinding wheels under comparable condit i o n s i n comparison Lo v i t r i f i e d g r i n d i n y w h e e l s . In c r e e p f e e d g r i n d i n g r e l a t i v e l y low roughness r e s u l t e d even w i t h CBN-grinding wheels because of t.he kinemat.ic i n f l u e n c e of h i y h speed r a l - i o s , b u t t h e
1 S a l j b , E . Grundlagen d e s S c h l e i f v o r g a n g e s . W e r k s t a t t und B e t r l e b , Heft 2 . 1952
245
O p f t z , H.. Frank, H. et dl. Untersuchungen llbcr den EinfluB deu Schleifscheibenaufbaueu und der Zerspanbedingungen auf die Ausbildung der Schneidflache der Schleicscheibe in Hinblick auf das Arbeitsergebnis. Forschungsbericht des Landes Nordrhein-Westfalen Nr. 1532
Brandin. H. Pendelschleifen und Tiefschleifen. Dissertation TU Braunschweig 1978 Werner. G. Technologische und konstruktive Voraussetzungen fur das Tiefschleifen. wt-Zeitschrift fur ind. Fertigung 69 (1979) Verkerk. J. The real contact length in cylindrical plunge grinding. Annals of the CIRP 24/1/1975
Hahn, R. S . , Lindsay, R. P. On the effects of real contact. and normal stresses in grinding. Annals of the CIRP 15/1967 Karatzoglou. K. Auswirkungen der Schleifflachenbeschaffenheit und der Einstellbedingungen auf das Schleifergebnis beim FlachEinstechschleifen. Dissertation TU Braunschweig 1974 Jacobs, U. Beitrag zum Einsatz von Schleifscheiben mit kubisch-kristallinem Bornitr id als Schneidstoff. Dissertation TU Braunschweig 1980 SaljC, E., Matsuo, T., Lindsay, R. P. Transfer of grinding research data for different operations in grinding. Annals of the CIRP 31/2/1982 10 Furukawa, S . et al. Selection of creep feed grinding conditions in view of burning. Annals of the CIRP 28/1/1979
11 Takazawa, K. Thermal aspects of the grinding operation. Industrial Diamond Review 4, 1972 12 Konig. W. et al. Untersuchung der beim Schleifproze0 entstehenden Temperaturen und ihre Auswirkungen auf das Arbeitsergebnis. Porschungsbericht des landes Nordrhein-Westfalen Nr. 2848 13 Weinert. K. Die zeitliche ISnderung des Schleifscheibenzustandes beim AuDenrund-Einstechschlei-
fen. Dissertation TU Braunschweig 1976 14 SaljC, E. et al. Problems in profile grinding - Angular plunge grinding and surface grinding. Annals of the CIRP 30/1/1981
246