Journal of Mathematical Analysis and Applications 238, 82᎐90 Ž1999. Article ID jmaa.1999.6507, available online at http:rrwww.idealibrary.com on
Inclusion Theorems for Absolute Matrix Summability Methods B. E. Rhoades Department of Mathematics, Indiana Uni¨ ersity, Bloomington, Indiana 47405-7106 Submitted by William F. Ames Received February 9, 1999
In this paper we establish a general inclusion theorem for a nonnegative lower triangular matrix to be absolutely stronger than a weighted mean matrix. Several inclusion theorems for Cesaro ` and weighted mean methods are then obtained as corollaries. 䊚 1999 Academic Press Key Words: absolute summability matrix; Cesaro ` matrix; weighted mean matrix.
Let ⌺ a n be a given series with partial sums sn4 , Ž C, ␣ . the Cesaro ` matrix of order ␣ . If n␣ denotes the nth term of the Ž C, ␣ .-transform of sn4 , then, from Flett w5x, Ýa n is said to be summable < C, ␣ < k , k G 1 if ⬁
␣ < ky 1 - ⬁. Ý n ky1 < n␣ y ny1
Ž 1.
ns1
For any sequence u n4 , the forward difference operator ⌬ is defined by ⌬ u n s u n y u nq1. An appropriate extension of Ž1. to arbitrary lower triangular matrices would be ⬁
Ý n ky1 < ⌬ t ny 1 < ky 1 - ⬁,
Ž 2.
ns1
where n
tn [
Ý a n k sk . ks0
Such an extension is used in w3x. However, in w4x, Bor and Thorpe make the following extension of Ž1.. A series ⌺ a n is said to be summable 82 0022-247Xr99 $30.00 Copyright 䊚 1999 by Academic Press All rights of reproduction in any form reserved.
83
INCLUSION THEOREMS
< N, pn < k , k G 1 if ⬁
ky 1
Pn
< ⌬ Zny 1 < k - ⬁,
ž /
Ý
pn
ns1
Ž 3.
where N denotes the weighted mean method generated by the sequence pn4 , with partial sums Pn , and Zn s Ž1rPn .Ý nks0 pk sk . It is clear that Ž3. cannot be an appropriate extension of Ž1., since it does not reduce to Ž1. when the matrix method is Ž C, ␣ .. In spite of this fact, several comparison theorems have been established using Ž3.. See, for examples w1, 2, 4, 6x. The purposes of this paper are to establish Theorem 1 of w6x using definition Ž2. instead of Ž3., and then show that certain results of Bor, Sarigol, ¨ and Thorpe can be obtained as corollaries. Given a lower triangular matrix T one defines T s Ž t ni . and Tˆ s Žˆt ni . by n
t ni s
Ý ar i
and
ˆt ni s t ni y t ny1, i ,
rsi
respectively. THEOREM.
Let T be a nonnegati¨ e lower triangular matrix satisfying
Ž i.
t ni G t nq1, i , n G i , i s 0, 1, . . . ,
Ž ii .
Pn t n n s O Ž pn . ,
Ž iii .
t n0 s t ny1, 0 , n s 1, 2, . . . , ny1
Ž iv.
Ý is1
pi
< t n , iq1 < s O Ž t n n . ,
ž /ˆ Pi
⬁
Ž v.
Ž nt n n .
ky1
Ý Ž ntn n .
ky1
Ý
< ⌬ t ny1 , i < s O
nsiq1
i ky 1 pik
ž / Pik
,
and ⬁
Ž vi.
nsiq1
< ˆt n , iq1 < s O
ipi
ž / Pi
ky 1
.
Then, if Ýa n is < N, p < k summable, it is < T < k summable, k G 1.
84
B. E. RHOADES
Proof. Condition Žiii. implies that the row sums of T are all the same. Without loss of generality we may assume that this number is one. Thus, Zn [
1
n
Pn
s0
Ý
n
Pn
s0
Ý
p
Ý
ai s
is0
is0
is0
ny1
Ý ai is0
ž
1y
Piy1 Pny 1
/
.
/
q
ž
1 Pn
n
Ý ai Ž Pn y Piy1 . s Ý ai
Pn
Zny 1 s
1
n
1
s
p s s
1y
n
ai
Ý Ý p is0
Piy1 Pn
/
si
,
Therefore y⌬ Zny 1 s a n 1 y
ž
s s Pny 1 Pn ⌬ Zny1 pn
Pny 1 Pn
ny1 is0
ny1
a n pn
q
Pn
Ý ai is0
pn
ny1
Pny 1 Pn
is1
Ý ai
ž
1
ž
1y
y
Pny1
1 Pn
/
Pny1 Pn
y1q
Pny1 Pny1
/
Piy1
n G 1,
Ý ai Piy1 ,
n
s y Ý a i Piy1 , is1
and Pny 2 Pny1 ⌬ Zny2 pny 1
ny1
sy
Ý ai Piy1 . is1
Thus Pny 1 Pn ⌬ Zny1 pn
y
Pny2 Pny1 ⌬ Zny2 pny1
s ya n Pny1 ,
so that an s
Pny 2 ⌬ Zny2 pny 1
y
Pn ⌬ Zny1 pn
,
n G 1,
Ž 4.
n
⌬Tny 1 s y Ý a iˆt ni , is1
since t ny 1, n s 0.
Ž 5.
85
INCLUSION THEOREMS
Substituting Ž4. into Ž5. yields Pi ⌬ Ziy1
n
⌬Tny 1 s
Ý ˆt ni
pi
is1 n
s
Ý ˆt ni
Pi ⌬ Ziy1 pi
is1
ny1
Ý is1
1 pi
ny1
y
Ý ˆt n , rq1
y ˆt n1
pn
y
piy1 Pry1 ⌬ Zry1 pr
rs0
Pn ⌬ Zny1
s ˆt n n
Piy2 ⌬ Ziy2
y
Py1 ⌬ zy1 p0
Piˆt ni y Piy1ˆt n , iq1 ⌬ Ziy1 .
Note that ˆt n n s t n n y t ny1, n s t n n s t n n . Thus ⌬Tny 1 s ˆt n n
Pn ⌬ Zny1 pn ny1
y
Ý is1
1 pi
ny1
q
Ý is1
Pi
ž /Ž pi
ˆt ni y ˆt n , iq1 . ⌬ Ziy1
Ž Pi y Piy1 . ˆt n , iq1 ⌬ Ziy1
s Tn Ž 1 . q Tn Ž 2 . q Tn Ž 3 . , say Using Žii. and Ž2., ⬁
Ýn
ky1
Tn Ž 1 .
ns1
k
s
⬁
Ýn
ky1
t n n Pn pn
ns1
s O Ž 1.
k
⌬ Zny1
⬁
Ý n ky1 < ⌬ Zny 1 < k - ⬁. ns1
Using the definition of ˆt ni and Holder’s inequality, ¨ J2 [
⬁
Ý n ky1 Tn Ž 2.
k
ns2
F
⬁
Ý
ny1
n ky1
ns2
F
⬁
Ý is1
ny1
Ý Ý ns2 is1
Pi
ž / pi
Pi
ž / pi
k
< t ni y t ny1, i < < ⌬ Ziy1 <
k
< t ni y t ny1, i < < ⌬ Ziy1 < = n k
ny1
Ý < t ni y t ny1, i <
is1
ky 1
.
86
B. E. RHOADES
Using Ži. and Žiii., ny1
ny1
is1
is1
Ý < t ni y t ny1, i < s Ý Ž t ny1, i y t ni . s 1 y t ny1, 0 y Ž 1 y t n n y t n0 . s y Ž t ny 1, 0 y t n0 . q t n n F t n n .
Therefore ⬁
J2 F
Ý
ny1
ky1
Ž nt n n . k
Pi
Ý is1
pi
is1
⬁
s
⬁
< ⌬ Ziy1 < k
ž / pi
< t ni y t ny1, i < < ⌬ Ziy1 < k
ž /
Ý
ns2
k
Pi
Ý Ž ntn n . ky1 < t ni y t ny1, i < . nsiq1
Using Žv. and Ž2., ⬁
J2 s O Ž 1.
Ý is1
J3 [
k ky1
Pi
i
ž /
Pik
pi
⬁
Ýn
ky1
pik
k
Tn Ž 3 .
s
ns2
F
ny1
n ky1
ns2
Ý is1
Pi
⬁
Ý i ky1 < ⌬ Ziy1 < k - ⬁, is1
⬁
Ýn
Ý ˆt n , iq1 ⌬ Ziy1 is1
ky1
< ˆt n , iq1 < < ⌬ Ziy1 < k =
ž / pi
k
ny1 ky1
ns2
⬁
Ý
< ⌬ Ziy1 < k s O Ž 1 .
ny1
Ý is1
pi
ž / Pi
ky 1
< ˆt n , iq1 <
.
Using Živ., Ž1., and Ž2., J3 s O Ž 1.
⬁
Ý Ž ntn n .
ky1
ns2
s O Ž 1.
⬁
Ý is1
Pi
Pi
is1
pi
ky 1
ipi
nt n n s O Ž1.,
< ˆt n , iq1 < < ⌬ Ziy1 < k
pi
⬁
Ý Ž ntn n . ky1 <ˆt n , iq1 < nsiq1
ky1
Pi
COROLLARY 1 w7, Theorem 3.1x. Žii.
ky 1
ž /
< ⌬ Ziy1 < k
pi
⬁
Pi
ky 1
ž / Ýž / ž / Ý
is1
s O Ž 1.
ny1
< ⌬ Ziy1 < k s O Ž 1 .
⬁
Ý i ky1 < ⌬ Ziy1 < k - ⬁. is1
Let T satisfy Ži. and Žiii. of the theorem
87
INCLUSION THEOREMS
and there exists a constant C ) 0 such that
Živ. n
Ý Ž t ni y t ny1, i .
is
F C < t n y t ny1 , <
for 0 F F n, n G 1.
Then, if Ýa n an is summable < C, 1 < k it is also summable < T < k , k G 1. Proof. Ž C, 1. is a weighted mean method with pn s 1 for all n, so that condition Žii. above implies condition Žii. of the theorem. Condition Živ. above implies condition Živ. of the theorem. It remains to show that conditions Žv. and Žvi. of the theorem are satisfied. Using Žii. and Ži., Pik
⬁
i ky1 pik
Ž nt n n .
Ý
ky1
⬁
< t ni y t ny1, i < s O Ž 1 . i
nsiq1
Ý Ž t ny1, i y t ni . nsiq1
F O Ž 1 . i w t ii y lim inf n t ni x F O Ž 1 . it ii s O Ž 1 . . For Žvi., Pi
ž / ipi
ky 1
⬁
Ý Ž ntn n .
ky1
< ˆt n , iq1 < s
nsiq1
ž
iq1
⬁
ky1
/
i
nsiq1
⬁
s O Ž 1.
O Ž 1 . < ˆt n , iq1 <
Ý i
Ý Ý Ž t ny 1, r y t n r . nsiq1 rs0 i
s O Ž 1.
⬁
Ý Ý Ž t ny 1, r y t n r . rs0 nsiq1 i
s O Ž 1.
Ý ti r s O Ž 1. . rs0
COROLLARY 2 w3, Theoremx. sequences such that
Ž i.
qn Pn pn Q n
Suppose that pn4 and qn4 are positi¨ e
s O Ž 1. ,
and ⬁
Ž ii .
Ý nsiq1
n ky 1qnk Q nk Q ny1
sO
ž
i ky1 qiky1 Q ik
/
.
Then, if Ýa n is summable < N, p < k it is summable < N, q < k , k G 1.
88
B. E. RHOADES
Proof. With T s Ž N, q ., conditions Ži. and Žiii. of the theorem are automatically satisfied. Condition Ži. of Corollary 2 implies condition Žii. of the theorem and condition Žv. of the theorem reduces to condition Žii. of the corollary. For condition Živ., 1 ny1 pi < ˆt <, J4 [ Ý t n n is1 Pi n , iq1
ž /
ˆt n , iq1 s t n , iq1 y t ny1, iq1 n
s
ny1
tn r y
Ý rsiq1
i
t ny1, r s 1 y
Ý rsiq1
rs0
i
s
i
Ý Ž t ny 1, i y t ni . s Ý rs0
s
rs0 i
qn
ž
qi
rs0
y
Q ny 1
qn Q i
Ý qr s Q
Q n Q ny1
i
Ý t r i y 1 q Ý t ny1, i
n Q ny1
rs0
qi Qn
/
.
Therefore J4 s
Qn
ny1
qn
is1
pi
qn Q i
Pi
Q n Q ny1
ž /
Ý
s
1
ny1
Q ny1
is1
Ý qi s O Ž 1 . .
For condition Žvi. of the theorem, using Žii. of the corollary, Pi
ky 1
Ý Ž ntn n . ky1 <ˆt n , iq1 <
ž / ipi
s s s
⬁
nsiq1
Pi
ky 1
⬁
nqn
ž / ž / ž / Ýž / ž / Ý ž / ž /
sO
sO
Ý
ipi Pi
Qn
⬁
nqn
nsiq1
Qn
ky 1
ipi Pi
nsiq1
ky 1
Pi
Pi qi
pi Q i
rs0 ky1
qn Q i Q n Q ny1
n ky1 qnk
nsiq1
Q nk Q ny1
ky 1
ipi
i
Ý Ž t ny 1, r y t n r .
⬁
Qi
ipi
ky1
Qi
i ky1 qiky1 Q ik
ky 1
s O Ž 1. .
89
INCLUSION THEOREMS
COROLLARY 3 w1x.
Let pn4 be a positi¨ e sequence satisfying npn
Ž i.
Pn
s O Ž 1. ,
and Pn
Ž ii .
npn
s O Ž 1. .
Then, if Ýa n an is summable < C, 1 < k it is summable < N, p < k , k G 1. Conditions Ži. and Žii. of Corollary 3 imply that definitions Ž2. and Ž3. are equivalent. Consequently the result follows from w1x. However, for completeness, we show that Corollary 3 follows from Corollary 2. Proof. Using Corollary 2 with pn s 1 for all n, qn s pn , condition Ži. of Corollary 3 implies condition Ži. of Corollary 2. Using conditions Ži. and Žii. of Corollary 3, Q ik i ky1 qiky 1
⬁
Ý nsiq1
n ky 1qnk Q nk Q ny1
Pik
s
i ky1 pik
n ky 1 pnk
⬁
Ý nsiq1
Pnk Pny1
⬁
O Ž 1 . pn
s O Ž 1 . Pi
Ý nsiq1
Pny 1 Pn
⬁
1
s O Ž 1 . Pi
Ý nsiq1
ž
Pny 1
y
1 Pn
/
s O Ž 1. .
COROLLARY 4 w2, Theorem 1x. Let pn4 be a positi¨ e sequence satisfying the conditions of Corollary 3. Then, if Ýa n is summable < N, p < k it is also summable < C, 1 < k , k G 1. Proof. Using qn s 1 for all n in Corollary 2, condition Ži. of Corollary 3 implies condition Ži. of Corollary 2. Hence, Q ik i ky1 qiky 1
⬁
Ý nsiq1
n ky1 qnk Q nk Q ny1
s
ž
Ž i q 1. i ky1
k
/
s O Ž 1. Ž i q 1.
⬁
Ý nsiq1 ⬁
n ky1 k Ž n q 1. n
O Ž 1.
s O Ž 1. . Ý nsiq1 Ž n q 1 . n
Combining Corollaries 3 and 4 one obtains the fact that, if pn4 is a nonnegative sequence satisfying conditions Ži. and Žii. of Corollary 3, then summability < N, p < k and < C, 1 < k are equivalent for k G 1. This fact is Theorem 2 of w2x.
90
B. E. RHOADES
REFERENCES 1. H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 Ž1985., 147᎐149. 2. H. Bor, A note on two summability methods, Proc. Amer. Math. Soc. 98 Ž1986., 81᎐84. 3. H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 Ž1991., 1009᎐1015. 4. H. Bor and B. Thorpe, A note on two absolute summability methods, Analysis 12 Ž1992., 1᎐3. 5. T. M. Flett, On an extension of absolute summability and theorems of Littlewood and Paley, Proc. London Math. Soc. 7 Ž1957., 113᎐141. 6. M. A. Sarigol, ¨ On absolute summability factors, Comment. Math. Prace Mat. 31 Ž1991., 157᎐163. 7. M. A. Sarigol, ¨ On absolute normal matrix summability methods, Glas. Mat. 28 Ž1993., 53᎐60.