INDEX OF DEFINITIONS AND ABBREVIATIONS*
wl (algebraic closure) ad missib1e
acl(A)
111,Definition 6.1(4), p. 130
AD el (after last) algebraic
(1) Fa-admissible (2) F-*admissible (3) F-**admissible
A D ( A , x , p, K ) al(4 (1) algebraic formula [type], d algebraic over A (2) K-algebraic A is algebraically closed
IV, Definition 4.2, p. 192 IV, Definition 4.3, p. 197 IV, Exercise 4.6, p. 202 VII, Definition 1.11(2), p. 410 IV, Definition 1.2(5),pp. 155-156 111, Definition 6.1(2), p. 130
algebraically closed fdmost mtisymmetric a t (atomic) atomic
formula [type] is almost over A
Ax (axiom)
(A, &)-compact (1) B is F-atomic over A (2) atomic type (3) A is T-atomic over B atp (8, J , 4 , atp @ , I ) (1) Avd(1, A ) , Av(I, A ) (2) Av(D,A) (1) Ax(I)-Ax(XII)
automorphism
f ie an automorphism of M
based
(1) Z is based on A (2) I is based on p (3) a is based on W
atP Av (average)
baaic bi-set
(2) Ax(Al)-(E2)
bi-set function
V, Definition 7.1, p. 305 III, Definition 6.1(4), p. 130 111,Definition 2.1(1), (2), p. 94
I, Definition 2.5, p. 11
VI, Definition 1.5, p. 328 IV,Definition 1.5, p. 157
VI, Definition 1.4, p. 327 XI, Definition 2.2(2),p. 562 VII, Definition 2.2, p. 412 111, Definition 1.5, p. 89 VII, Definition 4.1(1), p. 426 IV, pp. 152-153, and Table 1, p. 169 XI,-pp. 562-565 I, Definition 1.4, p. 5 111, Definitionl.8, p. 90 111, Definition 4.3, p. 118 VI, Definition 3.7(3), p. 358 see Horn VII, Definition 1.8, p. 409
* Notice that for e.g., Av(Z, A), P ( p , A, A), strongly A-homogeneous,you should look at Av, D, homogeneous, reap. So look a t the main ward, ignoring strongly, explicitly, etc., but semi-, uni-, multi-, bi-, are considered part of the word. Note that the same word may have different meaning depending on the text (e.g., regular cardinal and regular type; Av(Z, A ) and Av(D, I)),whereas some variations are only shortening (e.g. P ( p , A, A), D(p,A, A)). So we number the distinct meanings. Some too well-known notions were omitted. 69 1
692
INDEX O F DEFINITIONS AND ABBREVIATIONS
Boolean ultrapower
Boolaan ultrapower N(m)/D VI, Definition 3.8, p. 369
V, Notation, p. 289 V, p. 290
C
cnat (conjunction of atomic) cer (orCard) cntegoricel
VI, Definition 1.6, p. 328
cb (CenoniCBl
V, Notation, p. 289 sea Introduction III, Theorem 6.10, p. 134
cc (chain
VI, Definition 3.7(3), p. 358
Cer K
b-4
condition) cdt (contradictory type) of (cofinality) cl (closure)
111, Definition 7.2, p. 141
closed compaot
complete
component connected
coneervative contradictory constructible construction contradictory
CP (combinetorial principle) CR (complete
-1
Ctp (canonical type)
(4) Ff-compact model (1) D is a A-complete filter (2) complete model (3) A-descending complete ultrefilter (4) complete type (6) complete theory M , is a
Notation, p. xxix 111,Definition 6.1(6), p. 130 V, Definition 4.4(6), pp. 277-278 IV, Definition 1.2(2), pp. 155-15 I, Definition 1.2(2), (3). p. 3 VI, Definition 1.6, p. 328 VII, Definition 1.4(2), p. 402 end MI,Definition 1.9, p. 410 IV,Definition 2.1(3), p. 157 VI, Definition 1.3(6), p. 326 Appendix, Definition 1.1(6), p. 653-654 VI, Definition 5.1, pp. 382-383 VI, Definition 6.2, pp, 391-392
(CPA.x.p. x. e)
see Notation see Notation XIII, Definition 3.1, I, Definition 2.5, p. lf 634 Appendix, Definition 3.2(l ) , P. 669 VII, Definition 2.1(2), p. 41 1 11, Definition 1.1(3)(i), p. 21 IV,Definition 1.3, p. 156 IT,Definition 1.2(1), p. 155 VIII, Definition 3.2, p. 464 Appendix, Definition 3.1, p. 666 see n-inconsistent XIII, Definition 2.2, p. 628
CR@, A)
11, Definition 3.4(1), p. 66
explicitly contredictory F-constructible F-construction (1) x-contradictory (2) strongly K-contradictory (3) n-contradictory
111, Theorem 6.10, p. 134
INDEX OF DEFINlTIONS AND ABBREVIATIONS
D (degree)
dcl (definable closure) DC decomposition
dcl(A)
11,Definition 3.2, p. 42 V,Definition7.2(1),pp.30&307 111, Definition 5.5, p. 127 Appendix, Definition 1.2, p. 654 111,Definition 6.1(3),p. 130
DC(I), DCW(I),D C W )
VII, Definition 1.10, p. 410
(1) (N,,, a,: q E I ) is a (T,&*)-
decomposition
(2) u
(T,C * ,A ) -
(4) u
(T,G*)-
decomposition (3) u (T,E * ) decomposition inside M
Ded
decomposition of M (1) Ded h
(2)Ded, h Dedekind deep definable, defined definable closure define definitional extension degree depend
depth didip (discontinuity dimensional Property1 divides df (definition) dim (dimension)
693
(A, p)-Dedekind cut
T is deep
p is definable over A, p is ($, A ) - d e h b l e , p is $-defined d is defined by a formula
CtYPel
(1)a formula depends on an equivalence relation (2)E depends on 0 mod Y (3) d depends on I (1) the depth of (N, N', a) (2)the depth of T T has the didip
XI,Definition 2.4(1),p. 565
XI,Definition 2.4(2),p. 565 XI,Definition 2.5(1),p. 566 XI, Definition 2.5(2),p. 566 Appendix, Definition 1.4, p. 657 Appendix, Definition 1.4, p. 490 VII, Definition 1.10,p. 410 X,Definition 4.2(2),p. 528 11, Definition 2.1, p. 31 see do1
111, Definition f3.1(1),p. 130
111, Theorem 5.14, p. 128 see D
111,Definition 2.1(1), p. 94
111, Definition 5.3,p. 124 111, Definition 4.4,p. 118 X,Definition 4.1,pp. 527-528 X,Definition 4.2(1),p. 528 X,Definition 2.6,p. 520
111,Definition 1.3, p. 85
11, Definition 4.5,p. 77
111, Definition 4.5(1), (2),(4), dim(p, B, A) p. 119 (3)dim(Z, A, M ) , d h ( 1 , A ) 111,Definition 3.3, p. 106
694
INDEX OY DEFINITIONS AND ABBREVIA'FIONS
Dom (domain) d0P (dimensional order property) DP
Dom P T has the dop
X, Definition 4.1, p. 527 X, Definition 4.2(1), p. 528 X, Definition 4.3(2), p. 528 X, Definition 4.3(3), p. 528 X, Definition 4.4A, p. 529 11, Definition 3.3, p. 44
ds (descending sequences) E
(1) E+
(2) E of a representation EC EC(To. F) ECN (equivalence ECN(Eo, @) class number) (1) Elementary submodel Elementary (2) (M, N)-elementary mapping EM'(1, a), EM'(I,N), EM EM1(I), EM(I, @), etc. (1) @Q,Tea,pea, MeQ eq (equivalences classes) (2) e q ( 4 (1)p is equivalent to q equivalent (2) J, Z are equivalent (3) elementarily equivalent (4)equivalent representations (1) (A, 2)-existenceproperty existence (2) T hes the (A, n)existence property (3) T has the true ( A , n)-existence Property (4) strong (X,, n)existence property extension property family f.c.p. FE (finitmy equivalences) filter
X, Definition 2.1, p. 512
111, Definition 6.5, p. 133 X, Definition 5.8, p. 536 VII, Definition 5.1(1), p. 432 111, Definition 5.2, p. 124 I, Definition 1.1, p. 2 I, Definition 1.3, p. 4 VII, Definition 2.6, p. 413; VII, Lemma 2.6, p. 415 111, Definition 6.2, p. 131 ; 111, Definition 6.3, p. 132 VI, Definition 4.2, p. 375 11, Definition 1.3, p. 23 111, Definition 1.6, p. 89 see Notation Definition 5.17B, p. 547
x,
XII, Definition 4.2, pp. 60&609 XII, Definition 5.2, p. 616 XII, Definition 5.4(1), p. 616 XII, Definition 5.4(2),p. 616
VII, Definition 2.9, p. 418
( A , K)-family
VII, Definition 1.11(1), p.
FEm(A)
11, Definition 4.1, p. 62 111, Notation, p. 94
(1) filter over I (2) trivial filter (3) principal filter
410
Appendix, Definition 1.1( I), p. 653 Appendix, Definition 1.1(2), p. 486 Appendix, Definition 1.1(6), pp. 653-654
INDEX OR' DEFINITIONS AND ABBREVIATIONS
finite cover Property FI (finite intersection) fork free freedom full function U
gap UE
GI
good
888
H
homogeneous
Horn
I
IE
incomplete inconsistent ind independence property
f.c.p.
F W ,FI,('3)
VI, Definition 3.6(2), p. 358
p forks over A S [(S, A)] is free [ ( T , , 2')free] [free in (T,, T)] (T,, T)has ( p , A)-freedom a full model ( A , a)-function
111, Definition 1.4, p. 85 VIII, Definition 1.2(1), (2), p. 445 VIII, Definition 1.2(3), p. 445 VI, Definition 6.2, p. 383 11, Definition 3.3, p. 44
QiwlJ,
Ml)
the main gap theorem GEi(M, N ) UIi(iV, M ) (1) good [K-goodl [h-good]model (2) good [A-good] filter; A-good Boolean algebra (3) A is a good set
h
695
h(9, v)
H(I) (1) homogeneous, K-hOmOg0neOUS (2) strongly K- homogeneous (3) A-model homogeneous (1) Horn formula (sentence) (2) basic Horn formula
VI, Definition 1.6, p. 328 XII,Theorem 6.1, p. 620 VIII, Definition 2.1, pp. 459-460 W I , Definition 2.1, pp. 45S460 V, Definition 6.1, p. 294
VI, Definition 2.1(1), (2), p. 333; VI, Exercise 3.16, pp. 354-355 XII, Definition 3.2, p. 604
VII, Definition 3.1, p. 422 V, Notation, p. 289 I, Definition 1.6, (I), p. 6 I, Definition 1.6(2), p. 6 VIII, Remark, p. 472. VI, Definition 1.2, p. 326 VI, Definition 1.2, p. 326 VIII, Definition l . l ( l ) ,(3), p. 444; IX, Definition 2.1, pp. 459-460; X, Definition 1.8(1), p. 511 X, Definition 1.8(2),p. 511 VIII, Definition 1.1(2), (3), p. 444 X, Definition 1.8(2),p. 511 X, Definition 1.8(2),p. 511 VI, Definition 1.3(6), p. 326 11, Definition 3.2(3)(ii),p. 43 11, Theorem 4.8(2), p. 72 11, Exercise 4.6, p. 80 11, Definition 4.2, p. 69
696
INDEX O F DEFINITIONS AND ABBREVIdTIONB
independence
indiscernible
inevitable inp (independent partitions) ird (independent orders) isolated isomorphic
(1) Z is independent over
III, Definition 4.4(1),
[over PI (2) I7 is independent over
ELI, Definition 6.4, p. 125
A , [over ( B ,4 1
@andmod!?' (3) Y is independent mod D (4) (31, gn,D)K-independent (1) ( A , n ) indiscernible (set of sequences), A-ni n b r n i b l e , n-in&oernible, eta. (2) (A, n)-indiecernible sequences, A-n-indiscernible, n-indiscernible (3) maximal indiscernible set (4) absolutely indiscernible (6) (A, n)-indiscernible indexed set, etc. ~ E S " ( Ais) inevitable K c p ( T ) , 'CindT), K r E p ,
T)
&d(T),
p. 118
(21,
VI, Definition 3.1, p. 345; VI, Definition 3.6, p. 358 VI, D W t i o n 3.3, p. 350 I, Definition 2.4, p. 10
I, Definition 2.3, p. 10
111, Definition 3.2, p. 106
IV,Definition 6.1, p. 212 VII, Definition 2.4, p. 413 IV, Definition 5.9A, p. 210
III,Definition 7.3, p.
145
-
111,Definition 7.1, p. 137
Kird(T)
is F-isolated over A M ,N are isomorphic
IV, Section 1, p. 153 I, Definition 1.4, p. 6
k
(1) k(N0,Nl) (2.1 k(N1)
K
(1) K = (2) K h
XIII, Definition 4.6(3), p. 647 XIII, Definition 4.7(1), p. 648 XIII, Definition 4.7(2), p. 648 V, Section 6, p. 289 V, Definition 6.2, p. 296 II,Definition 4.4(1), (3), p. 75
(3) k(T)
(3)
Keisler kind
Kr
L (hecar rank) I
P)
K m ,TI,W A ) , W A ) , K(A),etc.
(7) K i Keisler order @, @ A (1) Ba is the kind of d (2) (used only in X, $5) W ( A , T), K r y A ) , etc. L(P) (1) W 0 , N l ) (2)
large
(F,w,A,
W,)
v)
(3) J is a A-large ( < A-large) subtree
M, Definition 2.5, p. 413
X, Definition 4.1, pp. 527-528 X, Definition 4.3(1), p. 528 X, Definition 4.3(1), p. 528 VI, Definition 4.1, pp. 37&371 111, Definition 6.4, p. 132 X, Definition 5.16F, p. 545 11, Definition 4.4(2), (3), p. 75
V, Definition 7.6, p. 316 XIII, Definition 4.6(4), p. 648 XIII, Definition 4.7(2), p. 648 XIII, Definition 4.7(2), p. 648 X, Definition 5.8, p. 536
697
INDEX OF DEFINITIONS AND ABBREVIATIONS
lcf (lower cofinelity) 1gw limit ultrapower log (logarithm) low (lower weight)
MA (Martin's Axiom) minimal
Mlt mod (modulo) monotonic multidimeneional multiplicative multiplicity r)
narrow
ND (number of dimeneione) omit ord order property
orthogonal
hf(K,
D)
VI, Definition 3.6, p. 357
V,Definition 3.6(1),p. 261 lgw(P). lgw(& A ) the limit ultrapower M $ ( D VI, Definition 4.2, p. 375 log, m low(p), low&), low(U, A), V, Definition 3.4, p. 259; V, Definition 4.4(4),pp. 277-278 low*(&A ) , low&), l o w ~ (A 4) olementery mapping I, Definition 1.3, p. 4 (1)I a m x b l indis111, Definition 3.2, p. 106 cernible set over A in M (2)F - n ~ & ~ n a l V, Remark, p. 289 See [ndS 701 (1)M is F-minimal over A (2)weekly minimal formula (3)minimnl t p [indkcernible eet] (4)R-weaklyminimsl (6)A is T-minimal .over B UtYp, A, A), MltYp, A ) (2 is 1 or 2)
IV,Definition 4.4, p. 201
(1)multidimeneioml I (2) multidimeneioml T
V,Definition 5.2, p. 286 V, Definition 6.3,p. 286 VI, Definition 2.1(1),p. 333
V,Definition 1.3(3), p. 238 V, Definition 1.3(1), (2),
p. 238 V, Definition 7.2(3), pp. 306-307 XI, Definition 2.2(6), p. 563
II, Definition 1.2, p. 21 see depend
VI, Definition 2.1(1), p. 333
eee Mlt
(1) n(E) (number of the
111, Notation, p. 94 equivalence classes of E ) XIII, Definition 4.6(1), p. 647 (2) W W 4 ) XIII, Definition 4.7(1), p. 648 (3) n(NJ XIII, Definition 4.7(2),p. 648 (4) n(TJ A-narrow X, Definition 5.16A, p. 544 IX, Theorem 2.3, p. 502 ND(T)
(1)M omits a type (2) M Strongly omits 8 type P Tord
formula hae the order property (order p) (1)weekly orthogonal types
Notation
VI, Definition 6.3,p. 392 II, Theorem 4.8(1), p. 72
11,Theorem 2.2(3), pp. 30-31
V, Definition l.l(l), p.
230
698
INDEX OF DEFINITIONS AND ABBREVIATIONS
(2) orthogonal types,
orthogonal indiscernible
seh
otop (omitting type order property) perdel pertition
PC (pseudoelementary) power primery
V,Definition 1.1(2), (3), p.230
(3) p is orthogonal to B (4) p is stronglyorthogonal to 9 ( 5 ) p orthogonal to A (6)p is almost orthogonal to A T has the otop
V, Definition 4.4(2), p. 277 V, Definition 4.4(3), pp. 277-278
parallel types pertition of a Boolean algebra PC(T1, TI,PC,(TI, TI
111, Definition 4.2, p. 117 VI, Definition 3.7, p. 358
V, Definition 1.1(4),p. 230 X, Definition 1.5, p. 511
XII, Definition 4.1, p. 608
VI, Definition 6.2, p. 383; V I I , Definition 2.1(1), p. 411 see reduced power IV, Definition 1.4(1), p. 156
proper
set [model] is F-primary over A (1) model [set] is F-prime over A (2) M is prime over A for K (3) A is T prime over B (1) set [model] is Fprimitive over A, or (F, p)-primitive (2) M ( A )is primitive over AinK (3) A is T-primitive (1) reduced product (2) product of filters D , x Dl @ proper for (I,T)
qf (quantifier free) qd (quantifier depth)
(qf m)-type, compaot VI, Definition 1.5, p. 328 model qd,,; (qd,,,ml-type, compact VI, Definition 1.6, p. 328 model
prime
primitive
product
IV,Definition 1.4(3), p. 156 IV, Definition 1.6, p. 157 XI, Definition 2 . 2 ( 5 ) , p. 563 IV,Definition 1.4(2), p. 156
IV, Definition 1.8, p. 157 XI, Definition 2.2(4), p. 562 V, Definition 1.2, p. 233 VI,Definition 3.6, p. 358
VII, Definition 2.7, p. 414
R (r=w
11, Definition 1.1, p. 21
rank Ramsey Theorem
see
reduced power reduced product
R
Appendix, Theorem 2.1, p. 659 VI, Definition 1.1(3), pp. 324-325 VI, Definition 1.1(2), p. 324
INDEX OF DEFINITIONS AND ABBREVIATIONS
699
V, Definition 1.2, p. 233 V, Definition 3.1, p. 251
regular
V, Definition 3.6, p. 265
V, Definition 4.4(1), p. 277
V, Definition 4.6(4), (6),
regularize representation
(6)regular family of sets (7) D is A-regular [regular] filter ( 8 ) A is a regular cardinality family of sets regularize a filter (1) (N7, u V :~ € 1is) a representation (2) an F-representation (3) E of the representation (4)equivalent representation (5) standard representation
p. 278 VI, Definition 1,3(1),p. 326 TI, Definition 1.3(3), (4), p. 326 see Notation
VI, Definition 1.3(2), p. 326 X, Definition 5.2, p. 534; redefined X, 5.17, p. 547 X, Definition 5.3, p. 534 X, Definition 5.8, p. 536
X, Definition 5.17B, p. 547 X, Definition 5.8(2), p. 536
V, Definition 2.1(2), (3), p. 240
VII, Definition 1.2, p. 402
I, Definition 2.1(2), (3), P. 9
(2) (F, p)-saturated (3) F-semi-saturated (4)F-aturated (6)(A, H I , H2)-saturated model (6) (A, &saturated model
sct
SE
I, Definition 1.2(1), (3), P. 3 IV, Definition l.l(l), p. 155 IV,Definition 1.1(3),p. 155 IV,Definition 1.1(4), p. 155 VII, Definition 1.4(l), p. 402; W, Definition 1.9, p. 410 VII, Definition 1.6,p. 403; see VII, Section 1 I, Definition 1.5, p. 6 XI, Definition 2.2(1), p. 562 111, Definition 7.6, p. 149 XIII, Definition 4.1(1), pp. 643-644 XIII, Definition 4.1(2), p. 644 XIII, Definition 4.1(3), p. 644 XIII, Definition 4.1(3), p. 644 VII, Definition 4.1(2), (3), p. 426
700
INDEX OF DEFINITIONS AND ABBREVLILTIONS
semi-minimel
(1) semi-minimaltype (2) semi-minimalformula (3) strongly semi-minimal
V, Definition 4.1, pp. 267-269 V. Definition 4.3, pp. 276-277 V, Definition 4.3, pp. 276-277
semi-regular
(1) semi-regular type (2) P-semi-regular type
V, Definition 4.1,
semi-simple semi-weaklyminimal set shallow simple
formula
a formula is semi-weakly-
minimal set function H,pure set function H T is shallow (1) B-simple type
(2) strongly 9-simple type
skeleton Skolem
S M ) (special number of dimensions) split
I, Definition 2.6, p. 11
111, Definition 1.2, p. 85 111, Definition 7.4, p. 145 (1) stable theory (in A), stable model (in A),
I, Definition 2.2, p. 9 11, Theorem 2.13, p. 36
(2) ~(3, $)-stable formula (in A) (3) A-atomicallystable (1) stable system
11, Theorem 2.2(1), p. 30
(2) sp. etable system
standard stationarkat ion stationary
X, Def. 4.2(2), p. 528 V, Definition 4.6(1), (6), p. 278 V,Definition 4.6(2), (6), p. 278 VI, Definition 4.6, p. 377 VIII, Definition 3.1, p. 464 VII, Definition 1.1, p. 400
XIII, Definition 4.1(1), pp. 643-6
A-stable
stable system
VII, Dsfinition 1.3, p. 402
XIII, Definition 4.6(2), p. 647 XIII, Delinition 4.7(1), p. 648 XIII, Definition 4.7(2), p. 648
and
srd (strict independent partitions) stable
p. 267 V, Definition 4.6(3), p. 278 V, Definition 4.6, p. 278 V, Definition 4.2, p. 274
(3) true sp. stable system the representation is standard q is the stationarization of p over A (1) p is stationary over A (2) p is stationary
VII, Definition 2.8, p. 415 XII, Definition 2.1, p. Uefinition 5.1, p. XII, Definition 5.1, p. XII, Definition 5.3, p.
598 ; 616 616 616
X,Definition 5.8(2),p. 536 111, Definition 4.2(2), p. 117 111, Definition 1.7, p. 90 111, Definition 4.1, p. 117
VII, Definition 4.1(6), p. 426
INDEX OF DEFINITIONS AND ABBREWATIONS
(3) S
StP strict order property Rubmodel superstable supported system
c
A is stationary
(4) p is stationary inside A (5) p is stationary inside (B,A) (1) stp(4 A ) (2) stp*(& A ) , stp*(d, A ) formula q(Z;5) (theory T ) has the strict order Property (1) elementary submodel (2) submodel superstable theory T
70 1
Appendix, Definition 1.3, p. 655 XI, Definition l . l ( l ) , p. 557
XI, Definition 1.1(2),p. 557 111, Definition 2.1, (3), p. 94 111, Definition 2.1(3), p. 94 11, Definition 4.3, p. 69 I, Definition 1.1, p. 2 Notation I, Definition 2.2(6), p. 9 VI, Definition 3.7(2), p. 358 me. stable system
T Tarski-Vaught
VIII, Lemma 1.3, p. 445 XI, Definition 3.1(5),p. 573
Th (theory) tP (type)
Notation I, Definition 2.1(1), (3), p. 9
TP TPC TPS TPX transcendental tree
111, Definition 1.1, p. 85 VII, Definition 1.6, p. 406 see TPX aee TPX VII, Definition 1.7, p. 406 TPX"(a,M) (1) transcendental T II,Definition 3.4(2), p. 66 (2) totally transcendental T 11, Definition 3.1, p. 41 VII, Definition 3.1, p. 422 (1) (5, Bl-tree (2) strong tree VII, Definition 3.2, p. 423 (3) uniform &tree V I I , Definition 3.2, p. 423 a trival type X, Definition 7.1, pp. 55&551 III, Definition 3.3, p. 106 true dimension IX, Definition 1.1, p. 492 'J!VZ(O, A )
trival true W (TarskiVaught) type
q-type, n - t m e , Fff-t-0
W , Definition 2.1(1), p. 157
ugw
UgW(P),urn@. A )
V, Definition 3.5; p. 261 Appendix, Deihtion 1.1(3), p. 653-654 VI, Definition 1.1(3), pp. 324-325 VI, Definition 1.1(3), pp. 324-325 VI, Definition 8.1, p. 390 V, Definition 2.2. p. 247 VI, Definition 3.4, p. 355 I, Definition 1.8, p. 6
ultrafilter ultrapower ultraproduct UL (ultralimit) unidimensional
uniform
universal unstable unsuperetable
W M , D, 4 uniform filter universal, A-universal, ( < A)-universel model negation of stable negation of superstable
702
INDEX OF DEFINITIONS AND ABBREVIATIONS
4
UPW
UPW(P), UPW@,
w (weight)
(1) W ( P ) l
w (weakly)
I I,J,P
W
(1) set of triples (2) WE
(upper weight)
winning strategy witness ZFC (ZermeloFraenkel with choice)
(2)
%(P)9
n-witness
4%A ) wI?(4A )
swq
V, Definition 3.3, p. 259
V, Definition 3.2, p. 252; 888 V, Theorem 3.9, p. 254 V, Definition 7.2(2), pp. 306-307 V, Definition 2.1(1), (3),
p. 240 V, Section 6, p. 289 V, Claim 7.1, p. 306 VI, Definition 1.6, p. 328; VIII, Definition 2.1, p. 459 V, Definition 7.3, p. 309