Industrial Applications

Industrial Applications

10 Industrial Applications David S. Breslow Hercules Research Center Hercules Inc. Wilmington, Delaware I. II. III. IV. V. VI. VII. VIII. IX. X. ...

4MB Sizes 62 Downloads 244 Views

10 Industrial Applications

David

S.

Breslow

Hercules Research Center Hercules Inc. Wilmington, Delaware

I. II. III. IV. V. VI. VII. VIII. IX. X. XI.

P h o t o r e s i s t s a n d Printing P l a t e s Rubber Vulcanization Cross-linking of O t h e r P o l y m e r s Coupling Agents Modification of P o l y m e r Surfaces Tire-Cord Adhesives Dyes Polymer Additives Blowing Agents and Gas Generators Explosives and Propellants Biological Activity A. Pharmaceutical Applications B. Herbicides and Pesticides X I I . P o l y m e r i z a t i o n Initiators XIII. Miscellaneous Applications References

491 499 502 503 504 505 5

0

6

507 508 509 511 511 514 516 517 517

I. P h o t o r e s i s t s a n d P r i n t i n g P l a t e s O n e of the first major u s e s for organic azides involved the p h o t o c h e m i c a l cross-linking of polymeric s y s t e m s (7). Since the azide g r o u p a b s o r b s only short-wavelength light (286-288 n m ) , most of the w o r k has c o n c e n ­ trated o n aryl azides. H e r e , irradiation excites the aromatic s y s t e m , which then transfers energy to the azide function (2). Although the initial spin state often s e e m s to be in question, m a n y intermolecular reactions of AZIDES AND NITRENES Reactivity and Utility

491

Copyright © 1984 by Academic Press, Inc. All rights of reproduction in any form reserved ISBN 0-12-633480-3

492

D a v i d S. B r e s l o w

arylnitrenes involve the triplet state; h o w e v e r , the cyclization of 2-azido­ biphenyl to c a r b a z o l e , an intramolecular reaction, involves the singlet nitrene (3). E a s t m a n K o d a k m a r k e t s a photoresist b a s e d on cyclized r u b b e r , with 2,6-bis(4-azidobenzylidene)-4-methylcyclohexanone (1) as b o t h the p h o t o a b s o r b e r and cross-linking agent (4, 5 ) ; the e x t e n d e d conjugated s y s t e m increases the extinction coefficient and shifts the absorption to longer w a v e l e n g t h s . E x t e n s i o n into the visible region can b e obtained with the cinnamylidene derivative (2) ( / ) .

ο

2

T h e m e c h a n i s m of cross-linking is not at all clear. Cyclized r u b b e r contains considerable u n s a t u r a t i o n (6). According to D e l z e n n e (7), a bicyclic p o l y m e r containing 10% u n r e a c t e d isoprene units gives the best results. A s already n o t e d , m o s t intermolecular arylnitrene reactions in­ volve the triplet state. T o the t h r e e triplet-state reactions in solution— insertion into a C — Η b o n d to form a s e c o n d a r y a m i n e , abstraction of t w o h y d r o g e n s to form a primary a m i n e , and " d i m e r i z a t i o n " to form an azo c o m p o u n d — a fourth m u s t b e a d d e d for cyclized r u b b e r — a d d i t i o n to the double b o n d to form an aziridine. Of t h e s e , insertion is an inefficient p r o c e s s and the major p r o d u c t s with saturated h y d r o c a r b o n s are arylamines a n d / o r a z o c o m p o u n d s , depending on the n a t u r e of the aryl g r o u p . Reiser a n d c o - w o r k e r s h a v e s h o w n , h o w e v e r , that in a solid p o l y m e r matrix the r e a c t i o n s are quite different (7). F o r e x a m p l e , 1-azidonaphthalene in p o l y s t y r e n e gave a 9 5 % total yield of a m i n e , 9 3 % of which w a s s e c o n d a r y amine attached to the p o l y m e r . T h e difference b e t w e e n the reaction in solution and in a p o l y m e r w a s attributed to the increased triplet lifetime in the polymer ( / ~ 10~ s in solution and 0.85 s in 3

1/2

10.

Industrial Applications

493

polystyrene) and the " r i g i d i t y " of the polymer, allowing the t w o radicals formed by Η abstraction to invert spins and couple (a t w o - s t e p C — Η insertion) before separating by diffusion. A s e x p e c t e d of free radicals, the reaction w a s inhibited by oxygen. With cyclized r u b b e r the total amine yield w a s 9 0 % , with 6 7 % s e c o n d a r y amine attached to the p o l y m e r . T h u s , although triplet insertion a p p e a r s to be the major reaction, o t h e r reactions are possible, and it is not clear w h e t h e r an aziridine, formed by reaction with the residual unsaturation in cyclized rubber, would h a v e b e e n ana­ lyzed as secondary amine. Efros and Y u r r e seem to be the only o n e s w h o h a v e reported on the reaction of the diazide 1 with cyclized r u b b e r (8). T h e y claimed that the cross-linking reaction of 1 involved a nitrene singlet (since it w a s unaffected by h y d r o q u i n o n e or phenyl-/3-naphthylamine), which reacted with the unsaturation in cyclized r u b b e r to form aziridines (a nitrene triplet could h a v e d o n e the s a m e ) ; their evidence w a s b a s e d on the similarity of the ultraviolet (UV) spectra of the p o l y m e r (before insolubilization) and the dimethylamino analog of 1. An intense yellow color of the isolated polymer w a s noted. T h e s e proposals are not necessarily mutually exclusive. T h e r e are nu­ m e r o u s s t a t e m e n t s in the literature that the p r o d u c t s of an azide reaction d e p e n d on both the structure of the azide and the nature of the m e d i u m . T h u s 4-azidobiphenyl gave an 8 0 % yield of azobiphenyl w h e n irradiated in b e n z e n e , w h e r e a s phenyl azide and p-chlorophenyl azide gave essen­ tially n o n e . p - M e t h o x y p h e n y l azide gave an 18% yield of a z o c o m p o u n d in b e n z e n e and an 82% yield in tetrahydrofuran ( T H F ) or acetonitrile (9). T h u s 1-azidonaphthalene, used by Reiser (7), may h a v e been a p o o r model for 1. T h e s e cross-linking reactions are quite slow, inasmuch as t h e q u a n t u m yield for azide d e c o m p o s i t i o n is less than o n e , and at least t w o nitrenes are required for cross-linking. Cross-linking can be accelerated by the use of triplet sensitizers, which also e x t e n d the absorption range into longer w a v e l e n g t h s . T h u s , in the cyclized r u b b e r - 1 system, 1,8-dinitropyrene i n c r e a s e d t h e speed threefold b y a triplet-triplet energy-transfer m e c h a ­ nism (5). Merrill and U n r u h (70) r e p o r t e d that a n o t h e r w a y to increase speed is to attach an azide to the p o l y m e r b a c k b o n e . A partially h y d r o l y z e d poly (vi­ nyl acetate) c o n d e n s e d with 3- or 4-azidophthalic a n h y d r i d e g a v e poly­ m e r s 2 5 - 1 0 0 times m o r e sensitive than a standard photoresist, polyvinyl c i n n a m a t e ) , and this could b e increased 4- to 5-fold by the use of a sensi­ tizer. Similar results w e r e obtained with s t y r e n e - m a l e i c a n h y d r i d e copol­ y m e r esterified with m-azidobenzyl alcohol or /?-azidophenoxyethanol. L a r i d o n and c o - w o r k e r s u s e d an azidosulfonyl chloride to attach the aryl azide to a Bisphenol A - e p i c h l o r o h y d r i n b a c k b o n e and also a t t a c h e d

494

D a v i d S. B r e s l o w

the p h o t o s e n s i t i z e r (imidazoles, o x a z o l e s , etc.) to obtain high sensitivity (11)· D e l z e n n e and L a r i d o n p r e p a r e d p o l y m e r s by interfacial c o n d e n s a t i o n of azidoaryl bis(carbonyl chlorides) with diols or diamines, for e x a m p l e , 5-azidoisophthaloyl chloride with Bisphenol A (12). Unfortunately, it is difficult to c o m p a r e their sensitivities with Merrill and U n r u h ' s , although large a m o u n t s (58%) of M i c h l e r ' s k e t o n e gave as m u c h as a 38-fold in­ c r e a s e in sensitivity o v e r that of the unsensitized polymer. D e l z e n n e and L a r i d o n (12) suggested that the cross-linking m e c h a n i s m involves the formation of a z o c o m p o u n d s , b a s e d on the yellow color. A z o c o m p o u n d s can b e formed by dimerization of singlet or triplet nitrenes or by reaction of a nitrene with an azido group (13, 14; see also C h a p t e r 3). Reiser and c o - w o r k e r s h o w e v e r , did not report the formation of any azo c o m p o u n d s in their m o d e l e x p e r i m e n t s (7). A n o t h e r p r o c e d u r e used radical polymerization of u n s a t u r a t e d aryl azides. According to D e l z e n n e ( / ) , the most suitable material is a terpolym e r of m e t h y l and η-butyl m e t h a c r y l a t e with 2-(4-azidobenzoyl)oxypropyl m e t h a c r y l a t e . N o t surprisingly, s o m e azide functionality is lost during polymerization, p r e s u m a b l y by 1,3-dipolar cycloaddition of the azide to the activated m e t h a c r y l a t e double b o n d (75). P e r h a p s the best evidence for the m e c h a n i s m of cross-linking of an aryl azide p o l y m e r c o m e s from the work of T s u d a et al. (16). T h e y h y d r o l y z e d the photolysis product of p o l y v i n y l p - a z i d o b e n z o a t e ) and isolated poly­ v i n y l alcohol) and its /?-aminobenzoate ester, free /?-aminobenzoic acid, 4 , 4 ' - a z o b e n z e n e d i c a r b o x y l i c acid, and its N - o x i d e . In a s u b s e q u e n t ar­ ticle h o w e v e r , they a d d e d s e c o n d a r y amines to the list of p r o d u c t s (77). T h u s b o t h insertion and a z o formation w e r e responsible for cross-linking in this s y s t e m . M u c h less has b e e n r e p o r t e d on the use of sulfonyl azides in p h o t o r e ­ sists, probably b e c a u s e they a b s o r b only at short wavelengths (—270 nm), but p e r h a p s also b e c a u s e of the p o o r yields and complex reactions re­ p o r t e d in the literature (18). Agfa-Gevaert apparently b e c a m e interested in this a r e a w h e n H o l t s c h m i d t and Oertel (19) first p r e p a r e d ra-azidosulfonylphenyl i s o c y a n a t e , which w a s used to functionalize hydroxylcontaining p o l y m e r s (20). S u b s e q u e n t l y , h o w e v e r , they switched to the use of ra-azidosulfonylbenzoyl chloride (27), p e r h a p s b e c a u s e they found that the azidosulfonyl isocyanate is unstable, p r e s u m a b l y b e c a u s e of a 1,3-dipolar cycloaddition reaction b e t w e e n the t w o functional groups (22). Although they claimed p o l y m e r s broadly in their earlier p a t e n t s , in later p a t e n t s (27) Agfa-Gevaert limited their claims to p o l y m e r s contain­ ing h y d r o x y l , p h e n y l , pyridyl, or lactam g r o u p s . Since in m o s t of their p a t e n t s they u s e d M i c h l e r ' s k e t o n e as a triplet photosensitizer, this raises

10.

Industrial Applications

495

interesting questions a b o u t the m e c h a n i s m of cross-linking. It is k n o w n that s e c o n d a r y alcohols are readily d e h y d r o g e n a t e d to k e t o n e s by sul­ fonyl azides in a radical chain reaction involving a triplet nitrene (18). T h e Agfa-Gevaert p a t e n t discloses a m a x i m u m cross-linking rate for the hydroxyl-containing p o l y m e r s , sensitized with Michler's k e t o n e , at an O H / S 0 N ratio of 4 / 1 , with the rate decreasing at a lower ratio b e c a u s e of an insufficiency of O H g r o u p s . It would appear, therefore, that h e r e , t o o , solution and p o l y m e r matrix chemistry m a y b e different; isopropanol and methanesulfonyl azide in solution are reported to form a c e t o n e and methanesulfonamide quantitatively, although methanol and tosyl azide give a 4 4 % yield of h y d r o x y l a m i n e derivative by Η — Ο insertion. T h u s the cross-linking reaction m u s t involve insertion, free radical chemistry, or an aldol-type c o n d e n s a t i o n b e t w e e n carbonyl groups and active h y d r o g e n s ; h o w e v e r , the conditions of photolysis s e e m to b e t o o mild for aldol con­ densations to o c c u r . In a n y e v e n t , hydroxyl-containing p o l y m e r s a p p e a r to b e faster than a n y of the o t h e r s claimed. P o l y s t y r e n e s and polypyridines p r o b a b l y r e a c t with triplet sulfonylnitrene in a fashion similar to that of p h e n y l n i t r e n e , although sulfonyl azides react with pyridine thermally to form the zwitterion, p r e s u m a b l y via the singlet nitrene [Eq. (1)] (18). T h e reaction of azides with lactams has not b e e n r e p o r t e d . 2

3

(1) Although sensitizers o t h e r than M i c h l e r ' s k e t o n e h a v e b e e n u s e d (23), the k e t o n e s e e m s to b e preferred. According to Stuber et al. (24), h o w ­ ever, M i c h l e r ' s k e t o n e c a n n o t be a sensitizer for sulfonyl azides b y the usual triplet-triplet m e c h a n i s m . T h e triplet state of an arenesulfonyl azide is —79 k c a l / m o l e , while that of M i c h l e r ' s k e t o n e is 61 kcal; t h u s t r i p l e t triplet energy transfer would be e n d o t h e r m i c by 17 kcal. T h e m e c h a n i s m involved in the energy transfer is not k n o w n , but excitation of a groundstate c o m p l e x has been suggested. A s an acid-proof etching resist for printed circuits or printing plates, the reaction p r o d u c t of chlorosulfonated polyethylene with sodium azide has b e e n r e c o m m e n d e d ; since the p o l y m e r is highly chlorinated and contains few sulfonyl chloride g r o u p s , the azide content w a s low (25). Poly(vinylbenzyl chloride) has been used similarly (26). Although the s y s t e m s described thus far would b e suitable for the " c l a s s i c a l " photoresist u s e s , circuit b o a r d s , lithographic printing, and the like, in the a r e a of s u b m i c r o m e t e r lithography (i.e., microfabrication of s e m i c o n d u c t o r d e v i c e s ) , the trend has b e e n to finer lines ( < 1 μτη) and higher resolution. This has led to the u s e of dry d e v e l o p m e n t with a

D a v i d S. B r e s l o w

496

p l a s m a . In p l a s m a d e v e l o p m e n t the important factor is the difference in rate of d e c o m p o s i t i o n of the e x p o s e d and u n e x p o s e d a r e a s . T s u d a et al. (17, 27a) r e p o r t e d that t h e d e c o m p o s i t i o n p r o d u c t s of aryl azides increase t h e e t c h r e s i s t a n c e of p o l y m e r s t o w a r d an o x y g e n p l a s m a . T h u s polyOne thyl i s o p r o p e n y l ketone) containing 4,4'-bis(azidophenyl) sulfide w a s c o a t e d o n t o a silicon wafer, irradiated by electron b e a m or U V light, and d e v e l o p e d with an o x y g e n p l a s m a . A n etch-rate difference b e t w e e n ex­ p o s e d a n d u n e x p o s e d a r e a s (after removing u n r e a c t e d azide) of 2 - 2 . 5 yielded lines n a r r o w e r t h a n 0.3 μ π ι from electron b e a m and 0.5 μπι from U V after etching t h e silicon wafer with a c a r b o n t e t r a f l u o r i d e - o x y g e n p l a s m a . This s y s t e m is being d e v e l o p e d by T o k y o O h k a K o g y o . H i t a c h i h a s p a t e n t e d the u s e of 4,4'-bis(azidophenyl) sulfide as a sensi­ tizer for photoinsolubilization of a novolak resin; the resulting p o l y m e r w a s so resistant t o dry etching that it could be u s e d as a m a s k (27b). T h e s y s t e m s d i s c u s s e d thus far lead to negative-working p h o t o r e s i s t s , (i.e., t h e light-struck a r e a s are cross-linked and, in lithography, b e c o m e t h e printing a r e a s ) . F o r s o m e u s e s , h o w e v e r , positive-working plates are desired, in w h i c h t h e light-struck a r e a s m u s t be r e m o v e d . Fuji P h o t o Film h a s p a t e n t e d a s y s t e m in w h i c h an alcohol-soluble p o l y a m i d e , p r e p a r e d b y treating a 6- or 6,6-nylon with f o r m a l d e h y d e , is p h o t o l y z e d in t h e p r e s e n c e of an alkali-soluble aryl azide, such as 4,4'-diazidostilbene-2,2'disulfonic acid o r p - a z i d o b e n z o i c acid (28). Since t h e light-struck a r e a s b e c o m e soluble in diluted b a s e , this is strong e v i d e n c e that t h e reaction involves a t w o - s t e p insertion (presumably the stilbene azide would react only o n c e ) . It is c o n c e i v a b l e that t h e coupling is b e t w e e n the free amino g r o u p s formed during photolysis and the p o l y m e r methylol g r o u p s , but this r e a c t i o n is normally carried out u n d e r acidic conditions. T h e r e a r e , of c o u r s e , m a n y o t h e r imaging p r o c e d u r e s . T h e U p j o h n C o m p a n y a n n o u n c e d a n e w photoresist in 1973 (24, 29), b a s e d on t h e sulfonyl azide chemistry developed by Agfa-Gevaert. Their s y s t e m in­ volved t h e u s e of a methyl vinyl e t h e r / m a l e i c a n h y d r i d e (1/1) alternating c o p o l y m e r ( M W 5 χ 10 ) reacted with 2-hydroxyethyl /7-azidosulfonylp h e n y l c a r b a m a t e [Eq. (2)]. T h e p o l y m e r w a s c o a t e d on a s u p p o r t , irradi­ ated with 254-nm light through a m a s k , w a s h e d with a k e t o n e solvent or 5

(2)

10.

Industrial Applications

497

dilute b a s e to r e m o v e u n e x p o s e d p o l y m e r , and t h e n t r e a t e d with a basic dye to d e v e l o p t h e image. This short-wavelength light would g e n e r a t e singlet sulfonylnitrene, w h i c h could t h e n cross-link via a c o n c e r t e d C — Η b o n d insertion. M i c h l e r ' s k e t o n e w a s r e c o m m e n d e d as a sensitizer to allow t h e u s e of longer-wavelength light, but with this s y s t e m t h e speed w a s d e c r e a s e d by the sensitizer. Various modifications h a v e b e e n de­ scribed, including the use of a built-in sensitizer, obtained by reacting the p o l y m e r with the reaction p r o d u c t of iraft5^2,5-dimethoxy-4'-isocyanatostilbene and ethylene glycol (3) (30). T h e p r o d u c t has b e e n w i t h d r a w n from the m a r k e t .

3

K o s a r (31) described a n u m b e r of p h o t o s y s t e m s based on a z i d e s . Sev­ eral aryl azides h a v e b e e n r e c o m m e n d e d for photocross-linking of syn­ thetic p o l y m e r s (31, p . 113) for silk-screen printing. Water-soluble a z i d e s , such as 4,4'-diazidostilbene-2,2'-disulfonic acid, h a v e b e e n suggested as insolubilizing agents for gelatin, gum arabic, and the like b e c a u s e of their excellent storage stability in presensitized lithographic printing plates (31, p p . 330-336). Colored images can be obtained by using an aryl azide as an oxidative or dehydrogenating agent for coupling a /7-phenylenediamine with α-naphthol or o t h e r c o m p o u n d s containing reactive m e t h y l e n e or methine groups [Eq. (3)]. Better results are obtained by substituting pdialkylaminophenyl azides for the diamine plus azide (31, p . 359). OH

(3)

498

D a v i d S. B r e s l o w

A m e r i c a n C y a n a m i d has several p a t e n t s on the formation of images by irradiation of a ρ e n - n a p h t h a l e n e azide (4) in poly (vinyl chloride) (32). T h e image is p r o b a b l y formed by an interaction similar to that in E q . (3) to form a blue to gray-black d y e . T h e image is fixed by evaporating the u n r e a c t e d azide in a s t r e a m of hot air.

4 X = N ; OH; NH ; NHCOR 3

2

A n o t h e r p r o c e d u r e , k n o w n as the vesicular p r o c e s s , can be used for imaging (31, p . 276). H e r e advantage is t a k e n of the nitrogen liberated on photolysis; a p o l y m e r containing, usually, a diazo c o m p o u n d is irradiated and t h e n h e a t e d , the dissolved gas expanding to form tiny vesicles that scatter light and form the image. H e r e , t o o , azides h a v e a stability advan­ tage o v e r diazo c o m p o u n d s , and E a s t m a n K o d a k has p a t e n t e d several t y p e s , l,4-naphthoquinone-2,3-diazide (5) (33) and 2-[diazido-s-triazenyl]1-naphthol (6) (34).

5

6

Hitachi has p a t e n t e d a p r o c e s s for making raster dots on color-televi­ sion picture tubes involving azide photolysis (35). A water-soluble azide, such as 4,4'-diazidostilbene-2,2'-disulfonic acid, is irradiated through a s h a d o w m a s k . T h e u n r e a c t e d p o l y m e r is w a s h e d away with w a t e r , the tube c o a t e d with c a r b o n black, and the cross-linked p o l y m e r peeled off to leave the r a s t e r d o t s ; this is essentially a reversal p r o c e s s , similar to using a positive resist.

10.

Industrial Applications

499

II. R u b b e r V u l c a n i z a t i o n Since azidoformates d e c o m p o s e thermally at a convenient t e m p e r a t u r e to form nitrenes, w h i c h insert into h y d r o c a r b o n C — Η b o n d s (36, 37), their u s e for e l a s t o m e r cross-linking w a s o n e of the first investigated by H e r c u ­ les. In fact, it w a s a search for n e w vulcanizing agents for e t h y l e n e p r o p y l e n e elastomers (EPM) that led to the study of nitrenes. F o r most of this w o r k t e t r a m e t h y l e n e bis(azidoformate) (TBAF) w a s u s e d , although the p u r e c o m p o u n d is s o m e w h a t shock sensitive (38). H o w e v e r , it could be handled safely in solution or on a support, such as c a r b o n black. Table I s h o w s the results obtained by vulcanizing a variety of c o m m e r ­ cial e l a s t o m e r s with T B A F (38). In addition, qualitative results s h o w e d the cross-linking of a poly sulfide r u b b e r , p o l y u r e t h a n e s , and polyacrylates. All the properties s h o w n in Table I are c o m p a r a b l e or superior to those obtained with commercial vulcanizing agents. T h e ability to vulcanTABLE I P h y s i c a l P r o p e r t i e s of E l a s t o m e r s C u r e d with T B A F

Elastomer Natural rubber cis-\ , 4 - P o l y i s o p r e n e cis-l , 4 - P o l y b u t a d i e n e Styrene-butadiene copolymer ( S B R 1500) Polyisobutylene ( V i s t a n e x L-80) B u t y l r u b b e r (Enjay B u t y l 325) Butadiene-acrylonitrile c o p o l y m e r (Paracril B) Polychloroprene (Neoprene W) Chlorosulfonated polyethylene ( H y p a l o n 20) EPM EPDM (Nordel)^

a

Tensile strength

Elong­ ation

(psi)

(%)

Shore A hardness

415 430 520

3595 2800 1440

320 300 140

65 67 73

0 5 0

430

2925

275

68

0



210

1115 1275

530 370

45 47

15 5

750 1510

2985 3455

205 170

69 79

0 0

1080

2015 2895 3220

165 225 690

72 69 50

10 15 20

100% Modulus

Break set (%)

6

— —

* R e c i p e : P o l y m e r (as s h o w n ) , 100; H A F black (Philblack O), 4 7 . 5 ; T B A F ( 5 0 % o n H A F b l a c k ) , 5.0. C u r e d 45 min at 310°F. C o n t a i n i n g 40 p a r t s M A F b l a c k (Philblack A) a n d 30 p a r t s H A F b l a c k (Philblack O ) , 5 p a r t s n a p h t h e n i c oil (Circosol 42 X H ) , a n d 5 p a r t s zinc o x i d e . T B A F , 4 parts. C o n t a i n i n g 20 p a r t s n a p h t h e n i c oil ( N e c t o n 60). b

c

d

500

D a v i d S. B r e s l o w T A B L E II Black-Loaded E P M Formulation Cured with T B A F Recipe E P M (Vistalon 404) S A F b l a c k ( V u l c a n 6) T h e r m a l b l a c k (Sterling M T ) A n t i o x i d a n t (Agerite R e s i n D) Z i n c o x i d e ( P r o t o x 166) P e t r o l e u m jelly Paraffin w a s Sulfur ( T u b e b r a n d ) T B A F (30% on H A F )

100 35 25 1.0 5.0 1.0 1.0 0.2 8.35

C o m p o u n d M o o n e y v i s c o s i t y ( M L - 4 at 212°F) M o o n e y s c o r c h ( M S at 250°F), min to 5 point rise P r e s s - c u r e d at 310°F for 45 min

80 15

A i r o v e n aged at 300°F Test

Unaged

5 days

8 days

3 0 0 % m o d u l u s (psi) T e n s i l e s t r e n g t h (psi) E l o n g a t i o n (%) Shore A hardness B r e a k set (%) C o m p r e s s i o n set (70 h at 250°F) Graves tear strength at 212°F

1150 2275 505 58 15 50

2030 2185 310 64 5

2120 2180 300 64 5









2

95

ize p o l y i s o b u t y l e n e , and to cross-link p o l y p r o p y l e n e , w a s the first evi­ d e n c e that C — Η insertion is a singlet nitrene reaction, since t h e s e poly­ mers d e g r a d e r a t h e r than cross-link on t r e a t m e n t with p e r o x i d e s . Typical formulations for e t h y l e n e - p r o p y l e n e c o p o l y m e r (EPM) and for e t h y l e n e p r o p y l e n e - 1,4-hexadiene t e r p o l y m e r ( E P D M ) are s h o w n in Table II and III (38). N o t e w o r t h y are the good scorch resistance, excellent heat-aging p r o p e r t i e s , and hot tear strength of the E P M vulcanizate. A n interesting p r o b l e m is raised by the fact that E P D M is normally e x t e n d e d with oil, and n o e x t e n d e r oil unreactive to nitrenes is k n o w n . N e v e r t h e l e s s , good properties could be obtained using 20 parts of oil. Surprisingly, if a t h e r m a l black w a s used instead of a good reinforcing

10.

Industrial Applications

501 T A B L E III

V u l c a n i z a t i o n of E P D M with T B A F Recipe E P D M ( N o r d e l 1040) E P D M ( N o r d e l 1070) N a p h t h e n i c oil (Circosol 42 X H ) L o w a r o m a t i c oil ( F l e x o n 766) H A F b l a c k (Philblack O) T B A F (38% on H A F black)

100

100 100 20

C o m p o u n d M o o n e y viscosity ( M L - 4 at 212°F) P r o p e r t i e s after 30-min c u r e at 300°F 100% m o d u l u s (psi) 2 0 0 % m o d u l u s (psi) 3 0 0 % m o d u l u s (psi) Tensile s t r e n g t h (psi) E l o n g a t i o n (%) Shore A hardness

53 3.3

53 4.4

53 3.3

20 53 3.

58

58

59

59

280 840

320 1190

2580 395 62

3020 330 62

420 1430 2360 255 67

2

100

1570 3280 470 63

black, such as H A F , as m u c h as 40 parts of naphthenic oil could b e used without running into p r o b l e m s . Although nitrogen is a p r o d u c t of thermal decomposition of azidoform a t e s , t h e r e w a s n o evidence of blowing or porosity in the formulations described a b o v e ; resistance to blowing, in general, a p p e a r s to b e a func­ tion of c o m p o u n d viscosity, mold p r e s s u r e , and state of c u r e . A s might b e e x p e c t e d , b e c a u s e of the low gas transmission of butyl r u b b e r , blowing is m o r e of a p r o b l e m with it than with e t h y l e n e - p r o p y l e n e c o p o l y m e r s and t e r p o l y m e r s . On the plus side, T B A F gives faster cures than conventional sulfur-accelerator c o m b i n a t i o n s , and the vulcanizates are odorless and free of the b l o o m that often a p p e a r s on accelerated sulfur-cured E P D M . Although T B A F w a s given considerable trade evaluation, it w a s n e v e r m a r k e t e d , primarily for e c o n o m i c r e a s o n s . P P G Industries claimed outstanding properties for an S B R r u b b e r filled with silica and cross-linked with a bis(azidoformate) (59). T h u s a silicacontaining r u b b e r vulcanized with diethylene glycol bis(azidoformate) had tensile strength of 266 k g / c m and a w e a r index of 118, while in c o m p a r i s o n a c a r b o n black-filled r u b b e r had a tensile of 282 k g / c m and a w e a r index of 118. With sulfur vulcanization, c a r b o n fillers invariably give m u c h superior p r o p e r t i e s over silica. 2

2

502

D a v i d S. B r e s l o w

III. C r o s s - l i n k i n g of O t h e r P o l y m e r s In 1950 M o n s a n t o obtained a n u m b e r of p a t e n t s on the thermolysis of 4,4'-bis(azidosulfonyl)biphenyl for foaming and cross-linking cellulose ac­ e t a t e , alkyd r e s i n s , poly(vinylacetals), p o l y s t y r e n e , and polyethylene (40). A m e r i c a n C y a n a m i d disclosed a n u m b e r of m o n o - and polyfunctional sulfonyl azides as blowing agents for making cellular r u b b e r , and u n d o u b t e d l y the polyfunctional derivatives would also h a v e acted as cross-linking agents (41). N o n e of t h e s e w a s utilized commercially. It w a s not until H e r c u l e s investigated the chemistry of azidoformates and sul­ fonyl azides a n d s h o w e d t h e m to react as nitrenes that commercial u s e s d e v e l o p e d , in w h i c h cross-linking and blowing could b e separated (37, 4246). F r o m a practical viewpoint, the fact that p o l y p r o p y l e n e , which unlike p o l y e t h y l e n e c a n n o t be cross-linked by free-radical r e a c t i o n s , could b e modified and cross-linked by nitrenes w a s of critical i m p o r t a n c e . T h e reaction of disulfonyl azides is so efficient that less than 0 . 1 % in polypro­ p y l e n e will c h a n g e the p o l y m e r rheology to a noticeable extent (47); larger a m o u n t s cross-link the p o l y m e r (48). Since isotactic p o l y p r o p y l e n e melts at 167°C, it is not possible to react azidoformates, which h a v e 30-min halflives at 120-125°C (37), with molten p o l y p r o p y l e n e . Tosyl a z i d e , how­ e v e r , has a half-life of 33 min at 155°C, and alkanesulfonyl azides h a v e a b o u t a 10°C advantage o v e r aromatics (44). In addition, alkanesulfonyl azides contribute less color to the polymer. A n early u s e of azides w a s in the preparation of p o l y p r o p y l e n e foams (49, 50). Published p a t e n t s state that w h e n p o l y p r o p y l e n e is foamed with a blowing agent in t h e a b s e n c e of a cross-linking agent, the foam p r o d u c e d is largely o p e n celled d u e to r u p t u r e of the cell walls by the expanding g a s e s . If the p o l y p r o p y l e n e is partially cross-linked during molding with a poly (sulfonyl azide), a partially closed-cell molded article can b e pre­ p a r e d . Chlorinated aliphatic poly(sulfonyl azides) w e r e found to b e useful cross-linking agents for the manufacture of polypropylene foams (57). T h e reaction of p o l y p r o p y l e n e with smaller than cross-linking a m o u n t s of disulfonyl azides c a n lead to elastic fibers (52) and films (53). A wide variety of p o l y m e r s h a v e b e e n cross-linked b y thermal d e c o m ­ position of polyfunctional azidoformates a n d / o r sulfonyl azides: polyeth­ ylene (54), poly(vinyl chloride) (55, 56), poly(vinyl ethers) (57), acrylic p o l y m e r s (58), and p o l y c a r b o n a t e s (59). N u m e r o u s o t h e r p a t e n t s describe the simultaneous foaming and cross-linking of p o l y m e r s . F o r e x a m p l e , Phillips P e t r o l e u m has a p a t e n t on c y c l o p e n t a n e - and cyclohexanedisulfonyl azides to foam and cross-link h y d r o c a r b o n p o l y m e r s (60), and

10.

Industrial Applications

503

H e r c u l e s has p a t e n t s on foamed, cross-linked polyvinyl chloride) (67) and p o l y e s t e r (62), w h e r e the u s e of a cross-linking agent in conjunction with a foaming agent a p p e a r s to yield i m p r o v e d p r o p e r t i e s . E a s t m a n K o d a k p a t e n t e d the use of aryl azides, b o t h m o n o - and difunctional, to cross-link p o l y e t h y l e n e by heating at 170-220°C, and considered the azides to b e a s o u r c e of free radicals (63). Although certain a r o m a t i c diazides h a v e b e e n s h o w n to cross-link polypropylene (64), and p o l y p r o ­ p y l e n e is noted for its degradation by radicals, the fact that sulfur im­ p r o v e d the cross-linking s o m e w h a t is suggestive of a radical reaction (65). It s e e m s r a t h e r unlikely that sulfur would act as a dehydrogenating agent at the t e m p e r a t u r e u s e d . On the o t h e r h a n d , a two-step insertion of a triplet nitrene in a highly viscous m e d i u m has b e e n d e m o n s t r a t e d with o t h e r p o l y m e r s (7).

IV. C o u p l i n g A g e n t s It h a s b e e n well k n o w n for m a n y years that surface t r e a t m e n t of inorganic s u b s t a n c e s c a n lead to i m p r o v e d properties of filled p o l y m e r s . F o r sili­ c e o u s materials the agent of choice has b e e n a hydrolyzable silane, such as a trialkoxy derivative, containing a functional group to react with the p o l y m e r . F o r e x a m p l e , for glass-filled e p o x i e s , 3-aminopropyltriethoxysilane w o u l d b e r e a c t e d with the S i — O H groups on the glass surface and the amine g r o u p w o u l d react with the epoxide in the p o l y m e r matrix, t h u s forming c o v a l e n t b o n d s b e t w e e n the filler and the matrix (66). F o r differ­ ent p o l y m e r s , different functional groups w e r e required, and no agent w a s available to form covalent b o n d s with polyolefins. With the a d v e n t of azidoformates a n d sulfonyl a z i d e s , it b e c a m e possible to u s e o n e coupling agent for essentially all p o l y m e r s (67). T h u s a c o m p o u n d such as trimethoxysilylhexanesulfonyl azide, p r e p a r e d by chlorosulfonating trichlorosilylhexane and reacting the p r o d u c t with methanol and sodium a z i d e , w a s u s e d to treat glass cloth, which w a s then formed into a laminate with p o l y p r o p y l e n e . T h e treated glass laminate s h o w e d a flexural strength of 38,000 psi d r y , w h i c h d r o p p e d to 31,000 psi after boiling in w a t e r for 3 d a y s , while an untreated control s h o w e d a flex strength of 12,500 psi, w h i c h d r o p p e d to 8100 psi after boiling (67). Similar results w e r e obtained with o t h e r p o l y m e r s . M c F a r r e n et al. (68) s h o w e d the i m p r o v e m e n t in properties that could b e obtained with polypropylene and p o l y s t y r e n e filled with azidosilane-treated mica, Wollastonite, or clay. F o r e x a m p l e , p o l y p r o p y l e n e containing 4 0 % treated mica s h o w e d a tensile strength of

504

D a v i d S. B r e s l o w

7190 v e r s u s 4370 psi for an u n t r e a t e d control, and a flex strength of 12,800 v e r s u s 7530 psi for the control. P o l y s t y r e n e s h o w e d an increase in tensile strength from 8700 to 11,800 psi, little change in tensile m o d u l u s , but an increase in impact strength from 18 to 29 ft · lbs/in. Azidosilane-treated mica is an article of c o m m e r c e . Azidosilanes also impart excellent adhesion of p o l y m e r s to metal sur­ faces (67). T h u s steel coated with trimethoxysilylhexanesulfonyl azide and b o n d e d to polypropylene gave a lap shear strength of 2600 psi, while without azide, adhesion was negligible. Similarly, p o l y p r o p y l e n e on alu­ m i n u m gave 1600 psi, while the control gave 290 psi. C o m p a r a b l e results w e r e obtained with a silylazidoformate. Union Carbide also has p r e p a r e d silyl azides for glass t r e a t m e n t (69). In o r d e r to use a commercially available aminosilane, they investigated t w o a p p r o a c h e s . In o n e they c o n d e n s e d m-azidosulfonylbenzoyl chloride with the aminosilane (70); in the o t h e r they treated glass with an azidosulfonylcarboxylic acid aminosilane salt, and relied on the salt formation to pro­ vide the desired coupling to polymers (71).

V . Modification of P o l y m e r Surfaces A variety of p o l y m e r s h a v e had their surfaces modified by t r e a t m e n t with nitrenes. O s t e r a a s and Olsen (72), of Ashland Chemical, treated polyeth­ ylene film with a n u m b e r of nitrenes in the gas p h a s e and o b s e r v e d a change in the critical surface tension. N i t r e n e , N H , w a s generated by pyrolysis of chloramine and of hydroxylamine-O-sulfonic acid; carb e t h o x y n i t r e n e and heptylnitrene, by pyrolysis of the c o r r e s p o n d i n g az­ ides. H e p t y l n i t r e n e did not change the surface tension, u n d o u b t e d l y be­ c a u s e alkylnitrenes react by internal h y d r o g e n transfer, not by C — Η insertion (73). T h e o t h e r reagents w e r e studied in greater detail (74). T h u s b o t h c a r b e t h o x y c a r b e n e - and carbethoxynitrene-treated polyethylene had y of 39 d y n e s / c m ; the value for the untreated p o l y m e r w a s 31 d y n e s / c m . H y d r o l y s i s of t h e nitrene-treated p o l y m e r did not change y , in a g r e e m e n t with the value found for H N t r e a t m e n t , while acylation with trifluo­ roacetic a n h y d r i d e d e c r e a s e d y to 27 d y n e s / c m , in reasonable agree­ m e n t with t h e 2 2 - 2 4 d y n e s / c m obtained by converting the c a r b e t h o x y c a r ­ b e n e surface by reaction with trifluoroethanol. c

c

c

Metal surfaces w e r e r e a c t e d in a similar m a n n e r with heptyl azide, e x c e p t that the metal surface was maintained a b o v e 300°C (75). H e r e the critical surface tension varied with the metal, and it is unlikely that ni-

10.

Industrial Applications

505

t r e n e s w e r e involved. T h e p r o c e s s has b e e n p a t e n t e d for a n u m b e r of s u b s t r a t e s , although it is r a t h e r unlikely that it is practiced commercially (76). ICI has patented the use of azides to attach fluorocarbon residues to textile surfaces in o r d e r to r e n d e r fabrics soil resistant (77). Both sulfonyl azides and azidoformates w e r e c o v e r e d , (e.g., p-perfluorocaprylamidobenzenesulfonyl azide, 2-perfluorocapryloylethyl azidoformate, copoly­ m e r s of 2-azidocarbonyloxyethyl acrylate with acrylate or m e t h a c r y l a t e esters of perfluoroalcohols). S o m e w h a t similar c o m p o u n d s w e r e p a t e n t e d by A r m s t r o n g C o r k , especially for treatment of polyolefin fibers (78). Battelle patented the use of an aryl or acyl azide containing a free carboxyl group to impart polarity to a surface (79). In a totally different vein, Upjohn received a series of p a t e n t s on the u s e of sulfonyl azides to m a k e surfaces n o n t h r o m b o g e n i c (80). F o r e x a m ­ ple, a s u b s t r a t e w a s coated with nitrobenzenesulfonyl azide and irradiated with 254-nm light. T h e nitro group w a s then r e d u c e d , the resulting a m i n o g r o u p diazotized and finally coupled with a n o n t h r o m b o g e n i c material, such as l-hydroxy-8-amino-5,7-naphthalenedisulfonic acid.

VI. Tire-Cord A d h e s i v e s W o r k in this a r e a w a s initiated in an a t t e m p t to improve adhesion to poly (ethylene terephthalate) (PET) tire cord. Since it is generally believed that a covalent b o n d m u s t b e formed b e t w e e n t h e cord and t h e r u b b e r in a tire, P E T p r e s e n t s an unusual problem, as the only functional groups available are at p o l y m e r chain e n d s . T o increase the fiber tenacity, molec­ ular weights are increased, resulting in fewer chain e n d s . I n a s m u c h as nitrenes d o not rely o n chain e n d s for reaction, they would b e prime c a n d i d a t e s for this application. Although a variety of polyfunctional com­ p o u n d s s h o w e d activity, the first material m a r k e t e d w a s a bis(azidoformate) prepared from bis(hydroxyethyl)isophthalate (81a). T h e cord is coated with an emulsion of the azide and then is dried and h e a t e d to d e c o m p o s e the azidoformate. T h e m e c h a n i s m has not b e e n p r o v e d , b u t the p r o c e s s p r o b a b l y involves b o t h polymerization of the bis(azidoformate) by reaction of the nitrene with itself and simultaneous reaction with the cord surface. T h e important point is that both reactions result in a m i d e formation, for t h e next step is carried out by coating the cord with an acidified r u b b e r latex containing resorcinol and formaldehyde, the socalled R F L dip, w h i c h had b e e n developed to b o n d nylon cord to r u b b e r .

506

D a v i d S. B r e s l o w

O n drying, t h e methylolated amide and resorcinol react with e a c h o t h e r and with the r u b b e r u n s a t u r a t i o n via a Prins reaction. M o s t surprisingly, t h e s a m e s y s t e m w o r k s well on aramid fibers and results in superior p r o p e r t i e s , e v e n though it would a p p e a r that a r a m i d s should h a v e suffi­ cient amide groups not to require the azidoformate p r e t r e a t m e n t . T h e t e n d e n c y to very slow hydrolysis of azidoformate emulsions is something of a p r o b l e m , and substitution of a m o r e stable sulfonyl azide w o u l d b e desirable. T h u s , for e x a m p l e , a bis(sulfonyl azide) o n polyester tire c o r d , o v e r c o a t e d with R F L dip and vulcanized into r u b b e r , required 31 psi to t e a r t h e c o r d from t h e r u b b e r , w h e r e a s without the azide only 17 psi w a s required (81b).

VII.

Dyes

R e a c t i v e d y e s h a v e been k n o w n for m a n y y e a r s . It is not surprising, therefore, that Griffiths and c o - w o r k e r s investigated azido-substituted d y e s initially for polypropylene (82). A z o d y e s w e r e u s e d , attached to different azides 7, w h e r e X = H , ( C H ) N , or N 0 , and Y = diethylamino3

2

2

7

azido-5-triazene—NH, d i a z i d o - s - t r i a z e n e — N H , S 0 N , or N . T h e s e w e r e applied to polypropylene fiber or film from an a q u e o u s dispersion, dried, and either irradiated or heated in an air stream at 140°C until the azide group w a s completely d e c o m p o s e d . Radiation a t t a c k e d only the surface, leading to ring dyeing, but thermally, 2 6 - 5 8 % of t h e d y e was reportedly b o u n d to the p o l y m e r . This w a s s h o w n by dissolving the poly­ m e r in hot xylene, after extracting unreacted d y e with m e t h y l e n e chlo­ ride, and precipitating it with h e x a n e ; the solvent remained colorless. Unfortunately, there was no evidence that the d y e d e c o m p o s i t i o n prod­ ucts (e.g., a z o dimer, polymer, etc.) would be soluble u n d e r t h e s e condi­ t i o n s . F r o m a practical point of view, azide d e c o m p o s i t i o n w a s t o o slow at 140°C, and higher t e m p e r a t u r e s could not be used with p o l y p r o p y l e n e . 2

3

3

Griffiths and M c D a r m a i d subsequently investigated dyeing of 6,6-nylon with 2-hydroxy-5-methyl-4'-azidosulfonylazobenzene (8) (83). Below 140°C t h e major reaction w a s nucleophilic displacement of the azide g r o u p by the terminal amine group of the p o l y m e r , but at higher t e m p e r a ­ t u r e s C — Η insertion of t h e nitrene took place. T h e y therefore investi-

10.

Industrial Applications

507

gated transfer printing with a n u m b e r of azides (84). In transfer printing the d y e , from a sheet of p a p e r , w a s p r e s s e d against the fabric at an elevated t e m p e r a t u r e (e.g., 200°C). A b o u t 7 5 % of the d y e a t t a c h e d to the fiber; thus sublimation p r e c e d e d d e c o m p o s i t i o n . Aryl azide d y e s acted similarly, but here a color change took place, b e c a u s e the azide g r o u p w a s part of the c h r o m o p h o r e . T h u s 9 changed from orange to b l u e , the latter being the color of the parent a z o a m i n e [Eq. (4)]. D y e s b a s e d on sulfonyl N ~V^"~^""" = N

3

jL

+

NylonNylon

-

NH—^^-N==

9 (Blue) (4)

(Orange)

azide w e r e m o r e w a s h fast than the aryl azide d y e s , indicating a higher insertion efficiency for the former. Unfortunately, since the d y e m u s t b e volatile, colors are limited to yellow and o r a n g e ; to obtain o t h e r s h a d e s , the c h r o m o p h o r e s must b e e x t e n d e d and the d y e s b e c o m e less volatile. This lack of versatility probably p r e c l u d e s commercial u s e . A r m s t r o n g has p a t e n t e d an interesting m e t h o d of dyeing w o o d (85). Soaking w o o d in an a q u e o u s solution of 4-aminobenzene- or 3-amino-4methoxybenzenesulfonyl azide, followed by irradiation, imparted a wal­ nut color to the w o o d . Presumably a d y e is formed by reaction of the nitrene with the a m i n o g r o u p .

VIII. P o l y m e r A d d i t i v e s In m a n y applications it is desirable to b o n d an additive to a p o l y m e r to p r e v e n t its loss b y volatilization or extraction. T h u s , G o o d y e a r r e a c t e d 3,5-di-ter/-butyl-4-hydroxyphenethyl azidoformate with natural r u b b e r and d e m o n s t r a t e d that the antioxidant could not b e e x t r a c t e d (86). C a n t o r (87) carried out a similar study using the reaction p r o d u c t of /?-azidosulfonylphenyl isocyanate with 3,5-di-ter/-butyl-4-hydroxyphenyl m e t h a -

D a v i d S. B r e s l o w

508

nol or -ethylamine, which he reacted with polyethylene and polypropyl­ e n e as well as with several e l a s t o m e r s . W h e r e a c o m p a r i s o n could be m a d e , the azidoformate reaction a p p e a r e d to be m o r e efficient. In film and fiber it is very difficult, b e c a u s e of the high surface-tov o l u m e ratio, to retain additives; the p r o b l e m is especially a c u t e in fibers b e c a u s e of the n e e d to withstand laundering or dry cleaning. H e r c u l e s p a t e n t e d the u s e of azidoformates and sulfonyl azides to retain flameproofing agents, especially in p o l y e s t e r and p o l y p r o p y l e n e fibers, using c o m p o u n d s such as ß-tribromoethyl azidoformate, t e t r a b r o m o b i p h e n y l sulfonyl azide, and the like (88a).

IX. B l o w i n g A g e n t s a n d G a s G e n e r a t o r s T h e r e are several applications of azides w h e r e u s e is m a d e of their ability to liberate nitrogen. M e n t i o n has already b e e n m a d e of the u s e of azides for preparing vesicular images by p h o t o c h e m i c a l release of nitrogen gas (Section I), and of the simultaneous cross-linking and blowing of poly­ m e r s to p r e p a r e p o l y m e r foams (Section III). Blowing agents for p o l y m e r s are materials that liberate n o n t o x i c gases o n heating. T h e gas-evolution t e m p e r a t u r e needed d e p e n d s on the poly­ m e r being b l o w n . Isotactic p o l y p r o p y l e n e , for e x a m p l e , which melts at 167°C, requires a high-temperature blowing agent, w h e r e a s an elastomer c a n b e b l o w n at a m u c h lower t e m p e r a t u r e . A n early report described the formation of cellular r u b b e r by calcium azide added to the vulcanization mixture and heated at 100°C (88b). Since calcium azide is stable at these t e m p e r a t u r e s , gas evolution must involve its reaction with one of the other ingredients, p e r h a p s the vulcanization accelerator tetramethylthiuram disulfide [Eq. (5)]. General Aniline and [(CH ) NCS ] 3

2

2

2

+

2N " 3



2 (CH ) NCS ~ + 3

2

2

3 N

2

(5)

Film p a t e n t e d ^(TV-piperidinylazoibenzenesulfonyl azide as a blowing agent for p o l y m e r s ; p r e s u m a b l y both the azo and azide groups would liberate nitrogen (89). A m e r i c a n Cyanamid p a t e n t e d both monofunctional sulfonyl azides and sulfamoyl azides, R N S 0 N , as blowing agents for p o l y m e r s (41, 90); there are no indications that sulfamoyl azides form reactive nitrenes on heating (91). C h e v r o n R e s e a r c h p r e p a r e d polyfunc­ tional azidoformamide blowing agents, R ( — N H C O N ) _ 4 , by reacting iso­ c y a n a t e s with h y d r a z o i c acid; t h e s e materials foamed, but did not cross­ link, p o l y p r o p y l e n e and poly(vinyl chloride) (92). 2

2

3

3

2

10.

Industrial Applications

509

G a s g e n e r a t o r s , o n the other h a n d , d e m a n d different p r o p e r t i e s , the p r o b l e m h e r e being the liberation of a large a m o u n t of gas rapidly. In a passive-restraint s y s t e m to p r o t e c t automobile o c c u p a n t s from injury in a crash, a gas bag m u s t b e filled to slightly a b o v e a t m o s p h e r i c p r e s s u r e in 2 0 - 6 0 m s . T h e gas g e n e r a t o r is almost always sodium or p o t a s s i u m azide, usually in combination with an oxidizing agent and a metal halide or oxide. In o n e example described by D o w (93), the ingredients are 5 0 . 7 % sodium azide, 12.2% potassium Perchlorate, and 3 7 . 1 % m a g n e s i u m chlo­ ride, the reaction being 8 NaN

3

+ KC10

4

+ 4 MgCl

2

8 NaCl

+

12 N

2

+ KCl

+ 4 MgO

(6)

A small a m o u n t of a particulate metal (Mg, Al, etc.) m a y be a d d e d to react with any H C N , C O , or nitrogen oxide formed (93). Allied Chemicals suggested coating the particle grains with an a z i d e - c h l o r a t e or - P e r c h l o ­ rate mixture (high in oxidizer) dispersed in poly(vinyl acetate) or cellulose acetate to e n h a n c e the ignition of the gas g e n e r a t o r (94).

X. E x p l o s i v e s a n d P r o p e l l a n t s Ionic azides, such as sodium azide, are stable c o m p o u n d s , w h e r e a s cova­ lent metallic azides are shock sensitive. L e a d azide, P b ( N ) , first pre­ pared by Curtius in 1891 (95a), rapidly replaced m e r c u r y fulminate as an initiator or d e t o n a t o r b e c a u s e of its greater chemical stability (95b). It was first used by the G e r m a n A r m y in World W a r I in the form of " d e x t r i n a t e d lead a z i d e , " in which the addition of 3 % dextrin gave r o u n d e d aggregates, which w e r e less sensitive to shock; poly (vinyl alcohol) and c a r b o x y methylcellulose h a v e also been used. L e a d azide is still used in military ammunition and industrially in blasting c a p s (96). Organic azides h a v e been evaluated as alternatives to lead a z i d e , but h a v e b e e n found wanting. T h u s 2,4,6-triazido-s-triazine (cyanuric triazide) is a very efficient initiator, but is e v e n m o r e sensitive to impact and friction than m e r c u r y fulminate (96). l,3,5-Triazido-2,4,6-trinitrobenzene has high initiating efficiency and acceptable impact sensitivity, but it slowly d e c o m p o s e s at r o o m t e m p e r a t u r e (96). D o w p a t e n t e d 2-cyano3,4,5,6-tetrazidopyridine as a d e t o n a t o r (97). W o r k continues to take a d v a n t a g e of the 85 kcal p e r mole azide of energy imparted to a s y s t e m , but mostly in the area of propellants. T h e U . S . N a v y has a n u m b e r of p a t e n t s on nitro-azido c o m p o u n d s ; for e x a m ­ ple, nitramines can be chloromethylated with formaldehyde and H C l , and 3

2

510

D a v i d S. B r e s l o w 1. CH20,HC1 2. N a N 0 NNHCH CH NHNO • 0 NNCH CH NN0 3

2

2

2

CH N 2

CH N

3

(7)

2

2

3

t h e n reacted with azide [Eq. (7)] (98). T h e s e materials h a v e b e e n sug­ gested as substitutes for nitroglycerin in double-base p o w d e r , being less sensitive to shock. Dinitroalkanes can be c o n v e r t e d to nitro azides by electrolysis [Eq. (8)] (99). T h e s e are also stable ingredients for propellants. NaN3 (8)

RCH(N0.) — — * RC(N0 ) 2 I electrolysis | N z

z

3

l,9-Diazido-2,4,6,8-tetranitro-2,4,6,8-tetrazanonane (10) is claimed to b e a combustion-rate modifier in propellants and explosives; 2 0 % in H M X increased the burn rate without changing the slope of the burn-rate c u r v e (100).

N0

2

N0

2

N0

2

N0

2

10

Rockwell International has a n u m b e r of patents in this a r e a . Poly(glycidyl azide) h a s been p r e p a r e d from h y d r o x y - t e r m i n a t e d polyepichlorohydrin [Eq. (9)] (101). T h e use of this as a binder in solid propellants gives an NaNH0-(-CH„CH-0-)-H

I

HCH-OLCH-O-lrH

I

DMF

CH C1

CH N

2

2

(9)

3

improved impulse over the inert hydroxy-terminated polybutadiene nor­ mally used. T h e polymer, combined with nitrocellulose, gives a r e d u c e d flame t e m p e r a t u r e but a higher m a s s impetus than the usual double-base p o w d e r b a s e d on nitroglycerin or nitroguanidine (102). 3,3-Bis(azidom e t h y l ) o x e t a n e (11) has been p r e p a r e d from the c o r r e s p o n d i n g dichloride and polymerized to a low polymer, M 2000-3000 [Eq. (10)] (103). T h e 75-78°C softening point of the oligomer is too high to be practical. A 1: 1 c o p o l y m e r of 11 with T H F melts at - 5 ° C (104). w

10.

Industrial Applications

(N CH ) C 3

2

511

/

C

H

K

2

acid c a t .

I

2

3

> HO-(-CH CCH 0-)-H

0

2

2

(10)

11

O t h e r nitro azides h a v e b e e n claimed as energetic plasticizers for p r o ­ pellants and explosives, having b e t t e r thermal stability and lower shock sensitivity than nitroglycerin a n d , of c o u r s e , higher energy t h a n inert plasticizers. A m o n g t h e s e are fluorodinitroethoxyethyl azide (12) (105), 1,1,1,3-tetranitro-5-azido-3-azapentane (13) (105), and a z i d o m e t h y l bis(fluorodinitroethyl)amine (14) (706). o-Phthalate and adipate e s t e r s of 2,3-diazidopropanol a n d / o r 1,3-diazidoisopropanol h a v e also b e e n de­ scribed (107). (0 N) CFCH OCH CH N 2

2

2

2

2

(O^^CC^NCI^CH^

3

N0

12

2

13

N CH N[CH CF(N0 ) ] 3

2

2

2

2

2

14

XL B i o l o g i c a l A c t i v i t y A.

Pharmaceutical

Applications

Sodium azide h a s b e e n k n o w n for m a n y years to b e an antihypertensive agent, b u t it is t o o toxic to b e used (108). It would a p p e a r that almost a n y azide l o w e r s blood p r e s s u r e . T h u s ethyl azidoformate is a p o t e n t vasodi­ lator, a n d volatile azido c o m p o u n d s should be handled with a d e q u a t e ventilation (22). A n u m b e r of azides h a v e b e e n p a t e n t e d for t h e control of h y p e r t e n s i o n . A c c o r d i n g to F M C C o r p . , all arenesulfonyl azides a r e ac­ tive, but /3-styrenesulfonyl azide has b e e n p a t e n t e d for this u s e (709). 2A z i d o c y c l o h e x a n o n e oxime has also b e e n c o v e r e d (770); b o t h s h o w ac­ tivity w h e n administered orally. M e a d J o h n s o n claimed similar activity for sulfamoyl a z i d e s , 4-methylpiperazin-l-sulfonyl azide h y d r o c h l o r i d e

D a v i d S. B r e s l o w

512

N - S 0 N - HCl

CH -N

2

0

3

15

(15) being m e n t i o n e d specifically (111). It is conceivable that t h e s e com­ p o u n d s o w e their activity to a slow release of azide ion; 15 especially is hydrolytically u n s t a b l e . Squibb claimed, h o w e v e r , that certain azido-substituted proline (16, η — 1) and pipecolic acid (16, η = 2) derivatives are h y p o t e n s i v e agents d u e to their ability to inhibit angiotension-converting e n z y m e (772). I ( C

V \ n 2

R S(CH ) _ CHCO-N 2

Q

2

C

/ 2 H

CH^ C0 R 2

16

A n u m b e r of p a t e n t s claim sedative activity for certain azides. T h u s , according to S a n d o z , 2-allyl-6-azidodecahydro-4a-(3-hydroxyphenyl)-c/sisoquinoline (17) is a useful sedative (113). All the isomeric 1,4:3,6OH

Ν

H

CH CH=CH 2

2

17

dianhydro-2,5-diazido-2,5-dideoxyhexitols (18) h a v e b e e n p r e p a r e d and claimed to h a v e hypnotic activity (774), while certain azidobarbituric acids (19) are r e p o r t e d to h a v e spasmolytic and sedative action (775). Ν

3

Η I

/CH^C -

H C 2

I

\ / -CH I

C H

R=Alkyl or Ph

2

Η 18

19

10.

Industrial Applications

513

A c c o r d i n g to Topliss (116), a series of pyrimidines h a v e interesting diuretic p r o p e r t i e s . R e q u i r e d for activity are a primary amine in the 2 position, an azide in the 4 position, and a phenyl in the 6 position; t h e most active c o m p o u n d found w a s 2-amino-4-azido-5-(2-ethoxyethyl)-6phenylpyrimidine (20).

C H OCH CH 2

5

2

2

20

A z i d o a m p h e n i c o l , also k n o w n as L e u k o m y c i n A , O-(-)-threo-2-azid o a c e t a m i d o - l - p - n i t r o p h e n y l - l , 3 - p r o p a n e d i o l (21), is an antimicrobial CH0H-CH-CH.0H

I

2

NHCOCH N 2

3

21

agent (108). Azidocillin, or a-azidobenzylpenicillin (22), is an antibacte­ rial agent a n d is r e p o r t e d l y u s e d as a feed supplement to p r e v e n t mastitis in cattle (108). C00H

C H CHCONlT 6

5

22

According to H o o v e r and S t e d m a n (117), the azide g r o u p imparts im­ p r o v e d activity against gram-negative bacteria. Schering p a t e n t e d an az­ ido analog of griseofulvin, 2'-azido-7-chloro-4,6-dimethoxy-6'-methylgris2'-en-3,4'-dione (23), as an antifungal agent, w h e n administered orally, against ringworm of skin, hair, or nails (118a). T h u s , in t h e s e t h r e e c a s e s , the azide group modifies the k n o w n activities of the parent c o m p o u n d s , chloramphenical (21, substituting C H C 1 for C H N ) , benzylpenicillin, 2

2

3

514

D a v i d S. B r e s l o w

0

23

and griseofulvin. Ύή-η- or isobutyltin azide, as well as the bis(dialkylazidotin) oxide, are reportedly m o r e active as fungicides and bactericides than o t h e r tin c o m p o u n d s , especially against gram-negative bacteria (118b). N o n e of t h e s e c o m p o u n d s is listed in the 1980 edition of the U.S. Pharmacopeia/National Formulary (119).

B. Herbicides

and

Pesticides

In 1968, P P G Industries p a t e n t e d the use of sodium and p o t a s s i u m azides as b r o a d - s p e c t r u m herbicides (720). Depending on the application level, they could act to kill all g r o w t h , p r e v e n t seed germination, regulate g r o w t h , p r e v e n t t o b a c c o s u c k e r s , thin fruit, and the like. Since soil micro­ organisms c o n v e r t the azide into available nitrogen, fields could b e planted a short time after t r e a t m e n t , toxic residues d i s a p p e a r e d , and at high d o s e s the material acted as a fertilizer (although it is highly doubtful that the last could be e c o n o m i c at p r e s e n t azide prices). T h e y later recom­ m e n d e d azide u s e against Florida beggarweed in p e a n u t s (727) and claimed that the addition of certain metal salts d e c r e a s e d phytotoxicity (122). A n u m b e r of organic azides h a v e also b e e n claimed to be useful herbi­ cides. T h u s , D e g u s s a p a t e n t e d a series of azido-s-triazines (24, R = a lower alkyl group) as selective w e e d killers and defoliants (123). CibaGeigy p a t e n t e d similar c o m p o u n d s containing a cyclopropyl group (25)

V 24

25

26

3

10.

Industrial Applications

515

(124) or a c a r b a m a t e (26) (125) as a pre- or p o s t e m e r g e n t herbicide for killing broadleaf plants. E t h y l Corporation p a t e n t e d tri-ft-butyltin azide as a defoliant (126). Shell Oil patented a sulfonyl azide as a herbicide (27, R = alkyl, cycloalkyl, or allyl) (727), and Eli Lilly p a t e n t e d an aryl azide (28) as a p r e m e r g e n t herbicide (726").

(CH ) N 3

2

27

28

S o m e of t h e s e azides are also pesticides. T h u s sodium and p o t a s s i u m azides control Pithium spp. and Sclerotium s p p . , fungi that attack bentgrass, s o y b e a n s , and p e a n u t s , as well as n e m a t o d e s (722, 729). A z i d e 28 is r e p o r t e d to b e active against Plasmopara viticola, which c a u s e s d o w n y mildew on g r a p e s (128). C o m p o u n d s 24 and 25, as well as similar o n e s , are active against flies and m o s q u i t o s in their larva or p u p a stages, p r e ­ venting m e t a m o r p h o s i s (750). Z o e c o n p a t e n t e d a n u m b e r of azides that show j u v e n i l e h o r m o n e activity (29 and 30) (757). ( C H ) CCOCH CH CHCH CH=CHC«CHC00CH 3

2

2

N

3

2

2

CH

CH

3

3

3

( C H ) C ( C H ) CHCH CH»CHC=CHCOOCH 3

2

2

N

3

2

CH

3

29

Chevron (132).

3

30

patented

trichloromethylazidoamides

RNHCHCC1 N

CH

3

3

3

3

31 as

nematocides

(CH ) CCCH N 3

3

2

3

N0C0NHCH

3

31 R-PhCO, P h S 0 , C H O C O , etc. 2

2

5

32

D i a m o n d S h a m r o c k reported azido-oxime c a r b a m a t e s 32 to be active against insects, mites, and n e m a t o d e s (755). D u P o n t claimed that certain azido esters (33) are active against south­ ern a r m y w o r m larvae, houseflies, and boll weevils (134). A l m o s t identi-

516

D a v i d S. B r e s l o w

cal c o m p o u n d s h a v e been described in a E u r o p e a n patent application by Ciba-Geigy (135). Sodium azide is claimed to b e a unique fungicide for the p r e s e r v a t i o n of wine (95b).

XII. P o l y m e r i z a t i o n I n i t i a t o r s D u p o n t p a t e n t e d sodium azide plus an oxidizing agent ( M n 0 ~ , C I O " , C e , etc.) as a l o w - t e m p e r a t u r e initiator for the emulsion polymerization of acrylonitrile (136a). T h e r e h a v e b e e n a n u m b e r of r e p o r t s of sulfonyl azides as initiators of free-radical polymerizations (18, 136b). Activity is usually low, and the m e c h a n i s m of initiation is o b s c u r e (18, p . 272). H o w e v e r , reasonably active initiators for t h e emulsion polymerization of conjugated dienes h a v e b e e n r e p o r t e d to b e formed from what a p p e a r to b e r e d o x s y s t e m s — sulfonyl or p h o s p h o n y l azides in the p r e s e n c e of ferrous sulfate plus a chelating agent (137). Since the polymerizations w e r e carried out at 50°C, nitrenes could not be involved. At this t e m p e r a t u r e , h o w e v e r , the 1,3dipolar cycloaddition of sulfonyl azides with double b o n d s could be in­ volved in the initiation (18, p . 291), and it is r e a s o n a b l e that o n e of the intermediates p o s t u l a t e d by A b r a m o v i t c h (138) to b e formed in the reac­ tion could set u p a r e d o x s y s t e m with ferrous ion ( S c h e m e 1). 4

4 +

\ RS0 N„ + 2

/

3

/ C=C

o

I —>

I

—C

\

I

^N

I C—

>

C—

I v

I

—C I

,N

RS0 N" o

I

N+

RSO' "2 I

—C

I

RS0 N 2

I

I

C— N£

+

2 +

Fe

>

I

—C

ι

RS0 N 2

Scheme 1

I

C—

+

3+

Fe

+ N 2 0

10.

Industrial Applications

517

XIII. M i s c e l l a n e o u s A p p l i c a t i o n s M a s o n listed several applications for inorganic azides (95b). B a r i u m and strontium azides h a v e b e e n u s e d as " g e t t e r s " in the p r e p a r a t i o n of elec­ tric-discharge t u b e s . Salts modified with sodium azide h a v e b e e n used to purify m o l t e n aluminum and a l u m i n u m - s i l i c o n alloys. Azide salts are effective in preventing the rusting of iron. Sodium azide at p H 9 - 1 2 p r e v e n t s coagulation of latex stored in metal c o n t a i n e r s . Silver a z i d e , especially with a d d e d oxalic acid, increases the photosensitivity of p h o t o ­ graphic silver b r o m i d e emulsions. Gulf R e s e a r c h and D e v e l o p m e n t claimed that aryl azides i m p r o v e the c e t a n e n u m b e r of diesel fuel (139). Rockwell International claimed that certain azides [nitroalkyl and nitrato-alkyl azides, glycidyl a z i d e , and 3,3bis(azidomethyl)oxetane m o n o m e r s and polymers] i m p r o v e the t h e r m a l efficiency of b o t h gasoline and diesel fuel (140). F M C p a t e n t e d a r o m a t i c sulfonyl azides as p e r o x y g e n activators for c o m p o u n d s such as sodium p e r b o r a t e (141). M I T I d e s c r i b e d the u s e of water-soluble aryl azides to immobilize en­ z y m e s on a solid support (142). A p o l y m e r is treated with the e n z y m e and sodium 4,4'-diazidostilbene-2,2'-disulfonate; irradiation then cross-links the p o l y m e r a n d immobilizes the e n z y m e . Alternatively, poly (vinyl alco­ hol), partially esterified with /?-azidobenzoic acid, can b e u s e d .

References 1. G. A . D e l z e n n e , in ' ' E n c y c l o p e d i a of P o l y m e r S c i e n c e a n d T e c h n o l o g y , " S u p p l . 1, p . 4 0 1 . Wiley ( l n t e r s c i e n c e ) , N e w Y o r k , 1976. 2. A . R e i s e r a n d Η . M . W a g n e r in " T h e C h e m i s t r y of the A z i d o G r o u p " ( S . P a t a i , e d . ) , C h a p t . 8. Wiley ( l n t e r s c i e n c e ) , N e w Y o r k , 1971. 3. J. S. S w e n t o n , Tetrahedron Lett., 3421 (1968). 4. J. J. S a g u r a a n d J. A . V a n Allan, U . S . P a t . 2,940,853 (1960) (to E a s t m a n K o d a k ) . 5. T. T s u n o d a , T . Y a m a o k a , a n d G. N a g a m a t s u , Photogr. Sei. Eng. 1 7 , 390 (1973). 6. M . A. G o l u b in " P o l y m e r C h e m i s t r y of S y n t h e t i c E l a s t o m e r s " (J. P. K e n n e d y a n d E . G. M . T o r n q v i s t , e d s . ) , p . 940 ff. Wiley ( l n t e r s c i e n c e ) , N e w Y o r k , 1969. 7. A . R e i s e r , L . J. L e y s h o n , a n d L . J o h n s t o n e , Trans. Faraday Soc. 6 7 , 2389 (1971). 8. L . S. Efros and T . A . Y u r r e , Polym. Sei. USSR (Engl. Transl.) 12, 2505 (1970). 9. L . H o r n e r , A . C h r i s t m a n n , a n d A. G r o s s , Chem. Ber. 9 6 , 399 (1963). 10. S. H . Merrill a n d C . C . U n r u h , Appl. Polym. Sei. 7 , 273 (1963). 11. U . L . L a r i d o n , G . A . D e l z e n n e , a n d Η . K . P e e t e r s , U . S . P a t . 3,721,566 (1973) (to AgfaGevaert). 12. G. A . D e l z e n n e a n d U . L a r i d o n , J. Polym. Sei. Part C 22, 1149 (1969).

518

D a v i d S. B r e s l o w

13. A . R e i s e r , F . W . W i l l e t s , G. C. T e r r y , V . Williams, a n d R. M a r l e y , Trans. Faraday Soc. 6 4 , 3265 (1968). 14. A . R e i s e r a n d L . J. L e y s h o n , / . Am. Chem. Soc. 9 3 , 4051 (1971). 15. R . H u i s g e n , Angew. Chem. Int. Ed. Engl. 2 , 578 (1963). 16. M . T s u d a , A . Y a b e , a n d H . T a k a n a s h i , Bull. Soc. Photogr. Sei. Technol. Jpn., N o . 2 3 , 12 (1973) [Chem. Abstr. 8 3 , 59671 (1975)]. 17. M . T s u d a , S. O i k a w a , W . K a n a i , K . H a s h i m o t o , A . Y o k o t a , K . N u i n o , I. Hijikata, A . U e h a r a , a n d H . N a k a n e , / . Vac. Sei. Technol. 19, 1351 (1981). 18. D . S. B r e s l o w in " N i t r e n e s " ( W . L w o w s k i , e d . ) , C h a p t . 8. Wiley ( I n t e r s c i e n c e ) , N e w Y o r k , 1970. 19. H . H o l t s c h m i d t a n d G. O e r t e l , Angew. Macromol. Chem. 9, 1 (1969). 20. J. D a n h o u s e r a n d W . P e l t z , U . S . P a t . 3,462,268 (1969) (to A g f a - G e v a e r t ) . 2 1 . U . L . L a r i d o n , G. A . D e l z e n n e , H . M ä d e r , H . U l r i c h , a n d B . Seidel, U . S . P a t s . 3,467,518 (1969) a n d 4,065,524 (1977) (to A g f a - G e v a e r t ) . 22. D . S. B r e s l o w , u n p u b l i s h e d o b s e r v a t i o n . 23. G . Μ . P e t e r s , J r . , F . Α . S t u b e r , a n d H . U l r i c h , U . S . P a t . 3,947,337 (1976) (to U p j o h n ) . 24. F . A . S t u b e r , H . U l r i c h , D . V . R a o , a n d A . A . R. Sayigh, Photogr. Sei. Eng. 17, 446 (1973). 25. B . Seidel, H . M ä d e r , J. D a n h o u s e r , a n d H . B a r t l , U . S . P a t . 3,467,523 (1969) (to AgfaGevaert). 26. Η . W . G i b s o n , F . C . Bailey, and J. Y. C. C h u , J. Polym. Sei. Chem. Ed. 17, 777 (1979). 27. a. M . T s u d a , S. O i k a w a , W . K a n a i , A . Y o k o t a , I. Hijikata, A . U e h a r a , a n d H . N a k a n e , J. Vac. Sei. Technol. 19, 259 (1981); b . T . M a t s u z a w a , K . D o u t a , T. I w a y a n a g i , a n d H . Y a n a g i s a w a , E u r . P a t . A p p l . E P 40,535 (1980) (to H i t a c h i ) [Chem. Abstr. 96, 78613 (1982)]. 28. T . T o y a m a a n d M . I w a s a k i , U . S . P a t . 4,191,573 (1980) (to Fuji P h o t o Film). 29. H . U l r i c h , F . A. S t u b e r , and A. A . R. Sayigh, Polym. News 1(8,9,10), 8 (1973). 30. H . U l r i c h , F . A . S t u b e r , G. M . P e t e r s , J r . , a n d A . A. R. S a y i g h , J. Polym. Sei. Chem. Ed. 14, 565 (1976). 3 1 . J. K o s a r , " L i g h t - S e n s i t i v e S y s t e m s , " Wiley, N e w Y o r k , 1965. 32. B . Singh, U . S . P a t s . 3,844,793 (1974) a n d 3,933,497 (1976) (to A m e r i c a n C y a n a m i d ) . 33. A . S. M a r s h a l l , W . J. P r i e s t , a n d J. A . V a n Allan, U . S . P a t . 3,519,425 (1970) (to Eastman Kodak). 34. W . J. P r i e s t a n d A . S. M a r s h a l l , U . S . P a t s . 3,532,500 (1970) a n d 3,646,032 (1972) (to Eastman Kodak). 35. N . H a y a s h i , M . A k a g i , K . M i u r a , a n d Y . O d a k a , U . S . P a t . 4,332,874 (1982) (to Hi­ tachi). 36. Τ . J. P r o s s e r , Α . F . M a r c a n t o n i o , C. A . G e n g e , a n d D . S. B r e s l o w , Tetrahedron Lett., 2483 (1964). 37. D . S. B r e s l o w , T . J. P r o s s e r , C. A . G e n g e , a n d A . F . M a r c a n t o n i o , J. Am. Chem. Soc. 89, 2384 (1967). 38. D . S. B r e s l o w , W . D . Willis, a n d L . O . A m b e r g , Rubber Chem. Technol. 4 3 , 605 (1970). 39. J. C r e a s y , G e r . P a t . 2,165,198 (1972) (to P P G I n d u s t r i e s ) [Chem. Abstr. 77, 165809 (1972)]. 40. J. B . O t t , U . S . P a t s . 2,518,249 (1950) a n d 2,532,240-243 (1950) (to M o n s a n t o ) . 4 1 . F . H . A d a m s , U . S . P a t . 2,830,029 (1958) (to A m e r i c a n C y a n a m i d ) . 42. D . S. B r e s l o w a n d Ε . I. E d w a r d s , Tetrahedron Lett., 2123 (1967). 4 3 . D . S. B r e s l o w , Ε . I. E d w a r d s , R. L e o n e , a n d P . v o n R. S c h l e y e r , J. Am. Chem. Soc. 90, 7097 (1968).

10.

Industrial Applications

519

44. D . S. B r e s l o w , M . F . S l o a n , N . R. N e w b u r g , a n d W . B . R e n f r o w , / . Am. Chem. Soc. 9 1 , 2273 (1969). 4 5 . D . S. B r e s l o w a n d Ε . I. E d w a r d s , Tetrahedron Lett., 2041 (1972). 46. D . S. B r e s l o w , Ε . I. E d w a r d s , E . C . L i n s a y , a n d H . O m u r a , J. Am. Chem. Soc. 98, 4268 (1976). 47. W . W . C o x , U . S . P a t . 3,336,268 (1967) (to H e r c u l e s ) . 48. D . S. B r e s l o w a n d Η . M . Spurlin, U . S . P a t . 3,058,944 (1962) (to H e r c u l e s ) . 49. D . A . P a l m e r , U . S . P a t . 3,250,730 (1966) (to H e r c u l e s ) . 50. F . C. B u h l a n d G . B . Feild, U . S . P a t . 3,250,731 (1966); G. B . Feild a n d P . L . J o h n ­ s t o n e , U . S . P a t . 3,298,975 (1967) (to H e r c u l e s ) . 5 1 . N . R. N e w b e r g , U . S . P a t . 3,287,376 (1966) (to H e r c u l e s ) . 52. G . C . O p p e n l a n d e r , U . S . P a t . 3,485,906 (1969) (to H e r c u l e s ) . 5 3 . G. C. O p p e n l a n d e r , U . S . P a t . 3,530,108 (1970) (to H e r c u l e s ) . 54. D . S. B r e s l o w a n d Η . M . Spurlin, U . S . P a t s . 3,203,936 a n d 3,203,937 (1965) (to H e r c u ­ les). 55. A . E . R o b i n s o n , U . S . P a t . 3,261,785 (1966) (to H e r c u l e s ) . 56. D . S. B r e s l o w , U . S . P a t . 3,261,786 (1966) (to H e r c u l e s ) . 57. D . S. B r e s l o w , U . S . P a t . 3,058,957 (1962) (to H e r c u l e s ) . 58. D . S. B r e s l o w a n d F . E . P i e c h , U . S . P a t . 3,322,733 (1967) (to H e r c u l e s ) . 59. Ε . E . B o s t i c k a n d A . R. Gilbert, U . S . P a t s . 3,583,939 (1971) a n d 3,770,696 (1973) (to General Electric). 60. H . W . B o s t a n d J. E . M a h a n , U . S . P a t . 3,282,864 (1966) (to Phillips P e t r o l e u m ) . 6 1 . G . B . Feild a n d J. R. L e w i s , U . S . P a t . 3,211,677 (1965) (to H e r c u l e s ) . 62. A . E . R o b i n s o n , U . S . P a t . 3,211,678 (1965) (to H e r c u l e s ) . 6 3 . G. C. N e w l a n d a n d J. A . V a n Allan, U . S . P a t . 3,075,950 (1963) (to E a s t m a n K o d a k ) . 64. D . S. B r e s l o w a n d A . F . M a r c a n t o n i o , U . S . P a t . 3,297,674 (1967) (to H e r c u l e s ) . 65. D . S. B r e s l o w a n d A . F . M a r c a n t o n i o , U . S . P a t . 3,297,661 (1967) (to H e r c u l e s ) . 66. E . P. P l u e d d e m a n n , H . A . C l a r k , L . E . N e l s o n , a n d K . R. Hoffman, Mod. Plast. 3 9 , 135 ( A u g , 1962). 67. J. B . T h o m s o n , U . S . P a t s . 3,697,551 (1972), 3,705,911 (1972), 3,706,592 (1972), 3,715,371 (1973), a n d 3,813, 351 (1974) (to H e r c u l e s ) . 68. G . A . M c F a r r e n , T . F . S a n d e r s o n , a n d F . G . S c h a p p e l l , Soc. Plast. Eng. Tech. Pap. 2 2 , 19 (1976). 69. P . J. O r e n s k i a n d J. G. M a r s d e n , Soc. Plast. Eng. Tech. Pap. 2 2 , 68 (1976). 70. J. G. M a r s d e n a n d P . J. O r e n s k i , U . S . P a t . 4,038,456 (1977) (to U n i o n C a r b i d e ) . 7 1 . J. G. M a r s d e n a n d P . J. O r e n s k i , U . S . P a t . 4,055,701 (1977) (to U n i o n C a r b i d e ) . 72. A . J. O s t e r a a s a n d D . A . O l s e n , Nature {London) 2 2 1 , 1140 (1969). 7 3 . F . D . L e w i s a n d W . H . S a u n d e r s , Jr. in " N i t r e n e s " ( W . L w o w s k i , e d . ) , p . 56. Wiley ( l n t e r s c i e n c e ) , N e w Y o r k , 1970. 74. A . J. O s t e r a a s a n d D . A . O l s e n , J. Appl. Polym. Sei. 13, 1537 (1969). 75. D . A. Olsen a n d A . J. O s t e r h a a s , J. Colloid Interface Sei. 32, 12 (1970). 76. D . A . Olsen and A . J. O s t e r h a a s , U . S . P a t . 3,666,536 (1972) (to A s h l a n d C h e m i c a l ) . 77. J. B u c k l e y , R. B u d z i a r e k , A . J. N i c h o l a s , a n d E . J. V i c k e r s , U . S . P a t . 3,997,571 (1976) (to I C I ) . 78. J. E . H e r w e h , U . S . P a t . 4,099,910 (1978) (to A r m s t r o n g C o r k ) . 79. R . R e i n e r , U . S . P a t . 4,309,453 (1982) (to Battelle). 80. D . L e d n i c e r a n d Ε . E . N i s h i z a w a , U . S . P a t s . 3,888,833 (1975), 3,954,583 (1976), a n d 3,975,371 (1976) (to U p j o h n ) . 8 1 . a. J. N . H a y n e s , U . S . P a t s . 3,686,231 (1972), 3,814,657 (1974), 3,914,262 (1975), a n d 3,946,051 (1976) (to H e r c u l e s ) ; b . D . S. B r e s l o w , U . S . P a t . 3,616,199 (1971) (to H e r c u ­ les).

520

D a v i d S. B r e s l o w

82. J. Griffiths, M . F a g b u l e , a n d R . I. M c D a i r m a i d , Textilveredlung 7, 807 (1972) [Chem. Abstr. 78, 45020 (1973)]. 83. J. Griffiths and R. I. M c D a r m a i d , J. Soc. Dyers Colour. 9 3 , 455 (1977). 84. J. Griffiths and R. I. M c D a r m a i d , J. Soc. Dyers Colour. 9 4 , 65 (1978). 85. C . E . H o y l e a n d R. S. L e n o x , U . S . P a t . 4,322,211 (1982) (to A r m s t r o n g W o r l d I n d u s ­ tries). 86. R. D . P o r t e r a n d S. W . W a i s b r o t , U . S . P a t . 3,911,131 (1976) (to G o o d y e a r Tire a n d Rubber). 87. S. E . C a n t o r , Polym. Prepr. 18(1), 471 (1977); idem, U . S . P a t . 4,031,068 (1977) (to Uniroyal). 88. a. J. C . W . Chien a n d F . G. S c h a p p e l l , U . S . P a t s . 3,957,835 (1976) and 4,009,294 (1977) (to H e r c u l e s ) ; b . J. T a n a k a and K . Y a s u d a , Rep. Osaka Prefect. Ind. Res. Inst. 4, 32 (1952) [Chem. Abstr. 46, 11743 (1952)]. 89. W . H . v o n G l a h n a n d B . R u d n e r , U . S . P a t . 2,828,299 (1958) (to G e n e r a l Aniline a n d Film). 90. W . B . H a r d y a n d F . H . A d a m s , U . S . P a t s . 2,863,866 (1958) a n d 2,912,391 (1959) (to American Cyanamid). 9 1 . R . A . A b r a m o v i t c h a n d K . M i y a s h i t a , J. Chem. Soc. Perkin Trans. 1, 2413 (1975). 92. S. S u s u k i , U . S . P a t s . 3,526,644 a n d 3,547,843 (1970) (to C h e v r o n R e s e a r c h ) . 9 3 . Τ . E . D e r g a z a r i a n a n d G. A. L a n e , U . S . P a t . 3,936,330 (1976) (to D o w C h e m i c a l ) . 94. E . F . G a r n e r a n d Β . K . H a m i l t o n , U . S . P a t . 4,244,758 (1981) (to Allied C h e m i c a l ) . 9 5 . a. T . C u r t i u s , Ber. 24, 3341 (1891); b . K . G. M a s o n in " M e l l o r ' s C o m p r e h e n s i v e T r e a t i s e o n I n o r g a n i c and T h e o r e t i c a l C h e m i s t r y " (Vol. 8), S u p p l . 2N (Part II), p p . 5 0 5 1 . W i l e y , N e w Y o r k , 1967. 96. ' ' K i r k - O t h m e r E n c y c l o p e d i a of C h e m i c a l T e c h n o l o g y , " 2nd e d . , V o l . 8, p . 584, 1965; 3rd e d . , V o l . 9, p . 570, 1980. 97. C . E . P a n n e l l , U . S . P a t s . 3,773,774 (1973) a n d 3,883,542 (1975) (to D o w C h e m i c a l ) . 9 8 . R. R o s h e r , U . S . P a t s . 3,873,579 a n d 3,883,374 (1975) (to U . S . S e c r e t a r y of t h e N a v y ) . 99. C . M . W r i g h t , U . S . P a t . 3,883,377 (1975) (to U . S . S e c r e t a r y of t h e N a v y ) . 100. R. A . H e n r y a n d W . P . N o r r i s , U . S . P a t . A p p l . U S 256,230 ( N o v . 20, 1981) (to U . S . S e c r e t a r y of t h e N a v y ) [Chem. Abstr. 96, 165043 (1982)]. 101. Μ . B . F r a n k e l a n d J. E . F l a n a g a n , U . S . P a t . 4,268,450 (1981) (to R o c k w e l l I n t e r n a ­ tional). 102. J. E . F l a n a g a n a n d J. C. G r a y , U . S . P a t . 4,288,262 (1981) (to R o c k w e l l I n t e r n a t i o n a l ) . 103. Μ . B . F r a n k e l , Ε . R. W i l s o n , D . O . W o o l e r y I I , C. L . H a m m e r m e s h , a n d C . M c A r t h u r , CPIA Publ. 340 (1981) [Chem. Asbtr. 97, 74986 (1982)]. 104. Μ . B . F r a n k e l , Ε . R. W i l s o n , D . O . W o o l e r y I I , C. L . H a m m e r m e s h , a n d C. M c A r t h u r , Gov. Rep. Announce. Index (U.S.) 8 2 , 2156 (1982) [Chem. Abstr. 97, 110490 (1982)]. 105. J. E . F l a n a g a n , Μ . B . F r a n k e l , a n d E . F . W i t u c k i , U . S . P a t . 4,141,910 (1979) (to Rockwell International). 106. Μ . B . F r a n k e l , U . S . P a t . A p p l . U S 350,494 (Sept. 10, 1982) (to U . S . S e c r e t a r y of t h e A i r F o r c e ) [Chem Abstr. 97, 200326 (1982)]. 107. Μ . B . F r a n k e l , Ε . R. W i l s o n , a n d J. E . F l a n a g a n , U . S . P a t . A p p l . U S 283,708 (Jan. 15, 1982) (to U . S . S e c r e t a r y of t h e N a v y ) [Chem. Abstr. 96, 165045 (1982)]. 108. " M e r c k I n d e x , " 9th e d . M e r c k & C o . , R a h w a y , N e w J e r s e y , 1976. 109. T . Weil a n d H . S t a n g e , U . S . P a t . 3,471,616 (1969) (to F M C ) . 110. T . Weil a n d H . S t a n g e , U . S . P a t s . 3,376,319 (1968) a n d 3,424,843 (1969) (to F M C ) . 111. W . L . M a t i e r a n d W . J. C o m e r , U . S . P a t s . 3,723,627 (1973) a n d 3,789,120 (1974) (to Mead Johnson).

10.

Industrial Applications

521

112. J. K r a p c h o , P. C . W a d e , E . W . Pertrillo, J r . , a n d F . L . W e i s e n b o r n , E u r . P a t . A p p l . E P 42,639 ( D e c . 30, 1981) (to S q u i b b ) [Chem. Abstr. 96, 181622 (1982)]. 113. P . Pfäffli a n d H . H a u t h , U . S . P a t . 4,301,290 (1981) (to S a n d o z ) . 114. J. K u s z m a n n , G . M e d g y e s , F . A n d r a s y , a n d P . B e r z s e n y i , U . S . P a t . 4,332,818 (1982) (to E g y t G y o g y s z e r v e g y e s z e t i G y ä r ) . 115. G . T o t h , F . C s e n d e , S. M a k l e i t , a n d G. S o m o g y i , H u n g . T e l y e s H U 19,767 (April 2 8 , 1981) (to Alkaloids V e g y e s z e t i G y ä r ) [Chem. Abstr. 96, 6750 (1982)]. 116. J. G. T o p l i s s in " M e d i c i n a l C h e m i s t r y " (A. B u r g e r , e d . ) , 3rd e d . , p . 1011. Wiley ( l n t e r s c i e n c e ) , N e w Y o r k , 1970. 117. J. R. E . H o o v e r a n d R . J. S t e d m a n in " M e d i c i n a l C h e m i s t r y " (A. B u r g e r , e d . ) , 3rd e d . , p . 390. Wiley ( l n t e r s c i e n c e ) , N e w Y o r k , 1970. 118. a. L . S h a p i r o a n d A . K . G a n g u l y , U . S . P a t . 3,816,472 (1974) (to S c h e r i n g ) ; b . H . P l u m a n d U . S c h r o e d e r , U . S . P a t . 4,112,084 (1978) (to S c h e r i n g ) . 119. " T h e U n i t e d S t a t e s P h a r m a c o p e i a , " 20th r e v . e d . ; " T h e N a t i o n a l F o r m u l a r y , " 15th e d . U n i t e d S t a t e s P h a r m a c o p e i a C o n v e n t i o n , R o c k v i l l e , M a r y l a n d , J u l y 1980. 120. W . C. M c C o n n e l l a n d H . W . R a h n , U . S . P a t s . 3,376,125-7 (1968) (to P P G I n d u s t r i e s ) . 121. C. M . C h a n d l e r , U . S . P a t . 3,874,868 (1975) (to P P G I n d u s t r i e s ) . 122. W . C. M c C o n n e l l , U . S. P a t . 4,132,780 (1979) (to P P G I n d u s t r i e s ) . 123. H . S c h u l t z a n d W . S c h w a r z e , U . S . P a t . 3,326,913 (1967) (to D e g u s s a ) . 124. D . B e r r e r a n d C . V o g e l , U . S . P a t s . 3,583,987 (1971) a n d 3,723,088 (1973); D . B e r r e r , M . K u h n e , a n d C . V o g e l , U . S . P a t . 3,830,810 (1974) (to Ciba-Geigy). 125. D . B e r r e r , U . S . P a t . 4,007,032 (1977) (to Ciba-Geigy). 126. L . P l o n s k e r a n d N . R . W r i g h t , U . S . P a t . 3,552,945 (1971) (to E t h y l C o r p . ) . 127. Κ . H . G . Pilgrim, U . S . P a t . 3,692,805 (1972) (to Shell Oil). 128. J. R. B e c k , U . S . P a t . 3,948,957 (1976) (to Eli Lilly). 129. W . C. M c C o n n e l l , U . S . P a t . 3,812,254 (1974) (to P P G I n d u s t r i e s ) . 130. A . H e r z o g , U . S . Pat. 3,856,950 (1974); A . H e r z o g a n d H . U . B r e c h b ü h l e r , U . S . P a t s . 3,853,868 (1974) a n d 3,985,877 (1976); H . U . B r e c h b ü h l e r , R. B o s s h a r d , a n d D . B e r r e r , U . S . P a t . 4,000,272 (1976) (to C i b a - G e i g y ) . 131. C . A . H e n r i c k a n d J. B . Siddall, U . S . P a t . 3,832,361 (1974); C . A . H e n r i c k , U . S . P a t . 3,864,364 (1975) (to Z o e c o n ) . 132. M . S. Singer, U . S . P a t s . 3,700,699 (1972), 3,752,890 (1973), a n d 3,796,729 (1974) (to Chevron Research). 133. T. A . M a g e e , U . S . P a t . 3,932,471 (1976) (to D i a m o n d S h a m r o c k ) . 134. J. B . A d a m s , J r . , U . S . Pat. 4,311,696 (1982) (to D u P o n t ) . 135. H . F i s c h e r , R. C . T h u m m e l , a n d R. W e h r l i , E u r . P a t . A p p l . 29,002 A l ( M a y 20, 1981) (to Ciba-Geigy) [Chem. Abstr. 96, 68614 (1982)]. 136. a. E . G . H o w a r d , J r . , U . S . P a t . 2,594,560 (1952) (to D u P o n t ) ; b . M . I m o t o a n d T . N a k a y a , J. Macromol. Sei. Rev. Macromol. Chem. C 7 , 40 (1972). 137. J. E . B u r l e i g h a n d C . A . U r a n e c k , U . S . P a t . 3,301,841 (1967) (to Phillips P e t r o l e u m ) . 138. R. A . A b r a m o v i t c h , G. A . K n a u s , Μ . Pavlin, a n d W . D . H o l c o m b , J. Chem. Soc. Perkin Trans. I, 2169 (1974); R. A . A b r a m o v i t c h , M . O r t i z , a n d S. P . M c M a n u s , J. Org. Chem. 46, 330 (1981). 139. R. J. H a r t l e a n d G. M . S i n g e r m a n , U . S . P a t . 4,280,819 (1981) (to Gulf R e s e a r c h a n d Development). 140. Μ . B . F r a n k e l a n d J. E . F l a n a g a n , U . S . P a t . 4,303,414 (1981) (to R o c k w e l l I n t e r n a ­ tional). 141. F . R. S c h o l a r a n d J. H . B l u m b e r g , U . S . P a t . 4,120,652 (1978) (to F M C ) . 142. S. M i y a i r i , H . T a n a k a , A . Y a b e , a n d K . H o n d a , U . S . P a t . 4,160,698 (1979) (to A g e n c y of I n d u s t r i a l S c i e n c e a n d T e c h n o l o g y , M I T I ) .