CHAPTER
1
Industria l Catalysis : Chemistr y Applie d to Your Life-Styl e an d Environmen t BRUCE E . LEACH Research and Development Department Conoco, Inc. Ponca City, Oklahoma
I. Industrial Catalysis: Definition, Scope, and Importance . . II. History of Industrial Catalysis III. Impact on Industry and Economics IV. Impact of Industrial Catalysis on Science V. Catalysis Impact on Lifestyles A. Historical Perspective B. Impact on Environment VI. Catalysis Research A. Reasons for Doing Catalyst Research B. Hindrances to Catalyst Research C. Catalyst Manufacturing D. Metals Supply and Cost VII. Effects of Catalysts on Life-Style A. Plastics B. Transportation C. Detergents D. Food Supply E. Energy Conversion and Conservation of Resources . . F. Environmental Effects of Catalysts References
I.
1 6 12 12 13 13 14 14 14 17 17 18 20 20 21 21 21 28 28 29
Industria l Catalysis : Definition , Scope, and Importanc e
Catalysi s is a majo r facto r in industria l research , proces s selection , plan t design , an d plan t operation . Th e succes s of th e chemica l industr y is base d largel y o n catalys t technology . Th e discover y of ne w catalyst s an d thei r applicatio n hav e historicall y led t o majo r innovation s in chemica l process › ing . Market , business , an d politica l factor s combin e t o encourag e or requir e furthe r improvement s in catalys t technolog y wit h time . Applie d Industria l Catalysis , Volum e 1
1
Copyrigh t ' 1983 Academi c Press , Inc . All right s of reproductio n in an y form reserved . ISBN 0-12-440201-1
Bruce E. Leach
2
It is th e interactio n of business , markets , economics , an d politic s wit h chemistr y tha t distinguishe s industr y fro m academia . Chemica l principle s an d th e law s of thermodynamic s still apply . Th e definitio n of a catalys t is th e s a m e a materia l tha t change s th e rat e of a reactio n withou t itself bein g consumed . Catalyst s hav e n o effect on th e positio n of equilibrium , an d on e canno t mak e a reactio n procee d tha t is forbidde n b y th e law s of thermody › namics . A catalys t act s t o lower th e activatio n energ y barrie r for reaction s tha t hav e a ne t decreas e in fre e energy . Th e alternat e reactio n path s provide d b y catalyst s withi n th e law s of thermodynamic s an d chemistr y ad d valu e t o feedstoc k material s in th e refinin g an d chemica l processin g industry . Th e fundamenta l aspect s of adsorptio n on activ e sites ar e adequatel y covere d in mos t catalysi s referenc e works . Th e catalysi s scientis t shoul d b e knowledgeabl e abou t adsorptio n an d kineti c experiment s an d thei r results . Fo r example , in th e reactio n A B (Fig. 1), a serie s of step s in th e catalyti c reactio n ca n b e considered : (1) externa l diffusion , kcxt =diff kgsext ; (2) inter › na l diffusion , kint =diff ksSint ri; (3) adsorption , / c a ; d(4)s surfac e reaction , / c s; (5) desorptio n of B; (6) interna l diffusio n of B; an d (7) externa l diffusio n of B. In externa l diffusio n th e size an d shap e of th e catalys t particle , th e volume/diamete r rati o of th e reactor , an d th e spac e velocit y ar e factor s tha t influenc e th e amoun t of channeling , th e typ e of flow, th e exten t of back mixing , an d th e residenc e time . Guideline s for catalys t evaluation s in laborator y reactor s ar e given in Chapte r 3. Interna l diffusio n is dependen t on th e por e structur e of th e catalyst . Pore s ar e arbitraril y place d in thre e size categorie s accordin g t o por e diameter : micropores , < 1 5 A; mesopores , 1 5 - 1 5 0 A; macropores , > 1 5 0 A. Th e por e diamete r affect s interna l diffusion . Th e surfac e are a of man y catalyst s is primaril y interna l surface , so mos t interaction s an d collision s occu r wit h th e interna l surface . Pore s hav e a variet y of structures , an d ther e is a n effective› nes s facto r in th e equatio n expressin g interna l diffusio n rate s tha t depend s on ho w difficul t it is for reactant s t o diffus e in or out . Ofte n it is no t so critica l t o kno w th e valu e of k for interna l diffusio n a s t o kno w whethe r th e reactio n occur s primaril y on th e externa l surfac e or withi n th e pore s of th e catalys t an d t o recogniz e th e consequences . Fo r example , in a consecutiv e reactio n A+ B^C C + B ^ D
wher e C is th e desire d produc t an d D is t o b e minimized , ther e ar e tw o recognize d method s for achievin g th e desire d result . Th e por e size ca n b e kep t smal l enoug h so tha t th e reactio n occur s primaril y on th e surfac e of th e catalys t particles . Example s includ e mos t hydrocarbo n oxidatio n catalyst s wher e a decrease d rat e of reactio n du e t o reduce d surfac e are a (internal ) is
1
Industrial Catalysis
3
A A
Step 1
Step 2
A
Fig. 1 . Steps in the catalytic reaction.
Step 3
Step 4
acceptabl e t o gai n selectivit y of product . Specific example s ar e given in Chapte r 8. Alternatively , a larg e por e size ca n b e selecte d so tha t ther e is facile diffusio n ou t of th e por e syste m befor e C ca n reac t furthe r wit h B. Thi s approac h reduce s th e interna l surfac e area , wherea s in th e cas e of ver y smal l pore s th e interna l surfac e is inaccessible . Anothe r exampl e of por e size importanc e is foun d in th e hydrodesulfuri zatio n of heav y crud e oils. Rapi d catalys t deactivatio n is associate d wit h particula r por e sizes, an d approache s base d on support s of eithe r smal l [ 1 ] or larg e [2] por e diamete r hav e bee n developed . Theor y ha s ofte n c o m e afte r discovery . Ideally , th e objectiv e is t o desig n a catalys t base d on first principles . Thi s objectiv e is no t yet withi n th e capabilit y of catalysi s science . In addition , th e complicatin g facto r of eco› nomic s mus t b e addresse d in th e industria l setting . Optimizatio n of th e adde d valu e t o feedstock s require s a knowledg e an d interactio n of chemistr y an d economics . Thi s is a specia l challeng e t o th e scientis t or enginee r in industria l catalysis . Bot h catalyti c scienc e an d eco› nomic s chang e wit h time . Thi s ensure s tha t ne w an d improve d catalyst s will continu e t o b e developed . Thes e catalyst s will b e use d t o proces s histori c an d ne w feedstocks . Th e variable s encompasse d b y ne w catalysts , ne w an d modifie d processes , an d th e changin g economic s of alternat e feedstock s take n togethe r wit h politica l an d environmenta l restraint s mak e for man y excitin g an d challengin g technica l endeavor s withi n th e industry . Th e scop e of catalysi s in industr y range s fro m theoretica l prediction s of catalyti c activit y t o th e ar t of catalys t forming . It include s bot h wor k on th e frontier s of catalysi s scienc e an d th e carefu l recommendatio n of a particula r commercia l catalys t tha t meet s a specific customer’ s feedstoc k an d reacto r desig n criteria . It include s catalys t regeneration , testing , an d qualit y control , as well a s catalys t selection . Findin g an d removin g a catalys t poiso n presen t
4
Bruce E. Leach
in a par t per millio n or even a par t per billio n quantit y in th e feedstoc k present s its own set of analytica l an d chemica l challenges . A majo r chang e in th e practic e of catalysi s in th e pas t severa l decade s ha s bee n th e concerte d applicatio n of analytica l technique s t o catalysts . A numbe r of thes e technique s an d thei r applicatio n in catalysi s ar e given in Tabl e I. Industria l catalysi s provide s a n opportunit y for technica l exchang e wit h man y disciplines . Moder n catalyst s mus t rel y on th e integratio n of a broa d rang e of technica l expertis e an d experimenta l capabilities . Chemica l engi › neering , organi c chemistry , inorgani c chemistry , coordinatio n chemistry , analytica l chemistry , an d surfac e scienc e ar e all essentia l in understandin g an d developin g catalyst s (Fig. 2). At a tim e at whic h th e conversio n t o SI unit s is in progres s an d wit h olde r
TABL E I Analytica l Technique s Frequentl y Used in Catalysi s Characterization
Technique
Bulk
Surface area analysis Pore volume analysis X rays Scanning electron microscope Electron microprobe Infrared spectroscopy Elemental analysis Surface acidity Loss on ignition Thermal gravimetric analysis Density Bulk crushing strength Particle size analysis NMR ESR X-ray scattering Laser Raman spectroscopy Extended x-ray adsorption fine-structure microscopy (EXAFS) X-ray photoelectron spectroscopy (ESCA) Scanning electron microscope (SEM) Auger electron spectroscopy (AES) Ion-scattering spectroscopy (ISS) Secondary ion mass spectroscopy (SIMS) Magnetic susceptibility Selective surface area Selective adsorption Programmed temperature desorption
Surface
1
5
Industrial Catalysis
Surface Science
Chemical Engineering
T
\ /
\ Reactor Design
/
\
Theory of Adsorption
\
/
\
/
Process Economics \
/ Surface Analysis Development
\
/
Pilot Plants
/
\ Analytical Chemistry
Catalyst Characterization
Catalyst Supports
Feed Stock and Product
Promoters
Metal Complexes / / Theory of Metal ton Coordination /
Coordination Chemistry
Inorganic Chemistry
Solvent Selection \
\ Feedstock Preparation \
Organic Chemistry
Fig. 2. Technical dependence of industrial catalysis.
unit s still widel y used , ther e is a communicatio n problem . Thi s boo k reflect s problem s tha t will continu e for man y years . Fo r thi s reaso n a c o m m o n nomenclatur e an d unit s tabl e is provide d in th e Appendi x t o thi s volume . Althoug h th e reade r ma y find it confusin g t o see temperatur e in degree s centigrade , degree s Farenheit , an d kelvin s all in th e sam e chapter , thi s is th e realit y o f th e situatio n on e is faced wit h in industry . Th e scop e of catalyst s in th e chemical s industr y is so extensiv e tha t it is rar e t o find a researc h proble m tha t canno t b e redefine d in term s of catalysis . Thu s althoug h th e researc h proble m titl e an d th e objectiv e ma y b e state d in busines s an d economi c language , th e scientifi c methodolog y require d for achievin g th e projec t goal s ofte n involve s th e practic e o f catalyti c science . Th e majo r innovation s in th e petrochemica l industr y in th e pas t 25 yr hav e involve d breakthrough s in catalys t research . I n mos t industria l researc h problems , catalys t selectio n or improvemen t is th e ke y t o th e succes s of th e project . Thi s heav y dependenc e on catalysi s ca n b e seen in bot h explorator y an d applie d research .
6
Bruce E. Leach
Th e shutdow n of a chemica l plan t becaus e of catalys t problem s is a crisi s situation . Thi s subjec t will b e develope d late r in th e chapter . Timel y actio n is possibl e onl y if th e catalysi s scientis t ha s th e backgroun d an d expertis e t o diagnos e an d prescrib e a remedy . Considerabl e effor t is devote d in industr y t o evaluatin g change s in catalysts , feedstocks , an d proces s condition s (in › cludin g upse t conditions ) an d thei r effect on catalys t lifetime , selectivity , an d productivity . Losse s fro m th e shutdow n of larg e chemica l plant s ca n b e man y hundre d thousan d dollar s per day . Wit h thi s muc h at stake , ther e is justificatio n for considerabl e research . Operatin g department s ofte n suppor t extensiv e pilotin g facilitie s afte r plan t start-u p a s well as befor e plan t constructio n t o provid e insuranc e tha t th e downtim e at a larg e facilit y will b e minimal . Th e speed y resolutio n of catalyst-relate d problem s at operatin g facilitie s ma y no t lea d t o publications , patents , an d recognitio n fro m th e scientifi c community , bu t ther e is a sens e of persona l accomplishmen t an d recognitio n fro m catalys t marketin g managers , chemica l plan t managers , an d researc h directors . It is th e profitabilit y of curren t chemica l plant s tha t justifie s futur e expansio n an d researc h in industria l catalysis .
II .
Histor y of Industria l Catalysi s
A catalys t wa s use d industriall y for th e first tim e b y J . Roebuc k in th e manufactur e of lea d chambe r sulfuri c aci d in 1746. At tha t tim e Berzeliu s ha d no t yet use d th e wor d "catalysis" tha t cam e in 1836. Earl y develop › men t occurre d in inorgani c industria l chemistr y wit h processe s for carbo n dioxide , sulfu r trioxide , an d chlorin e productio n in th e 1800s. P. Sabatie r an d R. Sendere n in 1897 foun d tha t nicke l wa s a good hydrogenatio n catalyst . P. Sabatie r [3], in hi s boo k Catalysis in Organic Chemistry, gives a n excellen t perspectiv e of catalysi s in th e earl y 1900s. It wa s a tim e whe n answer s t o question s abou t transitio n states , adsorption , an d mechanism s wer e difficul t t o obtain , an d yet Sabatie r wa s askin g th e righ t questions . Hi s ide a of temporar y unstabl e intermediat e compound s bein g forme d in cata › lysis wa s correct . H e lamente d th e unsatisfactor y stat e of knowledge , yet th e perio d 1 9 0 0 - 1 9 2 0 sa w advance s in man y areas . It wa s th e tim e of Ostwald , Gibbs , Bosch , Ipatief , Einstein , Planck , Bohr , an d Rutherford , amon g others . Scientist s suc h a s E. Fischer , Kekule , Claisen , Fittig , Sandmeyer , Faworsky , Deacon , Dewar , Friedel , an d Craft s ha d mad e thei r contribution s t o organi c chemistr y jus t prio r t o 1900. Initiall y mos t catalyst s wer e relativel y pur e compounds . Multicomponen t catalyst s wer e studie d afte r 1900 at Badisch e Anilin - & Soda-Fabri k (BASF) . Habe r discovere d ammoni a synthesi s at hig h pressur e usin g osmiu m or uraniu m catalysts . Bosch an d associate s at BASF develope d th e us e of
1
Industria l Catalysi s
7
magnetit e promote d wit h alumin a an d alkali . Thi s researc h projec t is describe d b y A. Mittasc h [4] in detail . Th e ammoni a synthesi s industr y is base d on promote d iro n catalysts . A catalys t wa s develope d t o suppl y hydroge n via th e wate r ga s shift reactio n b y th e BASF group . Bosch at BASF nex t attempte d t o reduc e carbo n monoxid e wit h hydroge n at hig h pressure s t o produc e alcohol s an d highe r hydrocarbons . Thi s wor k led t o methano l synthesi s usin g alkali-promote d zin c oxid e plu s chromiu m oxid e in 1923. Syntheti c hydrocarbon s wer e mad e fro m synthesi s ga s in 1927 b y Fische r an d Tropsch . Th e adsorptio n of reactant s on catalys t surface s wa s firs t though t t o b e importan t in th e 1 9 0 0 - 1 9 2 0 period . Langmuir-Hinshelwoo d an d R i d e a l Ele y mechanism s wer e proposed . Th e adsorptio n of gase s b y solid s an d particularl y th e adsorptio n of hydroge n presente d man y unknowns . Fo r example , it wa s no t know n wh y th e quantit y of hydroge n adsorbe d varie d or indee d ho w a substanc e lik e palladiu m coul d adsor b so muc h hydrogen . A majo r developmen t in th e 1920s occurre d whe n H . S. Taylo r distin › guishe d amon g activate d adsorption , chemisorption , an d physica l adsorp › tion . H e als o develope d th e concep t of activ e centers . In th e 1930s a numbe r of advance s occurre d tha t aide d in th e stud y of adsorption : (1) Isotope s becam e availabl e in 1933. (2) Brunaue r an d Emmet t discovere d ho w t o measur e th e surfac e are a an d por e geometr y of catalyst s usin g physica l adsorption . (3) Beeck use d evaporate d meta l films for basi c catalyti c studies . (4) Robert s mad e tungste n filaments fo r th e firs t tim e "clean " sur › faces coul d b e studie d becaus e tungste n coul d b e heate d ho t enoug h t o clea n meta l surfaces . (5) Ridea l mad e othe r meta l filament s an d films. Adsorptio n studie s dominate d catalysi s scienc e for a tim e whil e th e ne w technique s wer e bein g applied . In th e 1950s attentio n shifte d t o th e natur e of th e interaction s betwee n th e activ e cente r an d th e adsorbate , an d toda y spectroscopi c method s continu e t o revea l informatio n abou t bondin g in catalysts . A surve y of catalyti c developmen t is given in Fig . 3. Th e pas t 60 yr hav e bee n ver y activ e one s in th e developmen t of ne w catalyti c processes . A list [5] of th e mor e recen t of thes e ha s bee n compile d b y Halco n Internationa l (Tabl e II) . Othe r significan t catalys t development s includ e th e famil y of ZS M zeolite s discovere d b y Mobi l Oi l Corporation , th e carbonylatio n of methano l t o aceti c aci d practice d b y Monsant o Company , an d a ne w generatio n of catalyst s for refining , polyolefins , oxychlorination , etc . Fe w heterogeneou s catalys t composition s remai n constan t for a s lon g a s a
1750 1800 1850 1725 1775 1825 1875 S0 3 NO
C 0 SQ3 2 Pt Cl 2 Pt CuCI
2
1900 1925
1950
HN0 NH3 3 Fe Pt
H 0 22 Rd
H 2 Ni
Fat hydrogenation CH3OH NI Zn0-Cr 0
23
1975
I
-4H6 R^OrCr^-AfeOs
Olefins+CO* Aldehydes-*Alcohols (Oxo process) Polymerization
Phthalic acid Pt
Z < CD or o
Peroxide AIR 3 Li TiCI Polyurethanes
Na
oo
CH3CH O CO Insertion PdCI 2 CH3COOH CH2=CHCN (acrylonitrile) Anchored B1-M0-PO 4 enzymes Aromatics by I hydrodealkylation Alcohols Cr 03-Al2p3 Metal complexes
2
Third generation Zlegler - N a t t a
3
S M Alkylation Hydrocracklng H S 0 HF| 2 4 , , Cracking Coal + H 2 |C0 +• H^liquid hydrocarbons molecular sieves molecular sieves Co-Th0 ~Si02| Liquid 2 Catalytic hydrocarbons Reforming Cracking muffler Fe 03'MoS multimetals Si0 -AI 03 2
2
1990
1980
T
Z
2 2
Polymerization H P0 3 4 Hydroforming |Mo03-AI 0 Pt-Al 03|
23
Fuel cells
Synthetic fuels
2
Fig. 3. Surve y of catalyti c development . Adapte d with permissio n fro m Kirk-Othme r Encyclopedi a of Chemica l Technology , Thir d Edition , Joh n Wiley & Sons, Inc .
TABLE II Chemical Processing Developments of the Last 25 Yr as Compiled by Halcon International" Company * Approximat e dat e
Produc t
Befor e 1957
Isocyanate s - urethane s
1953+ 1955 1958 1958 1958+
Ammoni a Malei c anhydrid e High-densit y polyethylene , polypropylen e a-Olefin s Terephthali c aci d
1959
Acetaldehyd e
1960-1970 1964 1965+
Oxidatio n alcohol s cyclohexanol , cyclohexan on e (for nylon ) Viny l chlorid e
1965 1965
Acrylonitril e H M D A (for nylon )
1967+
Viny l acetat e
1968
Aceti c aci d
Developmen t Urethane s an d foam s (polyethe r polyols , one sho t foam , etc. ) High-pressur e syntheti c ga s High-yiel d benzen e oxidatio n N e w catalyst s N e w catalyst s Air oxidatio n of p-xylen e pur e produc t Vapo r phas e ethylen e oxidatio n Improve d catalyst s Cyclohexan e oxidation , bori c syste m Oxychlorinatio n of ethylen e Propylen e ammoxidatio n Acrylonitril e electrohydrodi merizatio n Ethylen e + aceti c aci d + 0 , 2 vapo r phas e High-pressur e metha › no l + C O
Chemica l Baye r
Oi l Wyandott e
—
—
—
Montecatin i
Phillips , Avisu n
Ethy l Halco n
Gulf , C o n o c o
Wacke r U C C , IC I
Proces s engineerin g Houdr y
Pullman , Kellog g Halco n
— —
—
Amoc o
—
Hoechs t
—
Exxon , Shel l
—
—
Goodrich , Monsanto , Stauffer , PP G
—
Halco n
—
Monsant o
—
— —
Bayer , Celanese , Hoechst , USI BASF , D u P o n t
—
—
—
—
—
SOHI O
Tabl e II (continues )
TABLE II
(Continued) Company*
Approximate date
Product
Development
1969 1969
Propylene oxide, glycol, TBA Phthalic anhydride Acrylates
Epoxidation with hydroper oxide High-yield oxylene oxid. Propylene oxidation
1969
Quiana
1970+ 1970 1970 1972 1972
Ethylene oxide p-Xylene Methanol HMDA (for nylon) Styrene and propylene oxide Acetic acid Maleic anhydride Kevlar Polypropylene Ethylene glycol (and vinyl acetate)
From cyclododecane oxidation Catalyst improvements Recovery by adsorption Low-pressure CO + H 2 Butadiene + HCN Epoxidation with hydroper oxide Low-pressure methanol + CO From butane High-tensile fiber Vapor phase Via acetoxylation
1969+
1973 1974+ 1974 1974 1978
a b Reprinte d
Chemical
Oil
Process engineering Arco, Halcon
BASF Celanese, Rohm & Haas, UCC DuPont Shell, UCC
BP, SOHIO Halcon Halcon UOP
ICI DuPont Arco, Halcon Monsanto Amoco, Monsanto DuPont BASF
Halcon
Halcon
_
with permissio n of th e Halco n SC Group , Inc . BASF, Badisch e Anilin - & Sodi-Fabrik ; ICI , Imperia l Chemicals ; PPG , Pittsbur g Plat e Glass ; UCC , Union Carbid e Corporation ; UOP , Universa l Oil Products .
1
Industrial Catalysis
11 TABL E II I
Example s of Titanium-Base d Polyethylen e Catalys t Development s Catalyst TiCl + AlEt
4
Improvement* Basic catalyst, Ziegler and co workers First-generation commercial catalyst Activity increase of ~ 10 fold Supported titanium trichloride catalyst, — 13.6 kg PE/hr atm eth ylene g Ti 132 kg PE/hr g T i
3
TiCl -iAlCl 3 3 TiCl • ^A1C1 + electron donor 3 3 Mg(Cl)OH + TiCl
4
TiCl + (MgBuCl + methylhy4 dropolysiloxane)
Reference [6] [7] [8] [9]
[10]
a
PE , Polyethylene .
decade . A n excellen t exampl e is provide d b y polyolefi n catalyst s base d o n titaniu m trichloride . Thes e catalyst s ar e n o w in wha t is calle d th e thir d generation . Th e histor y of thei r developmen t is briefl y summarize d wit h example s in Tabl e III . Man y permutation s of eac h generatio n of catalyst s exist , a s evidence d b y th e larg e numbe r of patent s publishe d b y competin g TABL E IV Some Chemical s Produce d from Ethylen e and Propylen e Ethylene Ethylene + oxygen /
acetic acid
—- acetaldehyde
\
butanol —• octanol Ethylene 4- oxygen —* ethylene oxide —* ethylene glycol Ethylene -I- acetic acid —* vinyl acetate Ethylene + chlorine —-> vinyl chloride Ethylene + oxygen -I- carbon monoxide —* acrylic acid Propylene Propylene + oxygen —* acetone Propylene + alcohol —* acrylic ester Propylene -I- ammonia —* acrylonitrile Propylene + air or oxygen —+ acrolein Polymers based on ethylene or propylene Polyethylene Polypropylene Styrenes Acrylics cis-1,4-Polyisoprene Polyvinyl chloride cis-1,4-Polybutadiene
12
Bruce E. Leach
companies . Simila r example s coul d hav e bee n chose n in refinin g or for othe r processes .
III .
Impac t on Industr y and Economic s
Th e chemica l industr y ha s grow n in recen t decade s an d significantl y affect s th e economy . Catalyst s an d th e product s derive d fro m catalyti c reaction s directl y or indirectl y accoun t for 10 t o 15% of th e gros s nationa l produc t (GNP ) of th e Unite d States . Th e tw o majo r factor s in th e rapi d developmen t of th e chemica l industr y sinc e 1950 hav e bee n th e low-cost petroleum-base d suppl y of ethylen e an d propylen e ra w material s an d th e developmen t of oxidatio n an d polymerizatio n catalysts . Th e diversit y of chemical s pro › duce d fro m ethylen e an d propylen e is illustrate d in Tabl e IV.
IV.
Impac t of Industria l Catalysi s on Science
Th e beginning s of industria l catalysi s wer e application s of basi c research . Th e developmen t of catalysi s ha s bee n base d on scientifi c innovation . Th e objectiv e ha s bee n t o desig n catalyst s of hig h activit y an d selectivit y base d on scientifi c theor y rathe r tha n tria l an d error . Thi s ha s encourage d th e devel › opmen t of theorie s explainin g catalysi s in term s of activ e sites, geometry , meta l properties , etc . Th e objectiv e of a complet e understandin g ha s bee n mos t elusive , an d catalysi s remain s bot h a n ar t an d a science . Basi c researc h ha s led t o numerou s models , an d the y hav e bee n challenged , refined , an d sometime s discarded . On e doe s no t hav e t o understan d wh y a catalys t work s t o tak e commercia l advantag e of it, bu t it usuall y help s t o hav e a fundamen › ta l understandin g of th e activ e site an d th e interaction s of th e reactant s an d product s wit h th e sites. Som e commercia l system s ar e so comple x tha t the y presen t challenge s t o scientifi c analysi s tha t hav e yet t o b e solved even afte r 50 yr . Industr y an d academi a coul d bot h benefi t b y increase d interactio n in th e catalysi s area . Ther e ar e man y simpl e chemica l synthesi s reaction s tha t wer e studie d inadequatel y or befor e moder n instrumentatio n wa s available , an d som e of thes e ca n yield interestin g ne w aspect s of chemistry . An exampl e is pheno l methylatio n [11] over a n alumin a catalys t t o yield primaril y o-cre sol, 2,6-xylenol , an d 2,3,6-trimethylphenol . It wa s originall y believe d tha t 2,6-xyleno l first isomerize d t o 2,3-xyleno l or 2,5-xyleno l whic h the n reacte d wit h methano l t o for m 2,3,6-trimethylphenol . Whe n th e reactio n wa s
1
Industrial Catalysis
13
investigate d unde r trickl e be d reactio n condition s at temperature s belo w th e isomerizatio n range , it wa s discovere d tha t th e selectivit y for 2,3,6-trimeth › ylpheno l fro m 2,6-xyleno l methylatio n increased . Th e reactio n is no w understoo d as occurrin g via a n ips o mechanis m [Eq . (1)]. OH CH
3
i
CH
OH
OH
3
CH CH QH 3 ALO
A
3 CH 3
I
OH CH
3 (1)
H
Bot h industr y an d universitie s hav e man y c o m m o n objective s tha t fur › the r catalysi s science . Thes e includ e th e followin g manifestations : trainin g of catalysi s scientists , developmen t of center s of catalysis , publicatio n of book s an d papers , consulting , catalysi s meeting s an d conferences , seminars , researc h grants , an d sharin g of researc h facilities .
V.
Catalysi s Impac t on Life-Styl e A.
HISTORICA L PERSPECTIV E
Th e impac t of industria l chemistr y an d catalysi s on life-styles durin g thi s centur y is dramatic . In recen t time s chemistr y ha s receive d som e negativ e connotation s becaus e th e potentia l for detrimenta l effects on th e environ › men t ha d no t bee n adequatel y appreciate d in a few widel y publicize d instances . However , few peopl e woul d lik e t o d o withou t th e industria l product s tha t hav e so change d civilizatio n in th e twentiet h century . Thes e impact s hav e bee n mos t eviden t in th e followin g areas : (1) Transportation fuel , tires , material s of constructio n (plastics) , an d pollutio n control ; (2) Food packaging , fertilizers , an d insecticides ; (3) Clothing nylon , polyester , dacron , rayon , an d orlon ; (4) Detergent s an d cosmetics biodegradabl e surfactants ; (5) Houseware s an d furniture materia l of constructio n (plastics) , in › sulation ; (6) Construction carpets , plasti c pipes , insulation , an d engineerin g plastics ; an d (7) Toys plasti c construction . Approximatel y 85% of organi c industria l chemical s on a weigh t basi s go int o plasti c applications . Th e rol e of catalyst s in th e preparatio n of monomer s
Bruce E. Leach
14
and/o r polymer s will b e describe d in Sectio n VII . Polymerizatio n catalyst s ar e th e subject s of Chapte r 6 in thi s volum e an d Chapte r 5 in Volum e 3. B.
IMPAC T O N E N V I R O N M E N T
Industria l catalysi s ha s responde d t o problem s of pollutio n control . Cata › lysts ar e use d t o remov e hydrocarbons , carbo n monoxide , an d nitroge n oxide s fro m wast e an d exhaus t gases . Th e fundamenta l proble m is t o develo p chemica l processe s tha t minimiz e or eliminat e pollutio n in th e manufacturin g process . Catalyst s will pla y a vita l rol e in th e developmen t of thes e nonpollutin g processes . A majo r challeng e will b e t o solve th e environ › menta l problem s associate d wit h th e chang e in chemica l feedstock s fro m petroleu m t o coa l in th e nex t century . Catalyst s themselve s ca n pos e environmenta l problem s in manufactur e an d disposal . Thes e aspect s ar e considere d in Sectio n VI.C .
VI. A.
Catalysi s Researc h
REASON S FO R D O I N G CATALYS T RESEARC H
Ther e ar e numerou s reason s for industria l suppor t of catalysi s research . The y includ e th e followin g objectives : basi c understandin g of chemistry , creatio n of ne w catalysts , competiv e advantag e (marke t shares) , paten t position , solvin g plan t problems , an d improvin g profits . A n understandin g of th e chemistr y an d engineerin g detail s of a chemica l proces s is importan t t o a compan y tha t use s or plan s t o utiliz e th e process . G o o d scienc e build s th e reputatio n of th e compan y an d its scientists . Thi s reputatio n is valuabl e in recruitin g an d in custome r relations . A standar d of excellenc e in researc h is desirabl e for th e moral e of th e scientist s an d thei r persona l development . A measur e of th e importanc e associate d wit h basi c catalysi s researc h is th e numbe r of scientifi c paper s publishe d b y industria l scientist s an d th e excellen t suppor t given b y researc h director s t o publica › tion s suc h a s thi s work . Catalys t developmen t ca n b e merel y a searc h for a catalyst , bu t a highe r objectiv e ha s alway s bee n t o creat e a catalys t base d on scientifi c principles . Progres s is bein g mad e towar d thi s objectiv e an d is fostere d b y th e basi c catalysi s researc h funde d b y corporations . A ne w or improve d catalys t is ofte n th e basi s of a competitiv e manufac › turin g cost advantage . Contribution s t o a lower manufacturin g cost ca n com e fro m an y of th e following : (1) reduce d equipmen t costs , (2) reduce d
15
1 Industria l Catalysi s
feedstoc k costs , (3) lowere d utilit y costs , (4) improve d strea m factor , (5) increase d by-produc t credit s or reduce d by-produc t debits , an d (6) de › crease d catalys t usage . Catalys t cost s themselve s ar e usuall y a n insignifican t portio n of manufac › turin g costs , typicall y rangin g fro m 0.1$ t o severa l cent s per poun d for commodit y chemicals . Th e competitiv e advantag e ma y als o tak e th e for m of a superio r produc t becaus e of th e purity , isome r distribution , etc. , of th e final product . In th e catalys t preparatio n industr y itself ther e is intens e competitio n t o develo p superio r catalysts . Becaus e of th e leverag e create d b y a superio r catalys t in regar d t o manufacturin g costs , a prove n high-performanc e catalys t ofte n capture s a sizabl e marke t share . If it is no t continuall y improve d b y research , however , it will b e challenge d b y a superio r competitiv e produc t an d rapidl y lose it s marke t share . Thus , researc h in catalysi s is initiate d t o preserv e or captur e a particula r marke t shar e in th e catalys t an d chemical s busines s area . Technica l informatio n is a valuabl e asset t o a compan y an d is develope d at considerabl e expense . It ca n b e kep t a s a trad e secre t or patented . A paten t gives th e owne r th e righ t t o exclud e other s fro m making , using , or sellin g th e inventio n for a perio d of tim e 17 yr in th e Unite d States . Patent s serv e no t onl y t o protec t operation s bu t ma y b e license d or sold t o othe r companie s for significan t income . A paten t ma y cover a proces s or method , a produc t or composition , or a n apparatus . Becaus e of thei r nove l compositio n or metho d of preparatio n catalyst s ar e ofte n patented . In additio n t o bein g novel , a n inventio n als o mus t hav e utilit y an d no t b e obvious . Becaus e catalysi s is ofte n a n ar t a s well as a science , patent s base d on catalysi s ar e no t obviou s an d utilit y is eas y t o demonstrate . Composition-of-matte r patent s ar e th e mos t valuable . A n excellen t exampl e of a paten t excludin g other s fro m practic e is Mobi l Oi l Corporation’ s composition-of-matte r paten t on ZSM- 5 shape-selectiv e zeolit e [12]. Th e paten t describe s " a crystallin e aluminosilicat e zeolit e havin g a compositio n in term s of mol e ratio s of oxide s as follows: 0.9 – 0.2M O : A 1 0 : F S i 0 : Z H 0 ,
2/
23
2
2
wherei n M is at least on e catio n havin g a valenc e n, Y is at least 5 an d Z is betwee n 0 an d 40, sai d aluminosilicat e havin g th e x-ra y diffractio n line s of Tabl e I of th e specification. " Suc h a paten t place s th e owne r in a ver y favorabl e licensin g position . Patents , lik e publication s in academia , ar e a statu s symbo l in industria l researc h for bot h th e individua l an d th e company . Catalyst-relate d patent s ar e a sizabl e fractio n of th e chemistr y patent s in th e Central Patents Index of Derwen t Publications , Ltd. , an d th e U.S. Patent Gazette.
16
Bruce E. Leach
Catalysi s researc h ma y b e defensiv e in nature . Th e objectiv e ma y b e t o ensur e continue d operatio n of a commercia l facility . Thi s ma y b e don e b y catalys t an d feedstoc k evaluatio n t o solve plan t operationa l problem s befor e or a s the y arise . Th e incentiv e is grea t t o solve thes e problem s rapidly . Downtim e at a larg e reacto r facilit y is wort h 2 - 3 man-year s of researc h tim e per day . Catalys t researc h is neede d t o give th e scientis t th e backgroun d dat a require d t o diagnos e plan t operationa l problem s rapidly . Th e ris k of no t doin g catalys t researc h is simpl y to o hig h for a plan t manage r t o accep t on a long-ter m basis . Anothe r ite m leadin g t o increase d profitabilit y is improve d catalys t life. In Fig. 4 a n exampl e is given of a 1-billion-lb/y r chemical s plan t wher e catalys t change s requir e a 2-week shutdown . A stud y of th e annualize d cost s indicate s ther e is a variabl e retur n dependin g on th e curren t stat e of th e art . Ther e is no t muc h incentiv e t o develo p a ne w catalys t for th e applicatio n
1
17
Industrial Catalysis
chose n for compariso n if th e presen t catalys t ha s a 9-mont h life an d th e ne w catalys t ha s a 12-mont h lifetime . However , if th e state-of-the-ar t catalys t ha s a 4- t o 6-mont h life range , th e incentiv e for catalys t researc h is great . Th e othe r factor s importan t t o th e particula r analysi s includ e (1) downtim e for catalys t change , (2) size of th e commercia l unit , (3) catalys t replacemen t costs , (4) th e valu e of lost productio n capacity , (5) marke t conditions , an d (6) a n estimat e of th e difficult y of preparin g a superio r catalyst .
B.
H I N D R A N C E S T O CATALYS T RESEARC H
Catalysi s is a complicate d ar t an d science . Althoug h th e benefit s of catalysi s researc h hav e bee n enumerated , ther e ar e a numbe r of hindrance s t o industria l catalysi s research . Eac h corporatio n ha s evolved a polic y consisten t wit h its objective s an d limitations . Th e stud y of catalysi s require s a sizabl e technolog y base , bot h in scientifi c expertis e an d instrumentatio n techniques . Ther e is a wid e spectru m of involvemen t dependin g primaril y on a corporation’ s decisio n whethe r t o develo p its own catalys t technolog y or t o licens e thi s technolog y fro m others . Th e evaluatio n of technolog y require s less labor , an d license s ar e generall y availabl e for commodit y chemical s synthesi s at reasonabl e rates . N e w product s requir e a greate r effort , in th e are a of catalys t development . Corporation s wit h a reputatio n for developin g ne w catalyst s an d product s usuall y hav e a large r researc h staf f an d a greate r variet y of sophisticate d spectroscopi c instrumentatio n technique s availabl e a s resource s tha n cor › poration s tha t licens e technology . However , size alon e doe s no t ensur e innovation , an d even smal l researc h organization s ca n develo p specific catalysts . Th e tw o extreme s in catalysi s researc h objective s hav e bee n presented . Ther e is a continuu m of alternative s betwee n theoretica l wor k on ne w catalyst s an d th e decisio n t o evaluat e onl y commerciall y availabl e catalysts . Catalys t manufacturin g companie s ofte n wor k wit h a n invento r t o commer › cializ e th e catalys t recipe . Renta l of spectroscopi c instrumen t facilitie s is possibl e whe n th e workloa d doe s no t justif y th e capita l expenditure . Th e wid e rang e of expertis e neede d t o creat e a catalys t is a hindranc e t o catalys t research , bu t selecte d contrac t researc h ca n minimiz e th e limitation s of resources . C.
CATALYS T
MANUFACTURIN G
Th e develop-or-bu y consideratio n regardin g catalyst s depend s on whethe r th e invento r ha s a larg e volum e deman d an d facilitie s for catalys t
18
Bruce E. Leach
manufacturing . Som e oil an d chemica l companie s hav e gon e int o th e catalys t preparatio n business . Other s wh o determine d the y coul d no t eco› nomicall y produc e catalyst s themselve s hav e retaine d th e service s of a n outsid e manufacture r wh o make s proprietar y catalysts . Thi s is develope d in dept h in Chapte r 2. A list of companie s wh o activel y sell catalyst s in th e Unite d State s is given in Tabl e V. Catalys t companie s specializ e in particula r catalyst s for whic h the y hav e technica l expertis e an d a historica l marke t position . Catalys t companie s dea l wit h factor s tha t hav e n o counterpar t in laborator y preparations : scale-u p of operations precipitation , mixing , filtration , drying , forming , an d calcination ; continuou s uni t operations ; energ y conservatio n an d envi › ronmenta l control ; an d optimu m us e of productio n facilities .
D.
METAL S SUPPL Y A N D COS T
Catalys t selectio n an d developmen t mus t includ e a n evaluatio n of metal s suppl y an d cost . Thi s is particularl y tru e of preciou s an d strategi c minerals . As example s th e compositio n of reformin g catalyst s is adjuste d t o provid e th e mos t cost-effectiv e catalys t composition , an d nicke l rathe r tha n th e mor e expensiv e cobal t is no w th e choic e of refinerie s in th e hydrodesulfuri zatio n of crud e oil. Majo r source s of strategi c material s ar e show n in Fig. 5. Th e material s mos t critica l t o th e catalys t industr y tha t ar e on th e strategi c list ar e chromium , cobalt , manganese , an d platinu m grou p metals . In th e desig n an d selectio n of a commercia l catalys t on e mus t conside r th e volum e of meta l t o b e use d in relationshi p t o th e suppl y an d th e natura l mi x
TABLE V Majo r Catalys t Companie s in th e Unite d State s Activated Metals Air Products and Chemicals American Cyanamid Armak Chemical Division BASF Wyandotte Calsicat Division, Mallinckrodt Dart Industries Davison Chemical Division, W. R. Grace Degussa Corporation Englehard Minerals and Chemicals Corporation Filtrol Halcon Catalyst Industries
Haldor Topsoe, Inc. Harshaw Chemical Katalco Matthey Bishop, Inc. Montedison, USA, Inc. Nalco Chemical Oxy-Catalyst, Inc. Shell Chemical Stauffer Chemical United Catalysts, Inc. Universal Oil Products, Inc.
Canada Nickel Copper Asbestos Niobium Gallium Tantalum Zinc Cadmium Cesium
Philippines Chromium ^
VY^ \JCr
^
\
Malaysia Tantalum
Tn i
UNITED STATES Copper Bauxite Phosphorus Mexico Uranium Fluorspa Zinc Strontium Gold Zinc Antimony Silver
>\T^ ~ New Caledonia Nickel
Cadmium
Jamaica Bauxite Aluminum Bolivia Tin Antimony |
West Germany Gallium K Cesium Platinum Belgium-Luxembourg Cobalt Antimony France Manganese Italy Fluorspar Brazil Niobium Manganese Tantalum Gabon Manganese Botswana Chromium Diamonds South Africa Chromium Manganese Vanadium Platinum Fluorspar
1
, Zaire 'Cobalt Copper Diamonds Tin Niobium Tantalum Gold Tungsten Zambia Cobalt Gold Zimbabwe Manganese Chromium Nickel Copper Gold Asbestos
Fig. 5. Sources of strategic materials. Adapted with permission from C & EN, May 11, 1981, p. 21. Copyright 1981 American Chemical Society 1981.
Bruce E. Leach
20
of th e metal s mined . Fo r example , th e norma l mi x of platinu m t o rhodiu m is 1 9 : 1 . A majo r proble m in three-wa y catalyti c converter s for automobil e exhaus t treatmen t ha s bee n tha t th e optimu m rati o of platinu m t o rhodiu m for thi s applicatio n is closer t o 5 : 1 . Majo r us e of suc h a mixtur e woul d hav e resulte d in a n overproductio n of platinu m an d a n intens e shortag e of rhodium . A solutio n ha s bee n t o conside r th e converte r as havin g tw o parts : on e sectio n wit h a hig h Pt : R h rati o an d th e othe r wit h a lower Pt : R h ratio . Overal l ratio s mor e in balanc e wit h th e natura l mi x ar e thu s obtained . Preciou s metal s ar e recycled , bu t mos t bas e meta l catalyst s ar e not , includin g som e tha t ar e quit e hig h in nickel , cobalt , copper , an d chromium . Th e first proble m in recyclin g is th e presenc e of residua l organic s on th e spen t catalyst . Th e remova l of organic s add s anothe r cost t o th e recover y proces s bu t is generall y require d becaus e the y interfer e in aqueou s meta l ion separatio n scheme s an d ar e a wate r pollutio n problem . Th e secon d facto r limitin g meta l recycl e is tha t man y catalyst s contai n mixture s of metal s no t foun d coexistin g in th e natura l ore s routinel y processe d t o yield a particula r metal . An exampl e is coppe r chromit e catalyst . A thir d facto r is volum e an d th e nee d for a transportatio n networ k t o collect catalyst s for metal s recovery . Th e spen t catalyst’ s geographica l dis › persio n is a primar y facto r in potentia l metal s recover y fro m automobil e exhaus t catalysts . Th e quantit y of preciou s meta l per automobil e is abou t 0.05 tro y oz. Recover y fro m alumin a support s woul d b e practica l if ther e existe d a collectio n an d transportatio n syste m tha t coul d delive r spen t catalys t container s t o a centra l location . Th e final reaso n mos t metal s use d in catalyst s ar e no t recycle d is eco› nomic . Meta l price s in genera l hav e no t kep t pac e wit h oil an d genera l inflatio n pric e increases . N e w relativel y low-volum e processin g plant s can › no t compet e wit h larg e existin g meta l refinin g facilitie s unde r curren t marke t conditions . Factor s suc h a s stabilit y of supply , dependenc e on othe r countries , balanc e of payments , an d strategi c metal s considerations , shoul d increas e metal s recyclin g in th e future .
VIL
Effect s of Catalysi s on Life-Styl e A.
PLASTIC S
On e of th e larges t change s in ou r lives thi s centur y ha s bee n th e introduc › tio n of large-volum e plastic s int o th e consume r market . Th e productio n of
1
Industrial Catalysis
21
mos t polymer s involve s catalyst s eithe r in th e polymerizatio n itsel f or in th e monome r synthesis . Som e of th e larges t volum e plastic s (Tabl e VI ) an d th e type s of catalyst s (Tabl e VII ) employe d in thei r synthesi s ar e given a s examples . In th e cas e of polyethylen e an d polypropylen e ther e ar e hundred s of Ziegler-Natt a catalys t modification s in th e paten t literature .
B.
TRANSPORTATIO N
Moder n societ y is highl y mobil e an d depend s on th e rapi d transi t of peopl e an d commodities . Transportatio n vehicle s incorporat e man y of th e plastic s describe d in th e previou s section . Thes e material s hav e bee n substi › tute d for meta l t o reduc e weigh t an d cost . Anothe r majo r chang e ha s occurre d in tires . Catalyst s hav e allowe d th e preparatio n of syntheti c rubbe r an d fibers tha t ad d strengt h t o tires . Bette r fuels for th e transportatio n industr y hav e bee n mad e availabl e throug h refiner y catalys t developments . Som e refiner y processe s ar e de › scribe d in detai l in subsequen t chapters . Withou t catalyst s t o conver t crud e oil int o high-octan e fuels efficiently , ou r transportatio n syste m woul d b e severel y limite d an d ou r life-style significantl y impacted .
C.
DETERGENT S
C o m m o n househol d detergent s tha t ar e biodegradabl e an d effectively clea n ou r clothin g an d dishe s ar e a n exampl e of th e subtl e involvemen t of catalysi s in ou r life-style. Th e first syntheti c detergent s wer e produce d in German y durin g Worl d Wa r I whe n anima l fat s wer e no t availabl e for soa p manufacture . A wid e variet y of surfactant s ar e no w produced . Ou r focu s is on th e catalyst s use d t o prepar e th e buildin g block s for surfactant s an d th e actua l synthesi s of th e activ e ingredients . Onl y large-volum e surfactant s ar e describe d in Figs. 6 - 8 . Alky l sulfonate s an d olefin sulfonate s ar e mad e wit h sulfu r trioxide , whic h provide s adequat e aci d catalysis .
D.
F O O D SUPPL Y
Catalysi s ha s playe d a n importan t rol e in increasin g cro p yield s t o mee t th e food demand s of a n increasin g worl d population . Fertilizers , pesticides , an d herbicide s hav e bee n use d t o increas e yield s of agricultura l commodi › ties. Chemical s hav e mad e it possibl e t o gro w mor e on less lan d wit h less inpu t of labo r an d energy .
TABLE VI Some Importan t Industria l Polymer s Name of polymer Polyethylene
Monomer CH *CH
2
Polymer ...Ch^-Ch^.
2
H
I Polypropylene
CH^-CH^CH^
. . . C-CH^ • • • CH
3
CI
21
Polyvinyl chloride (PVC)
CH^CHCl
I . . . C H - C H 2. .
Polytetrafluoroethylene Teflon, Halcon, Fluon, Hostaflon, Algoflon, Polyflon, Soreflon, Fluoroplast
CF =CH
. . . C F 2- C F 2.
Polyacrylonitrile
CH^CHCN
CN . . .CH-CH ..
2
D rn Creslan, a l Orion, o Zefran, Acrilan, 0
H0-C=0
C HI
II Polyacrylic acid
CH^CH-COH
.••
2- ^ " • • H
| Polymethylmethacrylate
3 „
CH^-C—C-0CH
| 3
3
••-C-CH^.. C-OCH, Jl 0
3
Polystyrene
2
16 5 H
fe5
CH =C
I H
Polyisoprene
.C-CH 2 3 CH, H I .CH C = C H - C H . 2 20
2
.CH -CH=CH-CH ... 20 20
I =C-CH=CH
CH 2
Polybutadiene Cis-4, Budene, Diene, Cisdene, Ameripol CB
3 2
CH =CH-CH=CH
2
H
0
21
Polyformaldehye Ultraform, Celcon, Delrin, Hostaform, Tenoc, Duracon, Kenmetal
I
II
.C-0...
HCH
I H
Mr Poly-l-butene
|2 CH^CH
CH
|2
5
2
3
J
Polyphenylene oxide PPO, Noryl Polyamide
Nylon For example, Nylon 66
3
CH
HOOC(CH ) COOH + H N ( C H ) N H adipi c acid
5
.CH -CH.
24
2
26
2
hexamethylen e diamin e
3
.C(CH ) C-«(CH ) -N.
24
26
Table VI (continues)
TABL E VI Name of polymer Poly(ethylene terephthalate) (Dacron)
(Continued)
Monomer
Polymer
CH OOC(C H )COOCH + HOCH CH OH
3
64
3
4^
2 2
. C - ( ( L H , )-C0CH CH 0. tl 6 4 ' I. 2o 2o 0 I CH
Polycarbonate Lexan, Merlon, Makrolon, Makrofol, Panlite, Jupilon, Touflon
Bisphenol A + phosgene
0-CH 3
CH | CH
0
3
0 ||
TABL E VII Catalys t Type s in Polyme r Synthesi s Polymer
Major uses
Catalyst type
Polytetrafluoroethylene (Teflon) Polyacrylonitrile
Film and sheet, injection molding, blow molding Film and sheet, injection molding, blow molding Molding and extrusion, sheeting, flooring, wire coating, adhesives and paints, film, furnature, clothing Fluid handling, packings, electrical wire coating, pipe and hose, nonstick surfaces Fibers, fabrics, elastomers, plastics
Chromia (Phillips), titanium trichloride (Ziegler-Natta) Titanium (Ziegler-Natta) (isotactic) Peroxide initiator; monomer preparation requires C u C l 2 KC1-A1 0 oxychlorination catalyst 23 Na, K, N H peroxydisulfate polymerization agent
Polyacrylics
Copolymer with butadiene, fibers, plastics
Polymethylmethacry late
Plastics, sheets, paints, textiles
Polyethylene Polypropylene Polyvinyl chloride
4
Monomer preparation: CH + io 2 36 C H = C H C N + 3 H 0 , bismuth phosphomolybdate 2 2 catalyst Monomer synthesis by oxidation of propylene, B i 0 / 3 M o 0 ; C H = C H + 2CO + 0 , PdCl /CuCl 3 2 2 2 2 2 Monomer prepared using acetone, methanol, and hydro gen cyanide
C
2H2
-
+ CO
CH + NH ^
4
Polystyrene
Insulation, packaging, injection molding, extrusion, meat trays, film
Polyisoprene
Synthetic rubber blending with natural rubber or cis-1,4polybutadiene Rubber, especially copolymer with styrene (SBR) and acrylonitrile (NBR)
Polybutadiene
3
ru
Qo
3 ,
HCN + 3H
HC
r
Z
n
H
2
Free radical initiation polymerization Isotactic polystyrene made with Ziegler-Natta catalyst. Monomer made by dehydrogenation of ethyl benzene over F e 0 - K O H - C r 0 23 23 £-TiCl , Ziegler-Natta, or alkyllithium
3
Ziegler-Natta catalyst for polymerization. Dehydrogena tion of butane or butene Table VII (continues)
3
0
TABLE VII Polymer
(Continued)
Major uses
Catalyst type
Polyformaldehyde
Engineering plastic
Poly-l-butene Polyphenylene oxide
Pipe, film Engineering plastics Injection molding, pipe and rod, film, sheet, slab
Nylon Poly(ethylene terephthalate) (Dacron)
Fiber, fabric, carpets, yarns Fiber, fabric, carpets, yarns
t ca oce be at la t
Adipic acid synthesis: Cyclohexane + 5 0
BF catalyst used in polymerization. Monomer made by 3 air oxidation of methanol over F e ( M o 0 ) or silver 43 gauze + 2+ Ziegler-Natta catalyst (isotactic) Cu , amine polymerization catalyst—also M n Magnesium oxide catalyst to prepare 2,6-xylenol from methanol and phenol Melt spinning Antimony catalyst (many others also possible), dimethylterephthalate
> 2 adipic acid + 2 H 0
2
2
Terephthalic acid synthesis: o 2 p-Xylene terephthalic acid Br catalys t
2
Ethylene glycol synthesis: CH =CH
2
102
2
Ag
• C H — C H + HX> —
2
2CH =CH + 2H 0 + 0
2
Polycarbonates
2
2
2
2
HOCH CH OH
2 2
TeQ promote d by Br compound s or manganes e acetat e + potassiu m iodid e catalys t
2
Engineering thermoplastics, extrusion, film, blow molding
• HOCH CH OH
2 2
A1C1 polymerization catalyst
3
27
1 Industrial Catalysis
n-Paraffin
CL
Alkylbenzene
Alkyl Chloride Benzene
b 1
Olefin *i
d
Olefin Metathesis
Fig. 6. Linear alkylbenzene sulfonates, a, A1C1 catalyst; b, Pt/A10 catalyst; b, P t / A l 0 3 3 23 catalyst; c, H F catalyst; d, C o O - M o 0 - A l 0 ; e, aluminum alkyls with heat- or nickel-cata 3 23 lyzed alkyl displacement.
Abou t 80% of th e ammoni a produce d worldwid e is use d as fertilizer . A m m o n i a is forme d fro m th e catalyti c reactio n of nitroge n fro m air an d hydroge n fro m natura l gas. Th e synthesi s of herbicide s an d pesticide s als o involve s catalysts . Th e market s ar e highl y fragmented , bu t th e agrichemical s researc h are a is on e of hig h activity .
Ethoxylated Alcohol
2 ?
CO, H Olefin
b
**
Alcohol
Fats and Oils
Fig. 7. Alcohol-derived surfactants, a, Trialkyl aluminum; b, cobalt or rhodium oxo catalyst; c, copper chromite catalyst; d, NaOH, Ba(OH) , or Sr(OH) .
2
2
28
Bruce E. Leach
Olefin
3 v
Alkyl Phenol
Ethylene Oxide
b
*
Alkyl Phenol Ethoxylates
Phenol Alkyl Phenol SulfatesSulfonates
Fig. 8. Alkyl Phenol Derived Surfactants, a, HF or strongly acidic ion-exchange resin; b, NaOH catalyst.
E.
ENERG Y CONVERSIO N A N D CONSERVATIO N O F RESOURCE S
In th e futur e we ma y b e faced mor e wit h a shortag e of energ y in a particula r for m tha n wit h a tota l shortag e of energ y sources . Catalyst s will pla y a n increasingl y importan t rol e in th e synthesi s of chemical s an d fuels fro m coal , shal e oil, an d ta r sands . Conversio n of energ y fro m on e hydrocarbo n for m t o anothe r basicall y involve s hydrogenation-dehydrogenatio n reactions . Coa l an d shal e oil ar e deficien t in hydroge n an d ar e liquefie d b y catalyti c hydrogenation . Alternativel y th e conversio n ca n b e accomplishe d b y gasificatio n t o H 2 an d C O followed b y a synthesi s reactio n t o alcohol s or hydrocarbon s afte r a n appropriat e wate r gas shift reactio n [Eq . (2)] t o for m th e require d amoun t of hydrogen .
W
Catalyst CO + H 0
2
^
C0 + H
2
2
(2)
Energ y conservatio n will becom e mor e important . Improve d catalyst s for commercia l processe s hav e th e potentia l for reducin g operationa l pressure s an d temperatures , thereb y savin g energy . E.
E N V I R O N M E N T A L EFFECT S O F CATALYST S
Catalyst s hav e foun d extensiv e us e in pollutio n control . Th e catalyst s use d t o reduc e automotiv e emission s hav e helpe d contro l th e hydrocarbons , carbo n monoxide , an d nitroge n oxid e levels in th e atmosphere . Th e sam e
1
Industrial Catalysis
29
typ e of preciou s metal-base d catalyst s ar e als o usefu l in reducin g hydrocar › bo n emission s fro m ven t stream s in chemica l operations . Whil e catalyst s ca n hel p clea n u p th e environment , at th e sam e tim e the y ca n themselve s pos e environmenta l problems . Solid wast e disposa l is a majo r proble m in th e 1980s. It ha s receive d publicit y becaus e of mistake s mad e in th e handlin g of hazardou s waste s in th e past . Th e questio n of wha t constitute s safe disposa l is still bein g debated . N e w regulation s coverin g shipping , packin g an d storin g waste s hav e alread y bee n set in th e Unite d States , wit h stiff legal penaltie s for failur e t o comply . Th e disposa l cost s an d th e recycl e valu e of meta l catalys t component s combin e t o give catalys t regeneratio n a promisin g future . Catalyst s contain › in g mor e toxi c heav y metal s tha t ma y b e extracte d int o groundwate r (e.g., chromium ) will stimulat e researc h for alternativ e catalys t system s tha t d o no t requir e expensiv e or hazardou s wast e disposal . Catalys t preparatio n itsel f ofte n involve s aqueou s salt solution s fro m precipitatio n reaction s an d meta l ion-containin g wast e streams . Io n ex› chang e ha s bee n ver y helpfu l in solvin g meta l contaminatio n problems . In calcination , th e decompositio n of nitrates , sulfates , chlorides , etc. , produce s vapor s tha t mus t b e scrubbe d t o ensur e air qualit y control . Th e acidi c aqueou s solution s ar e neutralize d an d th e salt s concentrate d in holdin g ponds . Ion-exchang e resin s hav e bee n develope d t o reduc e preciou s metal s 4 +an d 3Haa + s C o m3›+ selectively . Amboran e reductiv e resin s prepare3d +b y 2R+ oh m pan y ca n reduc e preciou s metal s suc h a s A u , P t , P t , R h , an d I r , retainin g th e reduce d meta l withi n th e water-insolubl e polymeri c resin . Th e metal s ca n the n b e recovere d b y slowly roastin g th e metal-containin g bead s of polymer . Th e capacit y for reduce d meta l is 1 - 2 g meta l per gra m of dr y resin . Th e stoichiometr y of th e reductio n is given in Eq . (3).
n
n - (P) - B H + 6 M
3
Amborane Resin
Metal Ion
(g) - H
+ 6 M° + 5n H
Resin Loaded With Reduced M e t a l
+ nB(OH)
3
(3)
Boric Acid
Method s of meta l recover y will continu e t o b e develope d given th e emphasi s on wate r qualit y an d th e impac t of metal s cost an d availability .
Reference s 1. E. J. Rosinski, T. R. Stein, and R. H. Fischer, U.S. Patent 4,082,695 (1978). 2. R. D. Christman, G. E. Elliott, and G. Guelfi, U.S. Patent 3,730,879 (1973). 3. P. Sabatier, "Catalysis in Organic Chemistry." Van Nostrand, New York (1922).
30
Bruce E. Leach
4. A. Mittasch, In "Advances in Catalysis" (Vol. 2), pp. 81 - 1 0 3 . Academic Press, New York (1950). 5. B. Luberoff, Chem Tech. page 8, (1981). 6. K. Ziegler, Brennst. Chem., 35, 321 (1954); Belgian Patent 527,736 (1954). 7. J. Boor, Jr. "Ziegler-Natta catalysts and polymerizations," pp. 93-100. Academic Press, New York (1979). 8. H. Coover Jr., F. Joyner, and N. Shearer Jr., Belgian Patent 577,216; also see U.S. Patent 3,549,608, issued to H. W. Coover and F. B. Joyner (1970). 9. J. Stevens, and M. George, (1976). Belgian Patent 757,847; Solvay & Cie (1976). 10. K. Tsubaki, H. Morinaga, Y. Matsuo, and T. Iwabuchu, UK Patent Application GB2,020,672A(1979). 11. B. Leach, J. Org. Chem. 43, 1794 (1978). 12. R. Arganer, and G. Landolt, U.S. Patent 3,702,886 (1972).