Inequalities Concerning theLp-Norm of a Polynomial

Inequalities Concerning theLp-Norm of a Polynomial

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS ARTICLE NO. 224, 14]21 Ž1998. AY985980 Inequalities Concerning the L p-Norm of a Polynomial K. K...

111KB Sizes 0 Downloads 21 Views

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS ARTICLE NO.

224, 14]21 Ž1998.

AY985980

Inequalities Concerning the L p-Norm of a Polynomial K. K. Dewan Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi- 110025, India

Aijaz Ahmad Bhat Department of Mathematics, Go¨ ernment Degree College, Sopore, Kashmir- 193201, India

and Mohammad Sayeed Pukhta Department of Mathematics, Go¨ ernment Degree College, Baramulla, Kashmir- 193201, India Submitted by A. M. Fink Received November 26, 1997

In this paper we obtain L p , p G 1, inequalities for the class of polynomials having no zeros in < z < - K, K G 1. Our result generalizes as well as improves upon some well known results. Q 1998 Academic Press Key Words: Polynomials; derivative; zeros; inequalities; extremal problems.

1. INTRODUCTION AND STATEMENT OF RESULTS Let pŽ z . s ݨns0 a¨ z ¨ be a polynomial of degree n. Then we have

ž

2p

H0

p9 Ž e i u .

q

1rq

du

/

Fn

ž

2p

H0

14 0022-247Xr98 $25.00 Copyright Q 1998 by Academic Press All rights of reproduction in any form reserved.

p Ž e iu .

q

1rq

du

/

,

q G 1, Ž 1.1.

THE L

p

15

NORM OF A POLYNOMIAL

and

ž

2p

H0

q

p Ž Re i u .

1rq

du

F Rn

/

ž

2p

1rq

q

p Ž e iu .

H0

du

/

q G 1, R ) 1.

,

Ž 1.2. Inequality Ž1.1. is due to Zygmund w12x and inequality Ž1.2. is easy to prove. For pŽ z . / 0 in < z < - 1 the inequalities Ž1.1. and Ž1.2. have been replaced, respectively, by 2p

žH

p9 Ž e i u .

0

q

1rq

du

F n Ž Cq .

/

1rq

2p

p Ž e iu .

žH

q

0

1rq

du

/

q G 1,

,

Ž 1.3. where C q s 2yq 'p G Ž 12 q q 1 . G Ž 12 q q

1 2

.,

and 2p

žH

p Ž Re i u .

q

0

1rq

du

F Ž Kq.

/

1rq

2p

žH

p Ž e iu .

0

q

1rq

du

/

,

R G 1, q G 1,

Ž 1.4.

where Kq s

2p

1 q R ne i nu

H0

q

du

2p

H0

1 q e i n u du .

Inequality Ž1.3. was first proved by de-Bruijn w2x Žfor another proof, see Rahman w11x., and Ž1.4. is due to Boas and Rahman w1x. The extremal polynomial in each case is pŽ z . s a q b z n, < a < s < b <. Dewan and Govil w4x Žsee also Govil and Jain w7x. considered the class of polynomials pŽ z . satisfying pŽ z . ' z n pŽ1rz . and obtained a sharp inequality analogous to Ž1.1.. There is greater interest attached to the case when pŽ z . does not vanish in the circle < z < - K, where K is a positive number. The answer to this more general question for the case when K F 1 and q s 2 was given by Rahman w10x. For the case when K G 1, the following result is known w5x. THEOREM A. If pŽ z . s ݨns0 a¨ z ¨ is a polynomial of degree n, ha¨ ing no zeroes in < z < - K, K G 1, then, for q G 1, we ha¨ e 2p

žH

0

p9 Ž e i u .

q

1rq

du

/

F n Ž Eq .

2p

žH

0

p Ž e iu .

q

1rq

du

/

,

Ž 1.5.

16

DEWAN, BHAT, AND PUKHTA

where 2p

Eq s 2 p

ž

K q e iu

H0

q

1rq

du

/

.

Theorem A is not sharp and the sharp inequality does not seem to be obtainable even for q s 2. In this direction Dewan and Bidkham w3x obtained an inequality for q s 2, the bound of which is, in general, better than the bound obtained by Ž1.5.. In this paper we shall generalize Theorem A as well as improve upon the bound obtained in inequality Ž1.5. by involving the coefficients < a0 < and < am <, 1 F m F n. Besides this, we also prove an inequality analogous to Ž1.2.. We prove THEOREM 1. If pŽ z . s a0 q ݨnsm a¨ z ¨ is a polynomial of degree n such that pŽ z . has no zeros in the disk < z < - K, K G 1, then, for q G 1,

ž

2p

H0

q

p9 Ž e i u .

1rq

du

F nS q

/

ž

2p

p Ž e iu .

H0

1rq

q

du

/

,

Ž 1.6.

where 2p

S q s 2p

ž

H0

Sm c q e i u

q

1rq

du

/

and Sm c s

K mq1 Ž mrn amra0 K m y1 q 1 . 1 q mrn amra0 K m q1

.

The result is best possible in the case K s 1 and equality holds for the polynomial pŽ z . s 1 q z n. For K s m s 1, Theorem 1 reduces to Ž1.3. due to de-Bruijn w2x. For m s 1, Theorem 1 is, in general, an improvement over Theorem A due to Govil and Rahman w5x. To show this we have to prove that for q G 1, S q F Eq , which is equivalent to

ž

2p

2p

H0

Sm c q e i u

q

1rq

du

F 2p

/ ž

2p

H0

K q e iu

q

1rq

du

/

or 2p

H0

K q e iu

q

du F

2p

H0

Sm c q e i u

q

du .

Ž 1.7.

THE L

p

17

NORM OF A POLYNOMIAL

Now to prove Ž1.7. it is sufficient to prove that K F Sm c or K 2 Ž 1rn a1ra0 q 1 .

KF

1 q 1rn a1ra0 K 2

for m s 1,

which on simplification gives

ž

K2

1 a1 n a0

Ž K y 1. F K Ž K y 1. ,

/

which implies a1

F

a0

n K

.

Ž 1.8.

Since Ž1.8. is always true Žsee w6, pp. 320]321x., hence Ž1.7. follows. If we assume m s 2 in Theorem 1, then we get the following: COROLLARY 1. If pŽ z . s ݨns0 a¨ z ¨ is a polynomial of degree n, ha¨ ing no zeros in < z < - K, K G 1, and p9Ž0. s 0, then, for q G 1,

ž

2p

p9 Ž e i u .

H0

F n 2p

ž

q

1rq

du 2p

H0

/ K qe 2

iu

q

1rq

du

/ ž

2p

p Ž e iu .

H0

q

1rq

du

/

. Ž 1.9.

If is easy to see that Corollary 1 also provides a generalization and improvement to Theorem A due to Govil and Rahman w5x and to a result proved by Dewan and Bidkham w3x. For q s 1, Theorem 1 yields COROLLARY 2. 2p

H0

Let pŽ z . be the same as in Theorem 1. Then

p9 Ž e1 u . du F n 2p

ž

2p

H0

Sm c q e i u du

/

2p

H0

p Ž e i u . du . Ž 1.10.

THEOREM 2. If pŽ z . s a0 q ݨnsm a¨ z ¨ is a polynomial of degree n, ha¨ ing no zeroes in < z < - K, K G 1, then, for R ) 1, 2p

H0

p Ž Re i u . du F  S1 Ž R n y 1 . q 1 4

2p

H0

p Ž e i u . du ,

Ž 1.11.

where S1 s 2prH02 p < Sm c q e i u < du and Sm c is the same as defined in Theorem 1.

18

DEWAN, BHAT, AND PUKHTA

2. A LEMMA We need the following result due to Qazi Žsee w8, p. 339x. for the proof of the theorems. LEMMA. If pŽ z . s a0 q ݨnsm a¨ z ¨ has no zeroes in < z < - K, K G 1, then, for < z < s 1, < p9 Ž z . < F

1 q mrn amra0 K mq1

mrn amra0 K

my1

1

q1 K

< q9 Ž z . < ,

m q1

Ž 2.1.

where q Ž z . s z n  p Ž 1rz . 4 . Proof of Theorem 1. By a known result due to de-Bruijn w2, p. 1271x, we have for every q G 1 and real a , 2p

H0

e i u p9 Ž e i u .

iu

pŽ e . y

qe

n

iŽ a q u .

q

p9 Ž e i u .

du F

n

2p

H0

p Ž e iu .

q

du .

Integrating both the sides of the above inequality with respect to a from 0 to 2p , we get 2p

H0

2p

da

pŽ e . y

H0

F 2p

e i u p9 Ž e i u .

iu

2p

n

p Ž e iu .

H0

q

du ,

qe

iŽ a q u .

p9 Ž e i u .

q

du

n

q G 1.

Ž 3.1.

Note that p9Ž e i u . can be zero only at a countable number of points. Besides, we can clearly invert the order of integration on the left-hand side of Ž3.1.. Therefore, 2p

H0

da

2p

H0

s

s

2p

H0

2p

H0

iu

pŽ e . y da

2p

H0

p9 Ž e i u . n

e i u p9 Ž e i u . n

qe

q

p9 Ž e i u .

ia

e q

n q

du

2p

H0

ia

e q

iŽ a q u .

p9 Ž e i u .

q

n

du

np Ž e i u . y e i u p9 Ž e i u .

q

du

e i u p9 Ž e i u . np Ž e i u . y e i u p9 Ž e i u . e i u p9 Ž e i u .

q

d a . Ž 3.2.

p

THE L

19

NORM OF A POLYNOMIAL

Thus for 0 F u - 2p and every q G 1 and using the lemma, we get 2p

np Ž e i u . y e i u p9 Ž e i u .

ia

e q

H0

s

e q

2p

G

H0

da

e i u p9 Ž e i u . q

q9 Ž e i u .

eia q

2p

q

np Ž e i u . y e i u p9 Ž e i u .

ia

H0 H0

da

e i u p9 Ž e i u .

2p

s

q

da

p9 Ž e i u . q

e i a q Sm c

da .

Ž 3.3.

Combining inequalities Ž3.1., Ž3.2., and Ž3.3., we get, for q G 1, 2p

H0

p9 Ž e i u . n

q

2p

du

H0

e i a q Sm c

q

2p

d a F 2p

p Ž e iu .

H0

q

du ,

which gives 2p

H0

p9 Ž e i u .

q

2p

du F 2 p n q

ž

H0

e i a q Sm c

q

2p

da

/H

p Ž e iu .

0

q

du

from which the theorem follows. Remark. The proof of the theorem can also be obtained from the arguments used in Rahman w9x for proving de-Bruijn’s theorem. Proof of Theorem 2. For each 0 F u - 2p , we have p Ž Re i u . y p Ž e i u . s

R iu

H1

e p9 Ž re i u . dr ,

R ) 1,

which implies p Ž Re i u . F

R

H1

p9 Ž re i u . dr q p Ž e i u . ,

R ) 1.

Integrating both sides of the above inequality with respect to u from 0 to 2p , we get 2p

H0

p Ž Re i u . du F

R

2p

H1 drH0

p9 Ž re i u . du q

2p

H0

p Ž e i u . du . Ž 3.4.

20

DEWAN, BHAT, AND PUKHTA

Now since the polynomial p9Ž z . is of degree Ž n y 1., therefore, inequality Ž1.2., for q s 1 reduces to 2p

H0

2p

p9 Ž Re i u . du F R ny1

H0

p9 Ž e i u . du .

Applying the above inequality to Ž3.4., we get 2p

H0

p Ž Re i u . du F

R

H1

2p

r ny1 dr

H0

p9 Ž e i u . du q

2p

H0

p Ž e i u . du ,

which on using Corollary 2 gives 2p

H0

p Ž Re i u . du F nS1

2p

H0

p Ž e i u . du

R

H1

r ny1 dr q

2p

H0

p Ž e i u . du ,

Ž 3.5. where S1 s 2p

2p

H0

Sm c q e i u du

and Sm c s

K mq1 Ž mrn amra0 K m y1 q 1 . 1 q mrn amra0 K m q1

Thus inequality Ž3.5. is equivalent to 2p

H0

p Ž Re i u . du F  S1 Ž R n y 1 . q 1 4

2p

H0

p Ž e i u . du ,

which completes the proof of the theorem.

REFERENCES 1. R. P. Boas, Jr. and Q. I. Rahman, L p inequalities for polynomials and entire functions, Arch. Rational Mech. Analy. 11 Ž1962., 34]39. 2. N. G. de-Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch Proc. Ser. A 21 Ž1914., 14]22. 3. K. K. Dewan and M. Bidkham, Some integral inequalities for polynomials, Glas. Mat. Ser. III 28 Ž1993., 227]234. 4. K. K. Dewan and N. K. Govil, An inequality for self-inversive polynomials, J. Math. Anal. Appl. 95 Ž1982., 490.

THE L

p

NORM OF A POLYNOMIAL

21

5. N. K. Govil and Q. I. Rahman, Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc. 137 Ž1969., 501]517. 6. N. K. Govil, Q. I. Rahman, and G. Schmeisser, On the derivative of a polynomial, Illinois J. Math. 23 Ž1979., 319]330. 7. N. K. Govil and V. K. Jain, An integral inequality for entire functions of exponential type, Ann. Uni¨ . Mariae Curie-Skłodowska Sect. A 39 Ž1985., 57]60. 8. M. A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 Ž1992., 337]343. 9. Q. I. Rahman, Inequalities concerning polynomials and trigonometric polynomials, J. Math. Anal. Appl. 6 Ž1963., 303]324. 10. Q. I. Rahman, Some inequalities for polynomials and related entire functions II, Canad. Math. Bull. 7 Ž1964., 573]594. 11. Q. I. Rahman, Functions of exponential type, Trans. Amer. Math. Soc. 135 Ž1969., 295]305. 12. A. Zygmund, A remark on conjugate series, Proc. London Math. Soc. 34 Ž1932., 392]400.