Infinite graph embeddings on tubular surfaces

Infinite graph embeddings on tubular surfaces

ytht$‚ „s}Y ‚8A‚II$tR Bt ZAZjs„ RZ„Ps{‚R B9s N s 3‚I„$st$ e A  ?s„JZ‚9 V { W?ZtK‚9 F I stI i‚%Z‚js _ ‚ *‚}s„s8‚tB I‚ s‚8?s...

168KB Sizes 0 Downloads 73 Views

ytht$‚ „s}Y ‚8A‚II$tR Bt ZAZjs„ RZ„Ps{‚R

B9s N s 3‚I„$st$ e A  ?s„JZ‚9 V { W?ZtK‚9 F I stI i‚%Z‚js _ ‚

*‚}s„s8‚tB I‚ s‚8?s${s V}j${sIs y eR{Z‚js q?‚{t${s 7Z}‚„$B„ I‚ V„JZ$‚{Z„s =t$%‚„R$IsI I‚ 7‚%$jjs A *‚}s„s8‚tB I‚ e{BtB8? s k e8}„‚Rs 3s{ZjsI‚R I‚ ]$‚t{$sR e8}„‚Rs„$sj‚R k e-}‚„$8‚tsj‚R =t$%‚„R$IsI _sAjB I‚ !js%$I‚ { *‚}s„s8‚tB I‚ s‚8? s${s V}j${sIs y 3s{ZjsI I‚ ytPB„8?s${s k eRsI?R${s =t$%‚„R$IsI I‚ 7‚%$jjs I *‚}s„s8‚tB I‚ p‚B8‚„? s k qB}BjB?s 3s{ZjsI I‚ s‚8?s${sR =t$%‚„R$IsI I‚ 7‚%$jjs ‚ *‚}s„s8‚tB I‚ s‚8? s${s V}j${sIs y eR{Z‚js =t$%‚„R$s„$s I‚ V„JZ$‚{Z„s q?‚{t${s =t$%‚„R$IsI I‚ 7‚%$jjs s

d

yt„BIZ{$Bt

qY‚ }„BAj‚8 BP ‚-‚tI$t €Z„sBbR,$:R }jsts„$k {„$‚„$Z8 >H B BY‚„ RZ„T Ps{‚R s}}‚„R B A‚ %‚„k I$^{Zj stI Y‚„‚ bsR j$j‚ }„B„‚RR Bt Y$R }„BAj‚8 Zt$j d bY‚t V„{YI‚s{Bt pjB%‚„ dxH I‚‚„8$t‚I Y‚ {jsRR BP sjj „s}YR bY${Y {sttB A‚ I„sbt $t C stI bY${Y s„‚ 8$t$8sj b$Y Y$R }„B}‚„k ZtI‚„ B}BjB${sj {Bts$t8‚t TI‚tB‚I Ak x wC DT bY‚t C $R Y‚ }„B`‚{$%‚ }jst‚ qY‚k PBZtI Ys $t Ys {sR‚ x wCD YsR d(n 8‚8A‚„R VABZ Y‚ }jsts„$k BP $tht$‚ „s}Y *$„s{ stI 7{YZR‚„ >;H }„B%‚I Ys s {BZtsAj‚ „s}Y $R }jsts„ $P stI Btjk $P ‚s{Y ht$‚ RZA„s}Y $R }jsts„ stI Gst‚„ $t >d1H {Ys„s{‚„$9‚I sjj }jsts„ „s}YR Z sR 8stk sZYB„R sR EddHD Ys%‚ }B$t‚I BZ RB8‚ sII$$Btsj }„B}‚„$‚R {st A‚ stI 8ZR A‚ sII‚I B }jsts„$k $t Y‚ {sR‚ BP $tht$‚ „s}YR yt }s„${Zjs„ P„B8 s }„s{${sj }B$t BP %$‚b s{{Z8Zjs$Bt }B$tR 8ZR A‚ s%B$I‚I EH Y‚ {Ys„s{‚„$9s$Bt BP Y‚ „s}YR b$Y st ‚8A‚II$t b$YBZ %‚„‚- s{{Z8Zjs$Bt }B$t $t ‚„8R BP PB„A$II‚t RZA„s}YR yt d; qYB8sRR‚t }„B}BR‚I ZR Y‚ ‚t‚„sj$9s$Bt BP MH qY$R {Ys„s{‚„$9s$Bt $R ‚ sR s {BtR‚JZ‚t{‚ BP s „‚js$Bt A‚b‚‚t bB Ps8$j$‚R BP „s}YR !t‚ BP YBR‚ Ps8$j$‚R $R Y‚ R‚ $tht$‚ {BZtsAj‚ jB{sjjk ht$‚ „s}YR b$Y st ‚8A‚II$t $t CwzD b$Y tB %‚„‚- s{{Z8Zjs$Bt }B$t stI Y‚ BY‚„ Ps8$jk $R Y‚ R‚ BP ht$‚ „s}YR b$Y st ‚8A‚II$t $t Y‚ {B8}s{ RZ„Ps{‚ C _„‚}„$t RZA8$‚I B ejR‚%$‚„ 7{$‚t{‚

39

      ]





      ,



   \

]



 

4



 

3$ d 3B„A$II‚t }TBZ‚„}jsts„ 8$tB„R RZ{Y Ys Y‚ %‚„${‚R BP s RZAR‚ BP Y‚$„ %‚„${‚R s„‚ $t

z

Ps{‚R VR stBY‚„

{BtR‚JZ‚t{‚ BP Ys „‚js$Bt stI Y‚ $8}B„st „‚RZj sABZ „s}Y 8$tB„R BAs$t‚I Ak iBA‚„RBt stI 7‚k8BZ„ $t >H $ $R }„B%‚I Ys Y‚ 8$t$8sj R‚ BP PB„A$II‚t 8$tB„R PB„ Y‚ „s}Y ‚8A‚II$tR b$Y tB %‚„‚- s{{Z8Zjs$Bt }B$t $t tBtT{B8}s{ RZ„Ps{‚R $R ht$‚ !t Y‚ BY‚„ YstI Y‚ ht$‚ BZ‚„}jsts„ „s}YR {Ys„s{‚„$9s$Bt Ak ]Ys„T „stI stI nH $R sjRB %sj$I PB„ $tht$‚ {BZtsAj‚ „s}YRU s „s}Y sI8$R st ‚8A‚II$t $t Y‚ }jst‚ b$Y sjj $R %‚„${‚R $t Y‚ Rs8‚ Ps{‚ $P stI Btjk $P $ IB‚R tB Ys%‚ s RZA„s}Y bY${Y $R s RZAI$%$R$Bt BP ‚$Y‚„

; B„ 1 n ,

d(HD RZ{Y s „s}Y t‚‚I‚I B A‚ jB{sjjk ht$‚ stI tB Ys%‚ bB BY‚„ PB„A$II‚t 8$tB„R 8B„‚ s{{B„I$t B Y‚ PBjjBb$t „‚RZj Ak

B9s *$? st‚9 stI ? s„JZ‚9

>1HU

Vt $tht$‚ {BZtsAj‚ „s}Y $R }TBZ‚„}jsts„ $P stI Btjk $P $ IB‚R tB Ys%‚ s 8$tB„ s8Bt ; 1 n \dd B„ 4dd wR‚‚ 3$Z„‚ dD ,

1

s$t i‚RZjR

qY‚ 8s$t Bsj BP Y$R }s}‚„ $R IBZAj‚U Bt Y‚ Bt‚ YstI b‚ RYBb s {Ys„s{‚„$T 9s$Bt BP Y‚ „s}Y ‚8A‚II$tR b$Y tB s{{Z8Zjs$Bt }B$t Bt [ BA$ZR

stI

$t ‚„8R BP PB„A$II‚t 8$tB„R !t Y‚ BY‚„ YstI b‚ $%‚ Y‚ j$R BP PB„A$II‚t }TBZ‚„{k$j$tI„${sj 8$tB„R qY‚R‚ „‚RZjR s„‚ Y‚ PBjjBb$tU

qY‚B„‚8 d V „s}Y YsR st ‚8A‚II$t b$YBZ %‚„‚- s{{Z8Zjs$Bt }B$t Bt [ BA$ZR stI $P stI Btjk $P $ IB‚R tB {Bts$t s 8$tB„ P„B8 s j$R b$Y 1d „s}YR

qY‚B„‚8 1 V „s}Y YsR st ‚8A‚II$t b$YBZ ‚I‚R s{{Z8Zjs$Bt }B$t Bt [ BA$ZR

stI

$P stI Btjk $P $ IB‚R tB {Bts$t s 8$tB„ P„B8 s j$R b$Y 1n „s}YR

qY‚B„‚8 n V „s}Y $R }TBZ‚„{k$j$tI„${sj $P stI Btjk $P $ IB‚R tB {Bts$t s 8$tB„ P„B8 Y‚ PBjjBb$t j$RU

;  1 n  \dd  \dd  \dd  4dd  4dd  4dd  -%  b$Y 7 ) d, 3 3 3 , E ,

wR‚‚ 3$Z„‚R d stI 1D

40

     

   

   









       

1 ]





-

d







-





 





-

 ;

  

 



]



]









-

x





 



  

3$ 1 3B„A$II‚t }TBZ‚„{kj$tI„${sj 8$tB„R



-



 

n





-

E

 >dH * V„{YI‚s{Bt V €Z„sBbR,$ qY‚B„‚8 PB„ Y‚ _„B`‚{$%‚ _jst‚ q‚R$R qY‚ !Y$B 7s‚ =t$%‚„R$k dM( >1H B9s N *$?st‚9 V ?s„JZ‚9 V X!t $tht$‚ BZ‚„}jsts„ „s}YR" sY‚8s${s BY‚8${s ddU; wd;D nMdTnM; >nH ]Ys„„stI p ;H p V *$„s{ k 7 7{YZR‚„ V qY‚B„‚8 BP €Z„sBbR,$ dx;

ytIs sY dEU n;nTn;M

>xH < < pjB%‚„ F _ EH < H € €Z„sBbR,$ 7Z„ j‚ }„BAjr‚8‚ I‚R {BZ„A‚R sZ{Y‚R ‚t B}BjB$‚ xU 1dT1Mn dn(

3ZtI sY

>MH i‚%Z‚js  _ Xyt8‚„R$Bt‚R I‚ „sPBR ‚t RZ}‚„h{$‚R ZAZjs„‚R I‚ ?‚t‚„B ht$B" _Y * qY‚R$R *}B I‚ s‚8?s${s V}j${sIs y =t$% I‚ 7‚%$jjs w7}s$tD d >H W iBA‚„RBt k _* 7‚k8BZ„ p„s}Y $tB„R zyyy V €Z„sBbR,$ qY‚B„‚8 PB„ p‚t‚„sj 7Z„Ps{‚R F ]B8A$tsB„$sj qY‚B„k 7‚„$‚  ;MU 1xxT1MM d( >d(H qYB8sRR‚t ] Xytht$‚ p„s}YR" 7‚j‚{‚I qB}${R $t p„s}Y qY‚B„k 1 V{sI‚8${ _„‚RR wdMnD d1udE( >ddH ] qYB8sRR‚t 7„s$Y j$t‚ „‚}„‚R‚ts$BtR BP $tht$‚ }jsts„ „s}YR F NBtIBt sY 7B{ dEw1DU ;ddT;1n d >d1H € Gst‚„ ‚8‚„,Zt‚t 9Z8 z$‚„Ps„A‚t}„BAj‚8 z‚„‚$t ;EU 1ETn1 dnE

41

FsY„‚RA‚„ *‚ZR{Y sYT