Influence of crystal fields on the magnetic properties of the rare-earth nitrides

Influence of crystal fields on the magnetic properties of the rare-earth nitrides

Volume 14, number 4 PHYSICS LETTERS studied the influence of s t r o n g cubic f i e l d s in o r d e r to u n d e r s t a n d s a t u r a t i o n m...

222KB Sizes 0 Downloads 19 Views

Volume 14, number 4

PHYSICS LETTERS

studied the influence of s t r o n g cubic f i e l d s in o r d e r to u n d e r s t a n d s a t u r a t i o n m o m e n t s m e a s u r e d in the LnNi 2 compounds by A b r a h a m s et al. [6]. F o r a c o m p a r i s o n (the two s t r u c t u r e s a r e not identical) we give t h e i r v a l u e s in t a b l e 1 together with the m a g n e t i z a t i o n s d e t e r m i n e d for a field of 130 kOe. Child et al. [2] found i n some a n t i m o n i d e s o r d e r e d m o m e n t s well below the gJ v a l u e s for the f r e e ions and T r a m m e l l [7] gave a t h e o r e t i c a l a n a l y s i s of this fact. C h i l d ' s [2] v a l u e s a g r e e in the case of HoSb and ErSb r e m a r k ably well (within a few percent} with m a g n e t o n n u m b e r s we obtain by e x t r a p o l a t i n g m e a s u r e d m a g n e t i z a t i o n s to infinite m a g n e t i c f i e l d s . By m e a n s of the m o l e c u l a r field a p p r o x i m a tion it is p o s s i b l e to c a l c u l a t e the W e i s s - f i e l d . The r e d u c e d o r d e r e d m o m e n t s a r e t a k e n f r o m the e x p e r i m e n t a l v a l u e s of the m a g n e t i z a t i o n s . We find that the calculated W e i s s - f i e l d a g r e e s within 25% with the c r i t i c a l field s t r e n g t h Hc. We have s u m m a r i z e d our r e s u l t s and c a l c u l a t i o n s in table 1, the n o t a t i o n s being explained in the text.

INFLUENCE

OF

CRYSTAL OF THE

15 February 1965

The a u t h o r s a r e indebted to the S c h w e i z e r i s cher National fonds z u r FOrderung d e r w i s s e n schaftlichen F o r s c h u n g and to the V e r e i n zur F ~ r d e r u n g der F e s t k ~ r p e r p h y s i k an der ETH for f i n a n c i a l support. We wish to thank P r o f . Grtin e n f e l d e r f r o m the M i n e r a l o g i c a l Institute of the ETH for p e r f o r m i n g the m i c r o p r o b e a n a l y s i s and Dr. Hulliger f r o m Cyanamid European R e s e a r c h Institute for supplying the GdSb c r y s t a l s .

References 1. G.Busch, P.Junod, O.Vogt and F.Hulliger, Physics Letters 6 (1963) 79. 2. H.R.Child, M.K.Wilkinson, J.W. Cable, W.C.Koehler and E.O.Wollan, Phys.Rev. 131 (1963) 922. 3. G.Buseh, P.Junod, P.Schwob, O.Vogt and F.Hulliger, Physics Letters 9 (1964) 7. 4. E.g.S. Smart in "Magnetism HI" by G. T. Rado and H.Suhl (Academic Press, New York, 1963). 5. B.Bleany, Proc.Roy.Soc. 276 (1963) 28. 6. S. C. Abrahams, J.L. Bernstein, R.C.Sherwood, J. H. Wernick and H. J. Williams, J. Phys. Chem. Solids 25 (1964) 1069. 7. G.T.Trammell, Phys.Rev. 131 (1963) 932.

FIELDS ON RARE-EARTH

THE MAGNETIC NITRIDES

PROPERTIES

G. BUSCH, P . JUNOD, F. LEVY, A. MENTH and O. VOGT

Laboratorium flir FestkSrperphysik, ETH, Ziirich, Switzerland Received 16 January 1965

We i n v e s t i g a t e d the whole s e r i e s of the r a r e e a r t h n i t r i d e s , f r o m CeN to YbN which a l l c r y s t a l l i z e in the s i m p l e NaC1 s t r u c t u r e . Our m e a s u r e m e n t s of the m a g n e t i z a t i o n up to 130 kOe and of the m a g n e t i c s u s c e p t i b i l i t i e s between 1.5°K and 600°K allow a unique i n t e r p r e t a t i o n and can be c o m p a r e d with other works. We would like to m e n t i o n e s p e c i a l l y the n e u t r o n diffraction exp e r i m e n t s on the heavy r a r e - e a r t h n i t r i d e s by Child et al. [1] and a t h e o r e t i c a l d i s c u s s i o n by T r a m m e l l [2]. The r e s u l t s of the l a t t e r can be s u m m a r i z e d in the following way: In the case where the exchange f o r c e s a r e s m a l l , c o m p a r e d to the c r y s t a l l i n e field s p l i t t i n g s , the p r e s e n c e or a b s e n c e of an o r d e r e d m a g n e t i c g r o u n d - s t a t e will depend only on the n u m b e r of 4I e l e c t r o n s , a s long as the c r y s t a l line field splittings a r e l a r g e r than kT. Under 264

this a s s u m p t i o n r a r e - e a r t h n i t r i d e s with an odd n u m b e r of 4/ e l e c t r o n s will be m a g n e t i c a l l y o r dered. If the 4£ shell c o n t a i n s an even n u m b e r of e l e c t r o n s , the s t a t i o n a r y state in the cubic c r y s t a l field m a y or m a y not be o r d e r e d by the exchange f o r c e s ; this r e s u l t i s a d i r e c t c o n s e quence of K r a m e r ' s t h e o r e m . We have p r e p a r e d s t o i c h i o m e t r i c s p e c i m e n s of eleven n i t r i d e s by d i r e c t r e a c t i o n of the comp o n e n t s [3]. The e x p e r i m e n t a l r e s u l t s for the whole s e r i e s of compounds f r o m P r N to TmN a r e s u m m a r i z e d in table 1. The two n i t r i d e s CeN and YbN will be d i s c u s s e d l a t e r . In the t h i r d row of the table we indicate by " y e s " or "no" the p r e s e n c e or a b s e n c e of a l o n g - r a n g e m a g n e t i c o r d e r . It i s r e m a r k a b l e that a l l the compounds which do not o r d e r at low t e m p e r a t u r e s have an even n u m b e r of 4f e l e c t r o n s and that all the n i -

Volume 14, number 4

PHYSICS LETTERS

,/x.



T m N (4£12). At low t e m p e r a t u r e s the C u r i e W e i s s law does not hold any longer and the s u s c e p t i b i l i t i e s tend to a t e m p e r a t u r e independent value. In the high t e m p e r a t u r e r e g i o n , where the c r y s t a l l i n e field s p l i t t i n g s b e c o m e s m a l l e r than kT, the n i t r i d e s of P r , Gd, Tb, Dy, Ho, Er and T m obey the C u r i e - W e i s s law. The e x p e r i m e n tal m a g n e t o n n u m b e r s a g r e e with the t h e o r e t i c a l v a l u e s for the t r i v a l e n t ions. The other c o m pounds NdN, StuN and EuN do not follow the C u r i e - W e i s s law a s a c o n s e q u e n c e of the t e m p e r a t u r e dependence of the m a g n e t i c m o m e n t s , as d i s c u s s e d by Van Vleck [4] for the ions Sin3+ and Eu 3+. The f e r r i m a g n e t i c p r o p e r t i e s of the compounds f r o m TbN to ErN a r e also s t r o n g l y influenced by the c r y s t a l l i n e field torques. The spontaneous m o m e n t s a r e always l o w e r than the expected gJ v a l u e s (see table 1) and a complete s a t u r a t i o n i s only r e a c h e d in m a g n e t i c f i e l d s higher than 100 kOe. The two compounds CeN and YbN, not d i s c u s s e d t i l l now, a r e m o r e difficult to include in the scheme. The lattice constant for CeN (a = 5.023 A) i s much lower than the expected value for the Ce 3+ ion and c o r r e s p o n d s a p p r o x i m a t e l y with a c o n c e n t r a t i o n of 70% Ce 4+, in agreem e n t with the v a l u e found by Didchenko [6]. The s u s c e p t i b i l i t y of CeN i n c r e a s e s continuously as the t e m p e r a t u r e a p p r o a c h e s zero. No l o n g - r a n g e m a g n e t i c o r d e r could be detected, although we have some i n d i c a t i o n s for a N4el-point at 2.5°K. At high t e m p e r a t u r e s the s u s c e p t i b i l i t y of YbN (4£13) obeys a C u r i e - W e i s s law with a p a -

I PrN

LSO

H'm'~"3.7p'O

I00

:>0_0..-0"~// 50 /.L~f • T,¢ peOp • -18"K

K~

200

~

400

15 February 1965

TpK]

Reciprocal Molar Susceptibility of PrN ond TmN F i g . 1.

t r i d e s with an odd n u m b e r of 4f e l e c t r o n s exhibit a l o n g - r a n g e m a g n e t i c o r d e r at sufficiently low t e m p e r a t u r e s . More s p e c i f i c a l l y , the behaviour of the light n i t r i d e s (from P r N to EuN) c o n f i r m s exactly what we d e s c r i b e d at the beginning. In the case of the heavy n i t r i d e s the situation is more complicated, as T r a m m e l l already dem o n s t r a t e d . The f e r r i m a g n e t i c o r d e r i n g of TbN (4£8) and HoN (4£10) at low t e m p e r a t u r e s i s the r e s u l t of a l a r g e exchange e n e r g y exceeding the c r y s t a l l i n e field splitting. Child et al. proved by m e a n s of n e u t r o n d i f f r a c t i o n that TmN does not o r d e r down to 1.5°K, a c c o r d i n g to T r a m m e l l ' s p r e d i c t i o n . T h i s is in a g r e e m e n t with our m e a s u r e m e n t s of the m a g n e t i c s u s c e p t i b i l i t y . In fig. 1 we show two t y p i c a l c a s e s of compounds with an even n u m b e r of 4£ e l e c t r o n s , i.e. P r N (4f2) and

Table 1 Physical properties of rare earth nitrides. PrN

NdN

Lattice constant [,~]

5.155

Number of 4f electrons (Ln3+)

2

Magnetic order

%ara [OK]

no

0 3.70

~eff (free ion Ln34) Spontaneous moment

as [.B]

3.62

SmN

EuN

GdN

TbN

DyN

HoN

ErN

TmN

5.131

5.049

5.006

4.986

4.936

4.894

4.877

4.836

4.810

3

5

6

7

8

9

yes

yes

no

yes

24 3.654.0

PmN

T~4~e1

69 0-5

F(~r)

F(~

F(7)

3.68

0.84

0

yes

yes

10 yes

U yes

12 no -18

34

20

12

4

8.15

10.0

10.5

10.7

9.4

7.6

7.94

9.7

10.6

10.6

9.6

7.57

5.4

5.2

6.5

5.5

9.9

7.9

2.0

ttl30kOe [~B]

3.6

7.6

9.3

gJ[~Bl

3.27

7

9

9.0 10

10

9 265

Volume 14, number 4

PHYSICS LETTERS

r a m a g n e t i c C u r i e - p o i n t of ,130OK and an effective m o m e n t of 5.1 ~B, but we could not find a N~el-point down to 1.5OK.

References 1. H.R.Child, M.K.Wilkinson, J.W. Cable, W.C. Koehler and E.O.WoUan, Phys.Rev. 131 (1963) 922. 2. G.T.Trammell, Phys.Rev. 131 (1963) 932. 3. G.Busoh, P.Junod, F.Levy and O.Vogt, Proc. Conf. on Magnetism, Nottingham (1964). 4. J.H.Van Vleck, The theory of electric and magnetic susceptibilities (Oxford University Press, New York, 1932}. 5. R.Didohenko and F.P.Gortsema, J. Phys. Chem. Solide 24 (1963) 863.

The a u t h o r s a r e indebted to the S c h w e i z e r i s cher Natlonalfonds zur F 0 r d e r u n g d e r w i s s e n schaftlichen F o r s c h u n g and the V e r e i n z u r FOrd e r u n g d e r F e s t k 0 r p e r p h y s i k an der E i d g e n 6 s s i s chert T e c l m i s c h e n Hochschule for f i n a n c i a l supp o r t of this work. We also thank Mr. U. L a m m l i for p e r f o r m i n g some of the m e a s u r e m e n t s .

DERIVATION

OF

THE

15 February 1965

HOPPINGTHE SMALL

AND BAND-CONDUCTIVITY POLARON

OF

J. SCHNAKENBERG Institut f l i t Theoretische Physik der Universititt zu K~ln

Received 16 January 1965

Lang and F i r s o v [1] and F r i e d m a n [2] have calculated the high t e m p e r a t u r e conductivity of the s m a l l p o l a r o n in the Holstein model [3] by applying the d i a g r a m technique of Konstantinov and P e r e l [4] and the d e n s i t y m a t r i x f o r m u l a t i o n r e s p . It t u r n e d out that the s m a l l p o l a r o n has two additional conductivit i e s aH + crB where ai-I c o r r e s p o n d s to the hopping motion and aB r e s u l t s f r o m the "diagonal 't t r a n s i t i o n s of the p o l a r o n leading to a p o l a r o n band with a t e m p e r a t u r e dependent band width. The p u r p o s e of t h i s note i s to show another way of c a l c u l a t i n g oi-I and crB which avoids the r a t h e r t r o u b l e s o m e c a l c u l a t i o n s p r e s e n t e d t i l l now and r e d u c e s the p r o b l e m to the well known t e c h n i q u e s of Green's functions. The c a n o n i c a l l y t r a n s f o r m e d H a m i l t o n i a n H = H 0 + H 1 and the c u r r e n t o p e r a t o r j of the s m a l l p o l a r o n in the Holstein m o d e l a r e given by ~a+a n nn

H0

H i =-

~

nnT

+ ~ co b + b q , q qq

K n , ~ a+a , B n T_l ~ n n

(1)

j = i e ~ K n,_n Rn ' - n a + a n ' B n ~ n nn ~

where B n ~n = exp

~Xq -Xq)

,

Xq = aq

.

R n d e n o t e s the l a t t i c e points and 7/is the sum of a t e m p e r a t u r e independent s e l f - e n e r g y and the c e n t r e of the e l e c t r o n i c e n e r g y band E(k) the F o u r i e r coefficients of which a r e denoted by K n. The K n a r e v e r y s m a l l in the t i g h t - b i n d i n g case of the s m a l l p o l a r o n and will thus be taken as expansion p a r a m e t e r s in the p e r t u r b a t i o n t h e o r e t i c a l t r e a t m e n t i n s t e a d of the d i m e n s i o n l e s s e l e c t r o n phonon coupling c o n s t a n t aq We shall r e s t r i c t o u r s e l v e s to the diagonal e l e m e n t s of the conductivity t e n s o r which a r e given by the Kubo f o r m u l a

266