Influence of Pore Structure on the Catalytic Behavior of Clay Compounds
E. Kikuchi and T. Matsuda
Department of Applied Chemistry. School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169. Japan
ABSTRACT
The effect of pore structure on the catalytic activity of pillared clays was investigated using alumina-pillared montmorillonite (Al-mont) with a microporous structure and alumina-pillared saponite (Al-sapo) having mesopores. The disproportionation and isomerization of trimethylbenzene, and the cracking of cumene were adopted as model reactions. The catalytic activity of pillared clays was affected by pore structure as well as by acidity: Al-mont having less acidity was more active for the disproportionation reaction than Al-sapo. although the effect of pore structure on the cracking and isomerization was small compared with the disproportionation. The microporosity is considered to enhance the concentration of reactant molecules at the acid sites, resulting in a high catalytic activity. It is suggested that the significant influence of pore structure on disproportionation is attributed to the second order kinetics of disproportionation which is a bimolecular reaction.
INTRODUCTION The activity advantage of zeolite catalysts over amorphous silica-alumina has well been documented. Weisz and his associates [ l ] reported that faujasite Y zeolite showed 103 t o 104 times greater activity for the cracking of n-hexane than silica-alumina. Wang and Lunsford et al. [2] also noted that acidic Y zeolites were active for the disproportionation of toluene while silica-alumina was inactive. The activity difference between zeolite and silica-alumina has been attributed to their acidic properties. It is, however, difficult to explain the superactivity o f zeolite relative to silica-alumina on the basis of acidity, since the number of acid sites of Y-type zeolite is only about 10 times larger than that of silica-alumina. To account for it, Wang et al. [2] proposed that the microporous structure of zeolite enhanced the concentration of reactant molecules at the acid sites. The purpose of the present work is to show that such a microporous effect is valid for pillared clay catalysts. Pillared clay is a new family o f molecular sieve materials obtained by
378 E. Kikuchi and T. Matsuda
exchanging charge compensating c a t i o n s between t h e s i l i c a t e l a y e r s o f c l a y w i t h large inorganic
polyoxycations
such
i n o r g a n i c o x i d e c l u s t e r s a r e formed:
as
[ A l l 304(OH)24(H20)1~]7t.
On h e a t i n g ,
t h e y p r o p open t h e c l a y l a y e r permanently
t o generate a microporous structure.
I t has r e c e n t l y been p o i n t e d o u t [ 3 , 4 ]
t h a t t h e a g g r e g a t i o n manner o f c l a y
l a y e r s d i f f e r e n t i a t e s t h e pore s t r u c t u r e o f p i l l a r e d c l a y s and t h a t t h i s h i g h l y dependent on t h e n a t u r e o f t h e c l a y .
Edge-to-face
o r edge-to-edge
is
layer
a g g r e g a t i o n g i v i n g mesopores competes f a v o r a b l y w i t h face t o f a c e a g g r e g a t i o n when t h e l a y e r s i z e i s s m a l l o r t h e l a y e r morphology i s l a t h - l i k e . w e l l ordered face t o face aggregation, zeolite-like
I n contrast,
which leads t o t h e formation o f a
r e g u l a r microporous structure,
o c c u r s i n t h e case o f c l a y s w i t h
l a r g e l a y e r s i z e o r p a n c a k e - l i k e morphology.
Small p a r t i c l e s a p o n i t e has a h i g h
tendency t o g i v e edge-to-edge
w i t h l a r g e p a r t i c l e s tends
o r edge-to-face to
aggregate
aggregation w h i l e montrnorillonite
i n the
face-to-face
manner.
These
a g g r e g a t i o n manners have been demonstrated b y e l e c t r o n microscopy and a d s o r p t i o n measurements [5,6].
I n t h i s study, we i n v e s t i g a t e t h e m i c r o p o r o u s e f f e c t u s i n g
p i l l a r e d m o n t m o r i l l o n i t e and s a p o n i t e .
EXPERIMENTAL Ca t a 1y s t The c l a y s used i n t h i s s t u d y were sodium-type
n a t u r a l m o n t m o r i l l o n i t e and
s y n t h e t i c s a p o n i t e o b t a i n e d f r o m Kunirnine I n d u s t r y Co. capacities
were
1.2
and
[Al,304(OH)24(H20)12]7t, addition o f
0.8 rneq./g,
respectively.
was p r e p a r e d f r o m
intercalating
since the addition of The
NaOH s o l u t i o n was
previously
The h y d r o l y z e d
u n t i l t h e p r e c i p i t a t e vanished, t o AlC13 s o l u t i o n
i n t e r c a l a t i o n method o f
[Al,30,(OH)24(H20)12]7+
agent,
h y d r o l y z e d AlC13 s o l u t i o n by
NaOH s o l u t i o n t o make t h e OH/A1 m o l a r r a t i o 2.5.
AlC13 s o l u t i o n was aged f o r about 12 h a t 50°C precipitate.
An
T h e i r c a t i o n exchange
sodium-type
described
in
yielded
clay with
detail
[7].
a
The
i n t e r c a l a t e d p r o d u c t was c a l c i n e d a t a g i v e n t e m p e r a t u r e i n t h e range 400-600°C f o r 4 h.
P i l l a r e d m o n t m o r i l l o n i t e and s a p o n i t e t h u s o b t a i n e d a r e a b b r e v i a t e d as
Al-mont and Al-sapo,
respectively.
Apparatus and procedures The
disproportionation
and
isornerization
of
trimethylbenzene(TrM6)
s t u d i e d a t 2OO0C u s i n g a c o n t i n u o u s f i x e d bed r e a c t o r . d i l u t e d w i t h n i t r o g e n i n a m o l a r r a t i o of c a r r i e d o u t a t 4OO0C u s i n g a p u l s e r e a c t o r .
1:9.
were
The r e a c t a n t TrMB was
The c r a c k i n g o f curnene was
The c a t a l y s t was t r e a t e d i n a
stream o f n i t r o g e n f o r 1 h a t a d e s i r e d t e m p e r a t u r e i n t h e range 400-600°C
prior
Pore Structure and Catalysis of Clay Compounds 379
t o reaction. Temperature programmed d e s o r p t i o n measurements The number o f a c i d s i t e s o n p i l l a r e d c l a y s was d e t e r m i n e d b y means o f temperature programmed d e s o r p t i o n (TPD) o f ammonia.
I n each TPD experiment,
a
sample weighing about 0.5 g was t r e a t e d in vacuo f o r 1 h a t a g i v e n temperature i n t h e range 400
-
60OoC.
Amnonia was adsorbed a t a d e s i r e d temperature (100-
30OoC) f o r 30 min and evacuated f o r 30 min. a r a t e o f 10°C/min detector.
T h i s sample was heated t o 7OO0C a t
and desorbed ammonia was m o n i t o r e d by thermal c o n d u c t i v i t y
As water was desorbed s i m u l t a n e o u s l y w i t h ammonia,
spectrum was o b t a i n e d by p o i n t - b y - p o i n t
t h e ammonia TPD
s u b t r a c t i o n o f t h e water d e s o r p t i o n
spectrum o b t a i n e d w i t h t h e sample which had n o t adsorbed ammonia.
RESULTS AND DISCUSSION F i g u r e 1 shows t h e ammonia TPD s p e c t r a o b t a i n e d w i t h Al-mont c a l c i n e d a t 40OoC.
Al-sap0
was more a c i d i c
t h a n Al-mont.
and Al-sap0
It i s generally
assumed t h a t t h e a c i d s i t e s on p i l l a r e d c l a y s a r e a t t r i b u t a b l e e i t h e r t o t h e s i l i c a t e layer o f clays or t o the p i l l a r s .
I t was shown p r e v i o u s l y [8,9] t h a t
t h e a c i d i t y i n c r e a s e d w i t h i n c r e a s i n g number o f p i l l a r s .
The number o f p i l l a r s ,
however, cannot s e r v e t o e l u c i d a t e t h e d i f f e r e n c e i n a c i d i t y between Al-mont and Al-sap0 because more a c i d i c Al-sap0 has s m a l l e r number o f p i l l a r s than Al-mont. being
2.20
and
3.3 mnol/g, r e s p e c t i v e l y .
Many
investigators
have proposed
m
8
H L
v 0 l
W
u 4-
0
c
0
F
&I
I 9 U
c W c u
0
0
100 Desorptlon temperature/°C Fig. 1. Ammonia TPD s p e c t r a o f Al-mont(--.-) Fig. 2. Ammonia TPD s p e c t r a o f Al-mont. 25OoC (---- ), and 3OO0C(---).
2OOOC (---),
200 300 400 k s o r p t Ion temperature/%
and Al-sapo(-)
500
c a l c i n e d a t 40OoC.
Ammonia was adsorbed a t 100°C(-),
:M(I E. Kikuchi and T. hlatsuda
-
10.
,V
I
V v) W
% 12.5
c
c
-8
7,
‘m
I
01
7
P
\
c
a
U
U v)
c
c
3
5.
c
0
V
U W
5.0
U 01
4
m
rY
2
7,5
v)
0
g
10.0
\
U
rY
*
**
2,5
z
0 0.2 0,4 0.6 Concentration o f a c i d s i es adsorbing ammonia a t 2000C/nmol g-
F
Coricerilratioii of a c i d sites/imno1 (J-1
F i g . 3. R e l a t i o n between t h e c r a c k i n g a c t i v i t y o f Al-mont and t h e c o n c e n t r a t i o n o f a c i d s i t e s . Ammonia was adsorbed a t 100°C( 0 ) .2OO0C( A ) , and 25OoC( 0 ). Fig. 4. The c r a c k i n g a c t i v i t y o f Al-mont( 0 ) and Al-sapo( A t h e c o n c e n t r a t i o n o f a c i d s i t e s a d s o r b i n g ammonia a t 20OoC.
)
as a f u n c t i o n o f
[ l o - 1 2 1 t h a t a c i d i t y i s g e n e r a t e d by t h e decomposition o f p i l l a r s as f o l l o w s .
+
[A11304(OH)24(H20)12]7t
I f t h i s i s t h e case, capacity (CEC).
+
7 Ht
+
20.5 H20
p i l l a r e d c l a y would have c o r r e s p o n d i n g c a t i o n exchange
The C E C v a l u e s o f t h e s e c l a y s d e c r e a s e d t o z e r o on
i n t e r c a l a t i o n w i t h [Al,304(OH)24(H,0)12]7t a l t h o u g h a f t e r c a l c i n a t i o n a t 40OoC. 0.13 meq.g-l
6.5 A1203
o f CEC.
respectively.
cations. Al-sapo
C a l c i n a t i o n i n c r e a s e d CEC,
and A l - m o n t
showed 0.35
and
Thus, t h e d i f f e r e n c e i n t h e a c i d i t y observed
between Al-mont and Al-sapo seems t o be a t t r i b u t a b l e p r e d o m i n a n t l y t o t h e number o f c a t i o n exchangeable s i t e s g e n e r a t e d on decomposition o f p i l l a r s . As expected from t h e TPD r e s u l t s , Al-sapo was more a c t i v e f o r t h e c r a c k i n g o f cumene on a p e r w e i g h t o f c a t a l y s t b a s i s t h a n Al-mont. t h e c a t a l y t i c a c t i v i t y on a b a s i s o f a c t i v e s i t e s , a c t i v e s i t e s on these c a t a l y s t s . temperature F i g . 2.
o f ammonia a d s o r p t i o n .
By i n t e g r a t i n g
I n o r d e r t o compare
we e v a l u a t e d t h e number o f
TPD s p e c t r a were measured w i t h v a r y i n g t h e Typical
these spectra,
r e s u l t s on Al-mont the concentration o f
a r e shown
in
acid sites
c o r r e s p o n d i n g t o d i f f e r e n t s t r e n g t h o f a c i d i t y can be determined. The t y p i c a l c r a c k i n g a c t i v i t y o f Al-mont. constant,is
expressed by t h e f i r s t o r d e r r a t e
shown i n Fig. 3 as a f u n c t i o n o f t h e c o n c e n t r a t i o n of a c i d s i t e s
t h u s determined.
Here, t h e c o n c e n t r a t i o n o f a c i d s i t e s was changed by c a l c i n i n g
Pore Structure and Catalysis of Clay Compounds 381
t h e p i l l a r e d c l a y a t 400,
500,
and 600OC.
C a l c i n a t i o n a t h i g h e r temperature
It i s obvious f r o m these r e s u l t s t h a t t h e
c o n s i d e r a b l y decreased t h e a c i d i t y .
a c i d s i t e s a d s o r b i n g ammonia a t 2OO0C a r e r e s p o n s i b l e f o r t h e c r a c k i n g o f cumene. F i g u r e 4 compares t h e c r a c k i n g a c t i v i t i e s o f Al-mont function o f the concentration o f acid sites. concentration o f a c t i v e sites, t h a n Al-sapo.
Al-mont
and A l - g a p 0
as a
When compared a t a d e f i n i t e
exhibited o n l y s l i g h t l y higher a c t i v i t y
The a c t i v i t y o f an a c i d c a t a l y s t i s a f f e c t e d by t h e n a t u r e o f t h e
a c i d i t y as w e l l as b y t h e number o f a c i d s i t e s .
It has been shown [7,13]
Al-sapo i s f a r more Bronsted a c i d i c t h a n Al-mont,
due t o t h e presence o f Si-0-A1
linkages i n t h e tetrahedral layer.
that
Thus, a c i d i t y cannot e l u c i d a t e t h e a c t i v i t y
d i f f e r e n c e between A l - m n t and Al-sapo.
As proposed by Wang and L u n s f o r d [ 2 ] t o
e x p l a i n t h e s u p e r i o r i t y o f HY over s i l i c a - a l u m l n a ,
t h e a c t i v i t y o f an a c i d s i t e
seems t o be a f f e c t e d by t h e c o n c e n t r a t i o n o f r e a c t a n t around t h e s i t e .
I n that
case, t h e a c t i v i t y should depend on t h e pore s t r u c t u r e o f t h e c a t a l y s t s i n c e t h e c o n c e n t r a t i o n o f r e a c t a n t molecules i s considered t o be structure o f a solid.
s e n s i t i v e t o t h e pore
We deduce t h a t t h e h i g h c r a c k i n g a c t i v i t y o f Al-mont
is
due t o i t s r e g u l a r microporous s t r u c t u r e p e r m i t t i n g a h i g h c o n c e n t r a t i o n o f cumene a t t h e a c i d s i t e s . The same e f f e c t should be expected i n o t h e r c a t a l y t i c r e a c t i o n s . confirm
this,
disproportionation
0
0.1
and
O,2
isomerization
0,3
t
I n order t o
reactions
0,4
Concentration f acid s i es adsorbing anmonia a t 2508C/nmol g-
o)
and Al-sapo( A ) as Fig. 5 . The d s p r o p o r t i o n a t i o n a c t i v i t y o f Al-mont( a f u n c t on o f t h e c o n c e n t r a t i o n o f a c i d s i t e s a d s o r b i n g ammonia a t 25OOC.
were
382 E. Kikuchi and T.Matsuda
I smer iza t ion
c I
u
0)
m c I
ml
5
4
\
c, K
m m c
c,
0
u
W c,
2
m
E
r-
5? 0
0,2 0,4 0,6 Concentration o f a c i d s i es adsorbing a n o n i a a t 200O~/mn01 g-
0
0-1
0,2
0,3 0,4 Concentratlon o f a c i d s i f e s adsorbing
f
a m n i a a t Z S O O C / ~ I g-
Fig. 6. The i s o m e r i z a t i o n and d i s p r o p o r t i o n a t i o n a c t i v i t i e s o f Al-mont( Al-sapo( A ) as a f u n c t i o n o f t h e c o n c e n t r a t i o n o f a c i d s i t e s . investigated.
F i g u r e 5 shows t h e r e l a t i o n s h i p between t h e a c t i v i t y f o r
d i s p r o p o r t i o n a t i o n o f 1.2.4-trimethylbenzene o f acid sites, 25OoC.
o ) and
(1,2,4-TrMB)
and t h e c o n c e n t r a t i o n
which was determined from t h e amounts o f ammonia adsorbed a t
F o r t h i s r e a c t i o n , a b e t t e r l i n e a r r e l a t i o n was o b t a i n e d w i t h t h e
r e s u l t s o f TPD o f ammonia adsorbed a t 25OoC.
Al-mont was f a r more a c t i v e f o r
t h i s r e a c t i o n t h a n Al-sapo. I t i s n o t e d t h a t t h e microporous e f f e c t was g r e a t e r i n t h e d i s p r o p o r t i o n a t i o n
o f 1.2.4-TrMB paper [14],
t h a n i n t h e c r a c k i n g o f cumene. t h e d i s p r o p o r t i o n a t i o n o f 1.2.4-TrMB
As shown i n t h e p r e v i o u s a t 2OO0C p r o c e e d s v i a a
b i m o l e c u l a r t r a n s i t i o n s t a t e and obeys t h e second o r d e r k i n e t i c s ,
I n contrast,
t h e c r a c k i n g o f cumene i s t h e f i r s t o r d e r k i n e t i c s w i t h r e s p e c t t o cumene concentration. significantly
Thus,
i t seems t h a t
t h e microporous e f f e c t
i s e x e r t e d more
i n t h e second o r d e r r e a c t i o n ( d i s p r o p o r t i o n a t i o n )
f i r s t order reaction (cracking)
than
i n the
i f pore s t r u c t u r e p l a y s an i m p o r t a n t r o l e i n
l o c a l i z i n g c o n c e n t r a t i o n o f r e a c t a n t molecules. F u r t h e r p r o o f was o b t a i n e d b y c o m p a r i n g t h e c a t a l y t i c a c t i v i t y f o r t h e d i s p r o p o r t i o n a t i o n and i s o m e r i z a t i o n o f t r i m e t h y l benzene. i s expected t o obey f i r s t o r d e r k i n e t i c s ,
As t h e i s o m e r i z a t i o n
t h e microporous e f f e c t would appear
more i n d i s p r o p o r t i o n a t i o n t h a n i n i s o m e r i z a t i o n . trimethylbenzene (1.2.3-TrMB) isomerization
Here,
1.2.3-
was used as r e a c t a n t i n s t e a d o f 1,2,4-TrMB, s i n c e
conversion o f 1,2,4-TrMB
was t o o small t o d i s c u s s
t h e change i n
Pore Structure and Catalysis of Clay Compounds 383
Table. 1. Rate c o n s t a n t s f o r d i s p r o p o r t i o n a t i o n and i s o m e r i z a t i o n o f 1.2.3-TrMB a t 2OO0C. Catalyst
Al-mont
Al-sapo
kdis/mOl g - l
St3C-l
5.0
10-7
2.1
10-7
kiso/mol
sec-’
3.7
10-7
3.5
10-7
g-l
0.60
1.35
kdis/kiso
F i g u r e 6 shows t h e r e l a t i o n s h i p b e t w e e n t h e a c t i v i t y f o r
the a c t i v i t y .
d i s p r o p o r t i o n a t i o n and i s o m e r i z a t i o n o f 1.2.3-TrMB sites.
and t h e c o n c e n t r a t i o n o f a c i d
The a c i d s i t e s adsorbing ammonia a t 2OO0C were r e s p o n s i b l e f o r t h e
i s a n e r i z a t i o n o f 1,2,3-TrMB.
When compared a t a g i v e n c o n c e n t r a t i o n o f a c i d
s i t e s , Al-mont
e x h i b i t e d about 5 t i m e s h i g h e r a c t i v i t y f o r d i s p r o p o r t i o n a t i o n
t h a n Al-sapo.
I n contrast,
times h i g h e r t h a n Al-sapo.
t h e i s o m e r i z a t i o n a c t i v i t y o f Al-mont was about 2 T h i s d i f f e r e n c e i s a t t r i b u t e d t o t h e second o r d e r
k i n e t i c s o f d i s p r o p o r t i o n a t i o n , which i s a b i m o l e c u l a r r e a c t i o n .
Table 1 shows
t h e r a t e c o n s t a n t a t 2OO0C a n d t h e r a t i o f o r d i s p r o p o r t i o n a t i o n t o isomerization,
namely,
isomerization.
the
selectivity
Microporous Al-mont
for
disproportionation
against
exhibited high selectivity f o r
d i s p r o p o r t i o n a t i o n compared w i t h Al-sapo.
coNcLusIoN Al-mont h a v i n g z e o l i t e - l i k e r e g u l a r micropores i s a c t i v e f o r t h e c r a c k i n g o f cumene, and t h e d i s p r o p o r t i o n a t i o n and i s o m e r i z a t i o n o f TrMB compared f a v o r a b l y w i t h Al-sapo w i t h mesopores, a l t h o u g h Al-mont
i s l e s s a c i d i c t h a n Al-sapo.
The
microporous s t r u c t u r e i s considered t o enhance t h e c o n c e n t r a t i o n o f r e a c t a n t molecules a t t h e a c i d s i t e s ,
resulting i n
high catalytic activity.
The
microporous e f f e c t i s e x e r t e d more s i g n i f i c a n t l y i n d i s p r o p o r t i o n a t i o n than i n cracking
and
isomerization.
Thus,
the
catalytic
selectivity
for
d i s p r o p o r t i o n a t i o n and i s o m e r i z a t i o n i s a l s o a f f e c t e d by t h e m i c r o p o r o s i t y .
Al-
mont e x h i b i t s h i g h e r s e l e c t i v i t y f o r d i s p r o p o r t i o n a t i o n a g a i n s t i s o m e r i z a t i o n t h a n Al-sapo.
These p r o p e r t i e s a r e a t t r i b u t a b l e t o t h e second o r d e r k i n e t i c s o f
d i s p r o p o r t i o n a t i o n , which i s a b i m o l e c u l a r r e a c t i o n .
381
E. Kikuchi and T.Matsuda
REFERENCES 1 J.M. Miale, N.Y.Chen and P.B. Weisz, J. Catal., 6(1966)278. 2 K.M. Wang and J.H. Lunsford, J. Catal., 24(1972)262. 3 T.J. Pinnavaia, M. TZOU, S.D. Landau and R.H. Raythatha, J. Mol. Catal., 27( 1984)195. 4 M.L. O c c e l l i , S.D. Landau and T.J. Pinnavaia, J. Catal., 90(1984)256. 5 M.L. O c c e l l i , S.D. Landau and T.J. Pinnavaia, J. Catal.. 104(1987)331. Sanders, J. Catal., 107(1987)557. 6 M.L. O c c e l l i , J. Lynch and J.V. 7 T. Matsuda, H. Nagashima and E. Kikuchi, Appl. Catal., 45(1988)171. 8 T. Mori and K. Suzuki. Chem. Lett., (1989)2165. 9 J. Shabtai, F.E. Massoth, M. Takarz. G.M. T s a i and J. McCauley, Proc. I n t . Congr. Catal., B e r l i n , vo1.4, 1984, p.735. 10 D. Plee, A. Shutz, G. Poncelet and J.J. F r i p i a t , C a t a l y s i s by Acid and Bases (Stud. Surf. Sci. Catal., 20), E l s e v i e r , Amsterdam, 1985, p.343. 11 G. Poncelet and A. Shutz, Chemical Reaction i n Organic and I n o r g a n i c Constrained System (NATO AS1 S e r i e s Ser.C, 165). 1985, p.165. 12 D. T i c h i t . F. F a j u l a , F. Figueras, J. Bousquet and C. Gueguen, C a t a l y s i s by A c i d and Bases (Stud. Surf. Sci. Catal., 20). E l s e v i e r . Amsterdam, 1985, p. 351. 13 K. Urabe, H. Sakurai and Y. Izumi. Shokubai ( C a t a l y s t ) , 28(1987)422 ( i n Japanese). 14 E. Kikuchi, T. Matsuda, H. F u j i k i and Y. M o r i t a , Appl. Catal., 11(1984)331.