Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement

Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement

CEMENT and CONCRETE RESEARCH. Vol. 23, pp. 368-376, 1993. Printed in the USA. 0008-8846/93. $6.00+00. Copyright © 1993 Pergamon Press Ltd. INFLUENCE ...

490KB Sizes 2 Downloads 172 Views

CEMENT and CONCRETE RESEARCH. Vol. 23, pp. 368-376, 1993. Printed in the USA. 0008-8846/93. $6.00+00. Copyright © 1993 Pergamon Press Ltd.

INFLUENCE OF CONCRETE

THE DEGREE OF PORE SATURATION ON THE RESISTIVITY AND THE CORROSION RATE OF STEEL REINFORCEMENT

OF

W. L 6 p e z U n i v e r s i d a d N a c i o n a l A u t d n o m a de M6xico. F a c u l t a d de Qu£mica, E d i f i c i o D. C i u d a d U n i v e r s i t a r i a . M 4 x i c o 04510, D F

J.A. G o n z ~ l e z C e n t r o N a c i o n a l de I n v e s t i g a c i o n e s M e t a l d r g i c a s (CENIM). Avda. G r e g o r i o del Amo 8, E - 2 8 0 4 0 Madrid, S p a i n (Communicatedby C.D. Pomeroy) (Received March 16, 1992)

ABSTRACT Quantitative relations between the corrosion rate of reinforcements (i^r)t)(p a n d the d e g r e e of p o r e s a t u r a t i o n (PS) and resistivity of m o r t a r s w i t h o u t CI- a n d w i t h 2% CI" w e r e o b t a i n e d . T h e m o r t a r s p e c i m e n s w e r e c u r e d in a w a t e r fog c h a m b e r before the f i n a l exposure at 50o_c a n d 50% relative humidity (RH). The e l e c t r o l y t e supply was found to d e t e r m i n e the ~mortar ? r e s i s t i v i t y w h i c h v a r i e s o v e r a w i d e r a n g e (5 x 10J--5 x i0 ~cm) a n d t h i s in t u r n i n f l u e n c e s the i of the reinforcements. There is a critical corr practical PS va~ue (PS) that results in a mortar resistivity of 10" flcm, ~ e l o w w h i c h i values are too s m a l l to p o s e a n y d u r a b i l i t y p r o b l e m s . B ~ r o w the PS c v a l u e , the resistivity of the mortar prevents activ~ state c o r r o s i o n of r e i n f o r c e m e n t s as e f f e c t i v e l y as p a s s i v a t i n g l a y e r s of s t e e l in m o r t a r s w i t h o u t CI'. _

INTRODUCTION

T h e res.istivity of c o n c r e t e v a r i e s o v e r v e r y broadA r a n g e s , viz. f r o m i0 H ~ c m for o v e n - d r i e d m a t e r i a l to l e s s t h a n I0 J ~ c m for v e r y wet concrete (i). G j o r v (2) r e p o r t e d r e s i s t i v i t y v a l u e s of 7 × i0 ~ a n d 6 x l0 b ~ c m for 1 0 0 % a n d 20% s a t u r a t e d c o n c r e t e , respectively, which are perfectly possible in n a t u r a l e n v i r o n m e n t s . Thus, the r e s i s t i v i t y of c o n c r e t e is m a r k e d l y d e p e n d e n t on t h e d e g r e e of p o r e saturation (PS) a n d also, to a l e s s e r e x t e n t , on the d e g r e e of paste hydration ( c u r i n g ) a n d the p r e s e n c e of d i s s o l v e d s a l t s in the a q u e o u s p h a s e of the c o n c r e t e (3). O n the o t h e r hand, humidity is a l s o t h e f a c t o r most strongly a f f e c t i n g the a c t i v e c o r r o s i o n r a t e of r e i n f o r c e m e n t s . Accordingly, 368

VOI. 23, No. 2

PORE SATURATION, RESISTIVITY, CORROSION, STEEL REINFORCEMENT

369

the r e l a t i o n s h i p b e t w e e n c o n c r e t e r e s i s t i v i t y and r e i n f o r c e m e n t c o r r o s i o n rate has b e e n s t u d i e d by some a u t h o r s (4-6) and it was found that t h e s e two p a r a m e t e r s are i n v e r s e l y p r o p o r t i o n a l o v e r a w i d e r e s i s t i v i t y range. H o w e v e r , there is not a g e n e r a l a g r e e m e n t about the r e s i s t i v i t y level a b o v e w h i c h c o r r o s i o n risks will be n e g l i g i b l e , p r o b a b l y as a r e s u l t of the lack of a c l e a r idea of w h a t is a c c e p t a b l e and u n a c c e p t a b l e in terms of r e i n f o r c e m e n t c o r r o s i o n rate. For example, a c c o r d i n g to H o p e et el.(7) r e i n f o r c e m e n t s e m b e d d e d in c o n c r e t e with a resistivity higher than 104 ~cm will hardly develop c o r r o s i o n , not even in the p r e s e n c e of el-, ~ g r CO~. S t r a t f u l l (3) r e p o r t e d a s o m e w h a t h i g h e r limit (6.5 x ~ ~cm) for c o n c r e t e structures. The aim of this w o r k was to o b t a i n q u a n t i t a t i v e r e l a t i o n s b e t w e e n the r e i n f o r c e m e n t c o r r o s i o n rate and the r e s i s t i v i t y and d e g r e e of pore s a t u r a t i o n of m o r t a r s w i t h and w i t h o u t CI-. This is the first time that the a s s o c i a t i o n b e t w e e n these t h r e e v a r i a b l e s has b e e n investigated.

EXPERIMENTAL

Two s e r i e s of m o r t a r s s p e c i m e n s (Fig i) w e r e p r e p a r e d , w i t h o u t Cl a d d i t i o n s and c o n t a i n i n g 2 %CI- (as NaCI) by c e m e n t weight, b o t h s e r i e s w i t h a c e m e n t ~ s a n d ~ w a t e r ratio of 1:3:0.5. All m o r t a r s were d e m o u l d e d 24 h a f t e r h a r d e n i n g and t h e i r a v e r a g e p o r o s i t y was 16.11 ± 0.8%. Two t y p e s

of

mortar

specimens were

used,

one

of

8x2x2

cm

for

resistivity measurements and other of 8xS.Sx2 cm for electrochemical corrosion rate determinations (Fig. I). The r e s i s t i v i t y s p e c i m e n s w e r e m e c h a n i c a l l y ground, a f t e r d e m o u l d i n g , in o r d e r to e q u a l i z e t h e i r d i m e n s i o n s , and the o p p o s i n g 2x2 cm faces w e r e s u b s e q u e n t l y c o a t e d w i t h g r a p h i t e c o n d u c t i n g p a i n t in o r d e r to f a c i l i t a t e electrical contact during the r e s i s t i v i t y measurements.

Figure 1 Appearance of the specimens fabricated

mortar

LEFT:

for r e s i s t i v i t y measurements

RIGHT:

for e l e c t r o c h e m i c a l measurements

370

W. I ~

and J.A. Gonzfdez

Vol. 23, No. 2

Two c a r b o n steel rods were e m b e d d e d at s y m m e t r i c a l p o s i t i o n s into the m o r t a r s s p e c i m e n s for a c t i n g as w o r k i n g e l e c t r o d e s (WE) d u r i n g the e l e c t r o c h e m i c a l m e a s u r e m e n t s , w h i l e a s t a i n l e s s steel rod was e m p l o y e d as c o u n t e r e l e c t r o d e (CE). An e x t e r n a l s a t u r a t e d c a l o m e l e l e c t r o d e (SCE) was used as r e f e r e n c e e l e c t r o d e (RE) t h r o u g h o u t . T h e s e s p e c i m e n s a l l o w m o n i t o r i n g of the v a r i a t i o n of E~rr, ic0rr, PS and the o h m i c r e s i s t a n c e b e t w e e n the two w o r k i n g e l e c £ r o d e s . All e l e c t r o c h e m i c a l d e t e r m i n a t i o n s w e r e c a r r i e d out in d u p l i c a t e . The m o r t a r s w e r e c u r e d in a s t a n d a r d w a t e r fog c h a m b e r at 23"C for 40 d a y s and s u b s e q u e n t l y w e r e t r a n s f e r r e d to an a i r - t i g h t c h a m b e r at a r e l a t i v e h u m i d i t y (RH) > 90% and a m b i e n t t e m p e r a t u r e , w h e r e they were a l l o w e d to stand for 60 f u r t h e r days b e f o r e t h e y w e r e f i n a l l y e x p o s e d to 50"C and 50% RH for 500 days. The d e g r e e of pore s a t u r a t i o n of the m o r t a r s was c a l c u l a t e d from t h e i r w e i g h t by u s i n g the f o l l o w i n g e q u a t i o n :

W t

-

W0

W s

-

W0

PS =

wherecompleteW,d e n o t e s the m o r t a r weight, at time t, 2 W the w e i g h t u p o n s a t u r a t i o n by b o i l i n g in w a t e r for ~, and W 0 the new w e i g h t o b t a i n e d a f t e r d r y i n g the m o r t a r by h e a t i n g in a s t o v e at I05"C u n t i l w e i g h t c o n s t a n c y . The resistivity of the mortars specimens used for the e l e c t r o c h e m i c a l m e a s u r e m e n t s was d e t e r m i n e d by m u l t i p l y i n g the R~ v a l u e b e t w e e n the two WE by the cell c o n s t a n t for this g e o m e t r y , w h i c h was in t u r n o b t a i n e d f r o m the slope of the p l o t of the r e s i s t i v i t i e s of the m o r t a r s s p e c i m e n s of k n o w n g e o m e t r y v e r s u s the wR~ v a l u e s of those used in the e l e c t r o c h e m i c a l studies, b o t h of ich w e r e m a d e w i t h the same c o m p o s i t i o n and e x p o s e d to the same t e m p e r a t u r e and RH c o n d i t i o n s (Fig 2). The R~ v a l u e s of the m o r t a r s were determined by u s i n g a S o l a r t r o n 1251 f r e q u e n c y response a n a l y s e r at a c o n s t a n t f r e q u e n c y of 1 kHz. 1.0E,06

1.0E-05 0

Figure 2 Resistivity vs ohmic resistance plot to determine the cell c o n s t a n t of the m o r t a r s for electrochemical measurements

rr,u

r,~

Z

.<

1.0E*04

[n

• •

I.|NI:AL

Hi:QHI8810N

r,n

r~

1,0E*03

1.0E'02 %0E*03

. ~

,

",,4 ~ d ~5~"~' /

I

J

[

oorr



• 0,1897.

b • - 6 a l . E (ohm) n • ,nSO II/m) K CELL • $,415 (oal)

I IIIIA

1.0E*04

Resistivity

I

I

,

t [ii11

1.0E-05

(ohm.---)

t

i

,

i

ii

1.0E*06

Vol. 23, No. 2

PORE SATURATION,RESISTIVITY,CORROSION, STEEL REINFORCEMENT

371

RESULTS

Figures 3a--3d show the changes with time in the monitored p a r a m e t e r s : ic0r~ Ec0rr, r e s i s t i v i t y and w a t e r loss of the m o r t a r s , r e s p e c t i v e l y . T h e z o n e s l a b e l l e d w i t h 0, I and 2 c o r r e s p o n d to the c u r i n g in the w a t e r fog a t m o s p h e r e , the s t a b i l i z a t i o n p e r i o d at RH > 90% and a m b i e n t t e m p e r a t u r e , and the e x p o s u r e to RH = 50% and 50°C, r e s p e c t i v e l y . Figure 4 shows the relationship b e t w e e n ic0rr and the r e s i s t i v i t y of 1 2 A the m o r t a r s , b o t h c o n t a i n i n g 2% C1 and w i t h o u t CI', f r o m the b e g i n n i n g of the s t a b i l i z a t i o n p e r i o d at RH > " k 90% and a m b i e n t t e m p e r a t u r e to a f t e r 500 d a y s of e x p o s u r e to RH = 50% and 50°C. The p o i n t s w i t h i n the c i r c l e c o r r e s p o n d to the i .... and r e s i s t i v i t y v a l u e s of the m o r t ~ s at the end of curing, while those inside the r e c t a n g l e c o r r e s p o n d to t h o s e of the B~ J m o r t a r s c o n t a i n i n g 2% Cl- d u r i n g the s t a b i l i z a t i o n period. R a t h e r t h a n to s ignificant changes in the ° / resistivity of c o n c r e t e (Fig 3c), t h e s e l a t t e r p o i n t s are r e l a t e d to the small w a t e r loss from the m o r t a r s in passing from the curing fog c h a m b e r to the a t m o s p h e r e w i t h a J RH > 90% (Fig 3d). c

Figure 5 shows the relationship b e t w e e n the d e g r e e of s a t u r a t i o n of the c o n c r e t e p o r e s (PS) and i ..... As can be seen, the m a x i m u m ic tr ~ l u e s c o r r e s p o n d to PS v a l u e s o~ 60--70%. Also, at l o w e r PS values, the i... v a l u e s of the m o r t a r s c o n t a i n l n g ~ CI- are s m a l l e r by a b o u t two o r d e r s of m a g n i t u d e , consistent with the inverse proportionality between • " Fig 4. the r e s i s t i v i t y and ic0rr in F i n a l l y , as can also be s e e n in the figure 5, the ~ values of the m o r t a r s w i t h o u t ~ x ~ are i n d e p e n d e n t of PS b e t w e e n 100% and 50%, but the ie0rr d e c r e a s e for PS less t h a n 50%.

o

el

| t4 m W

o

¢D

t

o

Ioo

:too

3o0

40o

ooo

eoo

TINR ( , I - y l )

a.

2 % CI-

0% CI-

TOO

Figure 3 V a r i a t i o n of the d i f f e r e n t m o n i t o r e d v a r i a b l e s w i t h time since the p e r i o d of c u r i n g u n t i l e x p o s u r e to 50:C and RH = 50%

372

W.I..,6pez and J.A. Go'nzile,z

1.0E-O6

-

Vol. 23, No. 2

1.OE-O5 "

-F +

O"

GI-

2 " Cl"

/

\

+ ++

1.0E-Oe

\

~

1.0E-Oe



+

il U .<

+

i

N

+

+4-

E

0 < v

+ 1.0E-07 •

+ 1.0E-07

.+.

.+



.



o +

+

+

+

+

1.0E-08

1.0E-08

I 1.OE-O9

, ,,,,,., , 1.0E+03 1.0E+04

,,,,,,,, laE~8

, , ,,,,., 1.0E*06

Resistivity

,

,,,,l., tOE+07

(ohm.

o.

GI-

-~-

2.

GI-I

i

i

i

i

i

i

i

30

40

80

60

70

80

90

100

Pore

cm)

Saturation

Figure 5

Figure 4

Influence of the d e g r e e of m o r t a r p o r e s a t u r a t i o n on the corrosion rate of the reinforcement

Relationship between mortar r e s i s t i v i t y and the c o r r o s i o n rate of the r e i n f o r c e m e n t

F i g u r e s 6a and 6b s h o w the relationship between the w a t e r loss from the m o r t a r s and PS with the mortar resistivity, respectively. As can be seen, the r e s i s t i v i t y of a w a t e r - s a t u r a t e d mortar (i.e. c u r e d in a w a t e r - f o g atmosphere that p r o d u c e s a visible water l a y e r on the m o r t a r ) s c a r c e l y c h a n g e s on exchanging water with the e n v i r o n m e n t u n t i l the m o r t a r weight decreases by ca. 2% (Fig 6), which corresponds to PS m 70% (Fig 6b). Further water releases to the environment result in gradually larger increases in resistivity and progressively smaller decreases i n PS ( F i g s 6a and 6b).

-

i

1.0E-09

, ,,,,,,, 1.0E*08

I .Ol~O

1

++++

++..

• 4-..

-t-k.

..+

t.

+

m~

1.0E+OO

÷

.

¢ ,;a e~ 3~

+

.........

, ,, ,,,,.

100.000"

80.000-

÷ +

00.000-

..........................

[ ....

~--o-ls

• +°

TO.O00"

460.000"

+.

80.000-

40.000"

+

Figure

6

Effect of the water loss and p o r e s a t u r a t i o n on the mortar resistivity

30.000" 20.000

• • i i .............

1.0E*03

+

LOEb04

".......................... 1-01=*08 1 . 0 E * 0 8 1.0E*07

Resistivity (oha-ca)

1.0E408

Vol, 23, No. 2

PORE SATURATION,RESISTIVITY,CORROSION,STEEL REINFORCEMENT

373

DISCUSSION

On e x p o s u r e to an a t m o s p h e r e at a g i v e n r e l a t i v e h u m i d i t y and t e m p e r a t u r e , the h u m i d i t y c o n t a i n e d in the p o r o u s of the c o n c r e t e e q u i l i b r a t e s w i t h the a m b i e n t humidity (Fig 3c). The p r o c e s s t h r o u g h w h i c h such an e q u i l i b r i u m is e s t a b l i s h e d d e t e r m i n e s the d e g r e e of s a t u r a t i o n of the c o n c r e t e pores, PS, and a n u m b e r of the p h y s i c o - c h e m i c a l p r o p e r t i e s of c o n c r e t e i n c l u d i n g gas d i f f u s i o n t h r o u g h the p o r e s (8,9) and e l e c t r i c a l r e s i s t i v i t y (1,2), both of w h i c h are m a r k e d l y i n f l u e n t i a l on the c o r r o s i o n k i n e t i c s at the s t e e l / c o n c r e t e interface. The w a t e r c o n d e n s a t i o n - - e v a p o r a t i o n e q u i l i b r i u m o c c u r r i n g in m o r t a r p o r e s can be d e s c r i b e d by m e a n s of the K e l v i n e q u a t i o n (I0):

p In

2V¥

m

Po

rRT

A c c o r d i n g l y , in the e v e n t of w a t e r c o n d e n s i n g on the m o r t a r s u r f a c e - - a s o b s e r v e d d u r i n g the c u r i n g p r o c e s s in a w a t e r o v e r s a t u r a t e d a t m o s p h e r e - - , p o r e s of all d i a m e t e r s will be fully s a t u r a t e d w i t h water. T h e r e f o r e , u n d e r these h u m i d i t y c o n d i t i o n s , the t r a n s f e r of 02 t h r o u g h the c o n c r e t e p o r e s to the r e i n f o r c e m e n t will take p l a c e e k c l u s i v e l y t h r o u g h liquld-phase" d i f f u s i o n . In fact, ic0 was 0.3 N A / c m 2 for the m o r t a r s c o n t a i n i n g 2% CI- and 0.15 ~ A / c ~~ for the m o r t a r s w i t h o u t CI- (points inside the c i r c l e in Fig 4). On the o t h e r hand, a c c o r d i n g to the K e l v i n e q u a t i o n , d u r i n g the s t a b i l i z a t i o n p e r i o d at 23"C and RH > 90% ( p / ~ > 0.90), for a p a r t i a l w a t e r v a p o u r p r e s s u r e in the a t m o s p h e r e o f 0.90, w a t e r will e v a p o r a t e from all p o r e s w i t h a radius l a r g e r t h a n 116 A. U n d e r these c o n d i t i o n s , no w a t e r will c o n d e n s e on the m o r t a r surface, but only in those p o r e s w i t h a radius s m a l l e r t h a n 116 A. E a c h RH v a l u e will thus have a m a t c h i n g c r i t i c a l pore r a d i u s b e l o w w h i c h p o r e s will remain water-saturated and above w h i c h w a t e r will e v a p o r a t e , t h e r e b y e s t a b l i s h i n g p r e f e r e n t i a l a e r a t i o n c h a n n e l s for p e n e t r a t i o n of O I t h r o u g h v a p o u r - p h a s e d i f f u s i o n w i t h a c o e f f i c i e n t D02 c a . I0" t i m e ~ g r e a t e r than in a l i q u i d p h a s e (8). As 02 r e a c h e s the r e i n f o r c e m e n t t h r o u g h the p r e f e r e n t i a l a e r a t i o n channels, it creates differential aeration cells and hence i n c r e a s e s E .... by a b o u t i00 mV in m o r t a r s c o n t a i n i n g no Cl" (Fig 3b), and i m p r o v e s the steel p a s s i v i t y (Fig. 3a). On the o t h e r hand, the m o r t a r s c o n t a i n i n g 2% CI- u n d e r g o a v e r y sharp initial rise in Ec0rr of c a . 300--400 mV (Fig 3b), c o n s i s t e n t w i t h a slight d e c r e a s e in ~c0rr' f o l l o w e d by a d r o p to a c t i v e p o t e n t i a l s and a c o n c o m i t a n t i n c r e a s e in i.... ( F i g 3 a ~ On e x p o s u r e t ~ % 0 * C a n d R H = 50%, the m o r t a r s r e l e a s e w a t e r up to ca. 4% of t h e i r w e i g h t (Fig 3d). This r e s u l t s in a ~ r a ~ a t i c i n c r e a s e in the m o r t a r r e s i s t i v i t y from 3 x l0 w ~cm to I0"--I0 ~cm (Fig 3c). Under these conditions, the i values of the r e i n f o r c e m e p t e m b e d d e d in m o r t a r s w i t h 2% CI" C ~ r s t l y i n c r e a s e up to 3 B A / c m ~ due to the a c c e s s of 02 by p r e f e r e n t i a l a e r a t i o n channels, and l a t e r d e c r e a s e to 0.02 ~ A / c m 2 by e f f e c t of the m o r t a r r e s i s t i v i t y (Fig 3a). •

~U[[

374

W. L6pez and J.A. Gonz~ez

Vol. 23, No. 2

At 5 0 ° C a n d RH { 50%, r e s i s t a n c e c o n t r o l e n c o m p a s s e s resistivities between 7 x i0 ~ c m a n d the u p p e r limit, i~ ~cm (Fig 4). T h e o c c u r r e n c e of an i n v e r s e p r o p o r t i o n a l i t y relationship between the r e s i s t i v i t y a n d i cr in t h i s p o r t i o n of the plot, w i t h a s l o p e c l o s e to -i, u n e q u i v o c a ~ l y r e f l e c t s the c o n t r o l l i n g r o l e of the m o r t a r resistivity in the c o r r o s i o n k i n e t i c s in the a c t i v e state. H o w e v e r , in the p a s s i v e s t a t e ( m o r t a r s w i t h o u t CI'), the c o r r o s i o n r a t e is i n d e p e n d e n t of the r e s i s t i v i t y and anodic control takes o v e r on a c c o u n t of the p r o t e c t i v e f e a t u r e ~ of the p a s s i v a t i n g layer of s t e e l up to r e s i s t i v i t i e s of 3-4 x i ~ ~cm. T h e r e s i s t i v i t y of d r i e r m o r t a r s is an e v e n g r e a t e r h i n d r a n c e to c o r r o s i o n t h a n is the passivating l a y e r (Fig 4). Corrosion of r e i n f o r c e d concrete thus s e e m s to a r i s e f r o m two opposing effects, namely: - - T h e i n c r e a s e d ~2 s u p p l y t h r o u g h the l a r g e r p o r e s r e s u l t i n g from a decrease In t h e d e g r e e of s a t u r a t i o n d o w n to 60--70%, w h i c h r e s u l t s in i n c r e a s e d i c (Fig 5) t h r o u g h t r i g g e r i n g of oil . the passivity--activity transltlon in the steel and local acidification at the steel/concrete interface (ii). The resistivity of c o n c r e t e s c a r c e l y v a r i e s o v e r t h i s PS r a n g e (Fig 6b). - - A sharp, g r a d u a l l y m o r e r a p i d i n c r e a s e in r e s i s t i v i t y at PS v a l u e s b e l o w 70% (Fig 6b), w h i c h b e c o m e s the f a c t o r c o n t r o l l i n g the c o r r o s i o n kinetics at the s t e e l / c o n c r e t e interface and r e s u l t s in a m a r k e d d e c r e a s e in ic0tt (Fig 4). T h e c o r r o s i o n p r o c e s s of a c t i v e c o r r o d i n g s t e e l in c o n c r e t e a n d the atmospheric corrosion of m e t a l s are s i m i l a r in t h a t t h e y " s t o p " b e l o w a RH c r i t i c a l v a l u e (RHc). R a t h e r t h a n a c r i t i c a l relative humidity, concrete structures f e a t u r e a c r i t i c a l d e g r e e of p o r e saturation, PS , w h i c h can be ~ssumed to be ca. 35% and corresponding to ic0rr - 0.02 D A / c m (Fig 5), w h i c h r e s u l t s in a penetration of 0.2 D m / y e a r t h a t is c l e a r l y n e g l i g i b l e . F r o m F i g s 4 a n d 5, o n e m a y d e f i n e t h r e e t y p e s of c r i t i c a l PS v a l u e s allowing the b e s t c h a r a c t e r i z a t i o n of t h e c o r r o s i o n process of s t e e l in c o n c r e t e , n a m e l y : - - T h e u p p e r c r i t i c a l limit, P S c , w h i c h s i g n a l s the b e g i n n i n g of r e s i s t a n c e control a n d w o u ~ d be 3of ca. 70% (Fig 5) a n d c o r r e s p o n d to a r e s i s t i v i t y of 7 x i0 ~ c m (Figs 4 a n d 6b) for the c o n d i t i o n s t e s t e d h e r e i n (50°C a n d RH = 50%). - - T h e l o w e r c r i t i c a l limit, PSlc , viz. 35% as n o t e d e a r l i e r , below which corrosion "stops". -- The practical critical limit, PS , b e l o w w h i c h c o r r o s i o n risks are negligible for p r a c t i c a l ~ u r p o s e s . S u c h a l i m i t i~ 45--50%, w h i c h c o r r e s p o n d s to an ic0rr b e t w e e n 0.2 a n d 0.I D A / c m (Fig 5 ) . T h e p r o p o s e d PS v a l u e r e s u l t s in a r e s i s t i v i t y of ca. 105 ~ c m (Fig 6b), i.e. ver] ¢ close to the 6.5 x I0 ~ ~ c m l i m i t above which Stratfull ceased t? d e t e c t visible evidence of c o r r o s i o n in reinforced concrete-. At this resistivity values, the results obtained with active and passive structures (i.e. with and without chlorides) are very similar: i in the r a n g e b e t w e e n 0.i a n d 0.2 o cort D A / c m ~ (Fig 4), w h i c h c o r r e s p o n d to p e n e t r a t i o n s of 1--2 D m / y e a r . Such small penetrations will hardly pose durability problems t h r o u g h o u t the s e r v i c e l i f e of a r e i n f o r c e d c o n c r e t e s t r u c t u r e a n d c o n f i r m s the v i s u a l o b s e r v a t i o n s r e p o r t e d by S t r a t f u l l .

Vot. 23, No. 2

PORE SATURATION, RESISTIVITY, CORROSION, STEEL REINFORCEMENT

375

CONCLUSIONS

The r e s u l t s o b t a i n e d to be drawn:

in this

work allow

the

following

conclusions

I. The d e g r e e of pore s a t u r a t i o n (PS) of the c o n c r e t e has a v e r y strong effect on the c o r r o s i o n k i n e t i c s and d e t e r m i n e s the active state corrosion mechanism at the steel/concrete interface. 2. One can distinguish three d i f f e r e n t c r i t i c a l PS values: an upper limit (PS.~) c o i n c i d i n g w i t h the m a x i m u m c o r r o s i o n rate and below whic~ resistance control begins; a lower limit (PSIc) s i m i l a r to the c r i t i c a l r e l a t i v e h u m i d i t y in a t m o s p h e r i c corrosion and b e l o w w h i c h c o r r o s i o n d e v e l o p s to a n e g l i g i b l e extent; and a p r a c t i c a l limit ( P S c) that s i g n a l s the start of u n a c c e p t a b l e c o r r o s i o n rates and ~ e n c e of p o t e n t i a l d u r a b i l i t y problems. 3.

The resistivity of c o n c r e t e r e m a i n s v i r t u a l l y u n c h a n g e d at PS > PS and corrosion decreases g r a d u a l l y as a r e s u l t of diffusion control in an i n c r e a s i n g l y s a t u r a t e d pore network. On the other hand, at PS < PSuc, the r e s i s t i v i t y i n c r e a s e s e x p o n e n t i a l l y and i i n v e r s e l y p r o p o r t i o n a l to i .... over a v e r y broad range (7 x 1 0 t l x l0 b flcm). ~u,,

4. The corrosion rate in the passive state depends on the properties of the passivating layer of steel in c o n c r e t e r a t h e r than on c o n c r e t e r e s i s t i v i t y . However, below PSp , the concrete resistivity b e c o m e s an e v e n more p o w e r f u l h i n d r a n c e to c o r r o s i o n t h a n is the p r o t e c t i v e e f f e c t of the p a s s i v a t i n g layers. ACKNOWLEDGEMENTS

This w o r k was s u p p o r t e d by the C o m i s i 6 n I n t e r m i n i s t e r i a l de C i e n c i a y T e c n o l o g ~ a (CICYT) of the M i n i s t r y of E d u c a t i o n and S c i e n c e of Spain. One of the a u t h o r s (WL) a c k n o w l e d g e s the f i n a n c i a l s u p p o r t p r o v i d e d by the U n i v e r s i d a d N a c i o n a l A u t 6 n o m a de M 4 x i c o and the A g e n c i a Espafiola de C o o p e r a c i 6 n I n t e r n a c i o n a l . REFERENCES

1.

G. E. Monfore. (Portland Cem. (1968).

2.

O.E. Gjorv, O. V e n n e s l a n d , A.H.S. E i - B u s a i d y . Proc.O f f s h o r e Technol. Conf., 9 No. I, 5 8 1 - 5 8 8 (1977).

3.

R. F. S t r a t f u l l . How Chlorides affect concrete used with R e i n f o r c i n g Steel. M a t e r i a l s P r o t e c t i o n , ! No.3, 29-34 (1968).

Electrical Ass.) Res.

resistivity of Develop. Lab.,

concrete. J. P C A i O No. 2, 35-48

Annu.

376

W. L6pez and J.A. Gonz~lez

Vol. 23, No. 2

4.

S. Felid, J.A. GonzAlez, S. Felid Jr. and C. Andrade. R e l a t i o n s h i p b e t w e e n c o n d u c t i v i t y of c o n c r e t e and c o r r o s i o n of r e i n f o r c i n g bars. B r i t i s h C o r r o s i o n Journal, 24 No. 3, 1 9 5 - 1 9 8 (1989).

5.

A. Molina, C. Andrade, C. A l o n s o controlantes de la v e l o c i d a d de e m b e h i d a s en m o r t e r o s de cemento. No. 2, 9-15 (1985).

6.

C. Alonso, C. A n d r a d e and J.A. Gonzglez. Relation between r e s i s t i v i t y and c o r r o s i o n rate of r e i n f o r c e m e n t s in c a r b o n a t e d m o r t a r made w i t h s e v e r a l C e m e n t types. C e m e n t and C o n c r e t e Research, 8 No. 5, 6 8 7 - 6 9 8 (1988).

7.

B. B. Hope, A. K. Ip and D.G. Manning. Corrosion and e l e c t r i c a l I m p e d a n c e in concrete. C e m e n t and C o n c r e t e R e s e a r c h ,

y J. A. GonzAlez. Factores c o r r o s i 6 n de las a r m a d u r a s Rev. T4c. Ing., Univ. Zulia,

i__55 No. 3, 525-534 (1985). 8.

E. Levin. Corrosion of underground acidification: laboratory investigation.

J o u r n a l , 2__66 No. I , 9.

structures due to British Corrosion

63-66 (1991).

E. J. Garboczi. P e r m e a b i l i t y , D i f f u s i v i t y and m i c r o e s t r u c t u r a l Parameters: A c r i t i c a l Review. C e m e n t and C o n c r e t e R e s e a r c h , 2__00 No. 4, 591-601 (1990).

I0. S. J. G r e g g and K.S.W. Adsorption, Surface A c a d e m i c Press, London, p 162 (1967).

a r e a and P o r o s i t y .

II. J.A. GonzAlez, A. Molina, E. O t e r o and W. Ldpez. On the m e c h a n i s m of steel c o r r o s i o n in concrete: the role of o x y g e n d i f f u s i o n . M a g a z i n e of C o n c r e t e R e s e a r c h , 42 No. 150, 23-27 (1990).