INFRARED SPECTRA OF INORGANIC C O M P O U N D S
INTRODUCTIO
N
The utility of infrared spectroscopy to the organic chemist is perhaps unsurpassed within the framework of most modern laboratories. Experimental, theoretical, and empirical correlations between functional organic groups and the infrared spectrum have been thoroughly studied and reported. The vast body of literature devoted to the results of these studies provides a rather solid base for use by the analytical spectroscopist. Through the efforts of several authors this accumulated literature has been summarized and reviewed in several excellent books (7-7). The application of infrared spectroscopy to the identification of inorganic compounds has been somewhat less successful. Many simple inorganic compounds such as the borides, silicides, nitrides, and oxides, do not absorb radiation in the region between 4000 and 600 cm-1 which, for many years, was the extent of the infrared region covered by most commercial spectrometers. Only within the last 10 years have instruments become available which include the region below 600 cm"1, and it has been even more recent that instrumentation has been developed to cover the far-infrared region between 200 and 10 cm-1. These are the regions in which most inorganic compounds absorb infrared radiation. The region 4000-600 cm"1 has proved to be very useful for the identification of polyatomic anions of the type C032", S042", N03~, etc. When standard spectra are available, a compound such as KN0 3 can easily be distinguished from NaN0 3 or Ca(N0 3 ) 2 , but in the absence of standard spectra, specific identification of a cation—anion pair is usually not possible by infrared spectroscopy. The differences between the spectra of KN0 3 and Ca(N0 3 ) 2 , for example, are largely due to two effects: (1) the extent to which the cation perturbs the internal vibrations of the anion and (2) changes in the crystal structure of the system. The latter is more pronounced in the far-infrared region than in the region 4000-600 cm"1. These effects are usually not predictable. In obtaining infrared spectra of inorganic solids, an experimental complication arises from possible chemical reaction (cation exchange) between the inorganic compound and the infrared window material or support medium. The literature contains many examples of standard spectra of inorganic compounds in which this type of chemical reaction has obviously taken place. Care has been exercised in the preparation of samples here so as to avoid this difficulty. In the present compendium, spectra of inorganic compounds in the solid phase are presented. The majority of these compounds are (powdered) crystalline solids in which the crystallographic unit cell may contain several polyatomic ions or molecules. The internal modes of vibration of the polyatomic group generally occur in the region 4000-400 cm"1; many of these have been extensively documented in the literature. Other optical
1
INFRARED SPECTRA
modes called lattice modes of vibration result from the motion of one polyatomic group relative to another within the unit cell. Lattice modes generally occur in the region 400-10 cm -1 and are characteristic of a specific crystal geometry. They can be used as fingerprints for an inorganic compound in much the same way as the internal modes of vibration of organic compounds are used in the region 4000-400 cm"1. The purpose of this work is to present reference spectra and empirical spectra—structure correlations. We do not intend to cover the theoretical aspects of the solid state. For this the reader is referred to several excellent review articles and books (8~13).
EX P ERIMEN T A
L
The mid-infrared spectra were scanned using a Beckman Model IR-9 and two HerscherDow prism grating spectrometers in the region 3800-400 cm -1 and a Perkin-Elmer Model 225 in the region 3800-200 cm"1. Far-infrared spectra were scanned on a Beckman Model IR-11 in the region 600-45 cm"1. Extensive descriptive material about the instrumentation is given in several books (14~16). The samples were prepared as mulls, using as mulling agents Fluorolube for the region between 3800-1333 cm"1 and Nujol for the region between 1333-400 and 600-45 cm"1, the technique hereinafter being referred to as a "split mull." In the mulling technique, finely ground particles are suspended in the mulling agent and the slurry is supported between two infrared transmitting windows. Samples were not subjected to prolonged grinding, but were treated in a routine manner, the grinding time seldom exceeding 10 minutes. Mechanical grinding devices were not employed. BaF2 windows were used in the region 3800-1333 cm"1, AgCI in the region 1333-400 cm"1, and polyethylene in the region 600-45 cm"1. These window materials are inert to reaction with respect to most inorganic compounds. Standard window materials such as potassium bromide, sodium chloride, cesium bromide, and cesium iodide were found to be highly prone to ion exchange with a number of inorganic compounds, and for this reason their use was avoided. To illustrate the extent of ion exchange effects, pure samples of Pb(N0 3 ) 2 (verified by X-ray diffraction) were prepared as split mulls on sodium chloride, potassium bromide, cesium iodide, barium fluoride, and silver chloride plates. Spectra A and D in Fig. 1 are of pure Pb(N0 3 ) 2 and NaN0 3 , respectively, scanned as split mulls between BaF2 (3800-1333 cm"1) and AgCI (1333-400 cm"1) plates. Spectrum Β is a freshly prepared Pb(N0 3 ) 2 split mull between NaCI plates, and spectrum C is the Nujol portion of that mull 2 hours after preparation, having been in intimate contact with the NaCI plates. The out-of-plane N03~ deformation of NaN0 3 which occurs at 838 cm -1 is clearly present in spectra Β and C. The band intensity increases with contact time (spectra Β to C), indicating the continuing formation of NaN0 3 by ion exchange between Pb(N0 3 ) 2 and the NaCI plate. Similar reactions were observed between Pb(N0 3 ) 2 and KBr and Csl. The potassium bromide pellet technique for preparing samples was strictly avoided. Anomalies in the infrared spectra of inorganic compounds prepared by this technique have been extensively studied. In addition to a possible cation exchange reaction with KBr, the material under investigation may also undergo changes in crystalline form as a result of the high mechanical pressures (10,000 psi) used in the pelleting process. Extreme caution should be exercised when applying the potassium bromide pellet technique to obtain infrared spectra of inorganic compounds. ARRAN G EMEN
T OF SPECTR A
The,spectra are arranged to bring together compounds containing similar anions, in order to facilitate recognition of characteristic group frequencies. The arrangement is
2
SPECTRA-STRUCTURE CORRELATIONS
based on the position in the periodic table of the central atom in the anion. Where there is no central atom (e.g., CN~) the anions are arranged by lowest group; thus CN" falls under C. In grouping the anions by their central atom, these have been arranged in order of, first, increasing group number, then increasing atomic number within a group: B, Al, C, Si, N, P, O, S, F, CI, Br. In subarrangement under a given central atom, for example, N, the anions are given in order of increasing number of Ν atoms in the anion: N3~, N24~, N3~, etc. The polyatomic anions are arranged in orders of decreasing ratio of Ν atoms to other atoms in the anion, such as N 2 0 2 2 ~, N0 2 , N0 3 . Under a specific anion, individual compounds appear in the order of increasing atomic number of the cation within a given group. For the nitrates (N0 3 ") the order is NH 4 N0 3 ; (Group I) NaN0 3 , K N 0 3 · · · CsN0 3 ; (Group II) Ca(N0 3 ) 2 · · · Ba(N0 3 ) 2 ; (Group III) AI(N0 3 ) 2 ; (Group IV) Ga(N0 3 ) 3 ; etc. Compounds containing the ammonium ion have been placed at the beginning of each such grouping. Two indices are provided. The first of these contains compounds as they appear in the book in numerical sequence. The second index is arranged alphabetically by anion.
SPECTRA-STRUCTURE CORRELATIONS Characteristic infrared frequencies and band intensities of the different anions are summarized in Table 1 and Figs. 2 and 3. Frequency assignments for the fundamental vibrations of complex anions taken from the literature are summarized in Table 2. The assignment of the anion fundamental vibration is based on point group symmetry; the anion usually belongs to the same point group in the solid phase, regardless of the space group of the unit cell. In Table 2, the notation and numbering system of the fundamental vibrations are taken from Herzberg (7). For a detailed discussion of group theory the reader is referred to any one of several excellent texts (18-21). A, correlation chart for metal oxides is given in Fig. 4. The following paragraphs are devoted to a general résumé of the more common or important structural information contained in Table 1 and a brief discussion of lattice vibrations. For detailed information on individual groups reference should be made to the publications listed in the bibliography. Strong bands associated with OH stretching vibrations of water and hydroxyl groups occur between 3200 and 3700 cm -1 . The hydroxyl group is characterized by a strong sharp absorption band in the region 3650-3700 cm-1. Water of hydration usually exhibits one strong sharp band near 3600 cm -1 and one or more strong sharp bands near 3400 cm-1. Water of hydration is easily distinguished from hydroxyl groups by the presence of the H - O - H bending motion which produces a medium band (often multicomponent) in the region 1600-1650 cm"1. Free water has a strong broad absorption band centered in the region 3200-3400 cm"1; the H - O - H bending motion generally occurs near 1650 cm"1. The OHH stretching vibration of HAs0 4 , HC03~, HS04", HP042~, etc., characteristically exhibits a strong to medium-strong broad mültipeaked band often extending from 2000 to 3400 cm"1. This type of absorption is a distinguishing feature of the very acidic protons of the salts and corresponding acids. The NH 4 + group is characterized by a strong broad absorption centered near 3250 cm -1 resulting from NH 4 + antisymmetric stretching vibrations and a strong absorption band near 1400 cm -1 resulting from an NH 4 + bending vibration. Multiple bond stretching and metal-hydrogen stretching vibrations usually occur in the region 1500-2500 cm -1 . The groups CN~, SCN", and OCN" exhibit a strong absorption in the region 2000-2300 cm-1. The CN" group is characterized by one or more strong very sharp absorption bands in the region 2000-2200 cm -1 . A strong sharp band in the region 2050-2200 cm"1 is characteristic of the SCN" group. The absorption band characteristic
3
INFRARED SPECTRA
of the OCN" group is strong but somewhat broader than the CN" or SCN" bands and occurs near or above 2200 cm-1. The NO stretching vibration of the NO" group gives rise to a strong band at 1940 cm"1. Inorganic compounds containing the HP0 3 2 " and H2P02~ groups are readily characterized by medium to strong bands in the region 2300-2400 cm"1 often showing submaxima; these bands arise from the P-H stretching vibrations. Polyatomic anions of inorganic compounds show characteristic absorption bands in the region 1500 300 cm -1 which result from stretching and bending vibrations. These characteristic bands are summarized in Table 1 and Fig. 1. Table 2 gives the frequency assignments of the fundamentals for many different anions, as summarized from the literature. For a detailed discussion of the anion (point group) symmetry the reader is referred to Nakamoto (22). In certain cases where there is high point group symmetry, T d , for example, vibrations normally infrared inactive will often appear as a weak band; also doubly and triply degenerate vibrations split into two and three components, respectively. These effects result either from lowering of the point group symmetry or from factor group splitting as a result of different crystalline environments. Lattice vibrations can occur as high as 600 cm-1, but usually occur in the region below 300 cm"1. These vibrations are unique for a specific crystalline compound, and are useful fingerprints for identification. Many inorganic compounds absorb only in this region of the spectrum, particularly ionic metal halides, nitrides, silicides, tellurides, and heavy metal oxides. Lattice frequencies can be correlated with crystal structure in an isomorphous series. For example, the lattice modes in the alkali halides which are cubic show a decrease in frequency with increasing mass or atomic radius of the cation or anion. Compare spectra* of the series of compounds: NaF (599), NaCI (717), and NaBr (796) KCl (718), KBr (797), and Kl (831) RbCI (719), RbBr (798), and Rbl (832) AgCI (741) and AgBr (811) NaCI (717), KCl (718), and RbCI (719) NaBr (796), KBr (797), and RbBr (798) Different crystalline forms of the same compound also show different lattice vibrations as well as spectral differences at higher frequency in the region where the fundamental vibrations occur in the spectrum. For example, SrP 2 0 7 exists in two crystal forms, the α-form which is orthorhombic and the ß-form which is tetragonal (compare spectra 265 and 266). Other such cases appear in this compilation of infrared spectra. The infrared spectra of crystalline polyatomic inorganic compounds usually show more bands than can be assigned to fundamental vibrations and sum or difference tones of the internal vibrations of the polyatomic ion. These other bands result from sum or difference tones of the lattice modes with the internal fundamental vibrations of the polyatomic ion.
REFERENCES 7. 2. 3.
G. Herzberg, "Molecular Spectra and Molecular Structure." Part II. Van Nostrand-Reinhold, Princeton, New Jersey, 1945. R. N. Jones and C. Sandorfy, in "Chemical Applications of Spectroscopy" (W. West, ed.), Vol. I X , Chapter IV. Wiley (Interscience), New Y o r k , 1956. A. B. F. Duncan, in "Chemical Applications of Spectroscopy" (W. West, ed.), Vol. I X , Chapter III. Wiley (Interscience), New Y o r k , 1956.
*Spectrum number given in parentheses.
4
REFERENCES
4.
L. J. Bellamy, " T h e Infrared Spectra o f Complex Molecules." Wiley, New Y o r k , 1958.
5.
C. N. R. Rao, "Chemical Applications o f Infrared Spectroscopy." Academic Press, New Y o r k , 1964. N. B. C o l t h u p , L . H. Daly, and S. E. Wiberley, " I n t r o d u c t i o n t o Infrared and Raman Spectros c o p y . " Academic Press, New Y o r k , 1964. L. J. Bellamy, "Advances in Infrared Group Frequencies." Methuen, L o n d o n , 1968. R. S. Haiford J . Chem. Phys. 14, 8 ( 1 9 4 6 ) . W. Vedder and D. F. Horning, in "Advances in Spectroscopy" (H. W. T h o m p s o n , ed.), V o l . I I , p. 189. Wiley (Interscience), New Y o r k , 1961. H. Jones, " T h e o r y o f Brillouin Zones and Electronic States in Crystals." N o r t h - H o l l a n d Pubi., Amsterdam, 1962. S. S. M i t r a , Solid State Phys. 13, 1-80 (1962). Born and Huang, " D y n a m i c a l T h e o r y o f Crystal Lattices." O x f o r d Univ. Press, L o n d o n and New Y o r k , 1966.
6. 7. .8 9. 10. 11. 12. 13.
L. M. Falicov, " G r o u p Theory and its Physical A p p l i c a t i o n s . " Univ. o f Chicago Press, Chicago, 1966.
14.
G. R. Harrison, R. C. L o r d , and J. R. L o r f b o u r o w , "Practical Spectroscopy." Prentice-Hall, Englewood Cliffs, New Jersey, 1948. W. Brugel, " I n f r a r e d Spectroscopy." Methuen, L o n d o n , 1962.
15. 16. 17.
W. J. Potts, "Chemical Infrared Spectroscopy." Wiley, New Y o r k , 1963. K. E. Lawson, " I n f r a r e d A b s o r p t i o n o f Inorganic Substances." Van Nostrand-Reinhold, Princeton, New Jersey, 1961.
18.
G. Herzberg, "Molecular Spectra and Molecular S t r u c t u r e , " Princeton, New Jersey, 1940.
19.
E. B. Wilson, J. C. Decius, and P. C. Cross, "Molecular V i b r a t i o n s . " McGraw-Hill, New Y o r k , 1955.
20.
J. Lecomte, in " H a n d b u c h der Physik " (S. Flügge, ed.), V o l . 2 6 , p. 244. Springer-Verlag, Berlin and New Y o r k , 1958.
21. 22.
E. P. Wigner, " G r o u p T h e o r y . " Academic Press, New Y o r k , 1959. K. N a k a m o t o , " I n f r a r e d Spectra o f Inorganic and Coordination C o m p o u n d s . " Wiley, New Y o r k , 1963.
5
Part I. Van
Nostrand-Reinhold,
Fig. 1. Spectrum A : ( P b f N C ^ ^ . Spectrum D: NaNC>3. A and D are scanned as split mulls between BaF 2 (3800-1333 cm 1 ) and AgCI (1333-400 cm - 1 ) plates. Spectrum B: P b ( N 0 3 ) 2 scanned as split mull between NaCI plates. Spectrum C: Nujol portion of Β 2 hours after preparation, having been in contact with NaCI plates.
SPECTRA
OXIDES BORON
16
BORIC ACID
17
BO3
18· 22
B407 = ALUMINUM
23
AIH 4 "
24- 25
AI02" CARBON
27- 32
CN"
35
Fe ( CN )g -
36
Fe(CN) 5 NO
37--42
FelCNlgi
44.-45
OCN"
46 -51
SCN"
52
CN2 =
53- 55
HCO3-
56- 74
C0 3 =
75
cs 3 =
S with Sub Mo»
--
W-M Sp. Sub Max of Ρ
W(Q.lor2)
SILICON Si0 4 = NITROGEN
2600
2400
2200
2000
SPECTRA 149-152
N0¿ CO(N02)6Î
W,Sp.(Oor I)
NO3Ce(N0j) = Ce(
NO3) =
PHOSPHORUS 204-210
211-212 214-223
224-225 226-232 234-259 260-277
28 0
MS(WSubMox)
H2P0 I
W ^Oor I )
S (of S/MDb)
WtoM
S(lor2) WM
W,SpJ4_
HPD 3 -
PO3-
W.Db
Mult. WtoM Bd
H2PO4
HPO4Ï
S (of Db.)
M(of Mult.)
WtoM
P04=
S(of Mult.)
P2071
PO3S =
WtoM ( o f Db) MtoS S
P03F =
W(of Mult.)
M (of Db.)
S(of Mult.)
M.Sp
W, Bd
PO2F2-
I
I
3400
SPECTRA
HSO4~ -
418-421
S203=
422-423
429
2800
2600
2400
COMPLEX SULFUR
414-417
424-428
3200
-Bd-
s2o5= SO3*
S2O6'
430
S207-
431-500
S0 4 =
501-503
S208"
504-505
S03F-
517-520
SeOj=
522-530
Se0 4 =
540-541
Cr204 =
542-549
Cr207-
COMPLEX
SELENIUM S(S.Max. 700-850)
MSiof Db)
MS(of Db)
S(of S.Mox. 810 "850)
CHROMIUM
550-560
Cr0 4 -
562-575
M0O4·
578-590
W04= WS4
596-597
PW, 2 0 4 0 =
I
3400
SPECTRA
W(of Db.jof Sp) W.Sp(Oorl)
S(of Mult. W to S S.Max. 740-970) W,Sp(Oor I )
I
3200
1
3000
COMPLEX HALOGEN
w(lt031
HF2-
6 4 2 · - 648 BF 4 649 - 6 5 1
AIF65
652
Go FÇ =
635 - 6 6 4
SiF6 =
665 - 6 6 7
Ge Fe*
668 - 6 7 2
Sn F 3 "
673 - 6 8 0
SnF6=
681 - 6 8 4
PFE"
685
AsFg
687 - 6 8 8
( I or 2) ( I or Mult.)
SbF6-
689 - 6 9 5
TiF6--
701 - 7 0 2
FeF6ï
706 - 7 0 9
ZRF 6 =
767 - 7 6 8
W W(Oorl)
W( I to 4 270-500)
S ( I to 3)
=
594-
641 S i 683
W,S£(Oorl) S(of Mult. W to S 800-980)
FECL 5 =
769 - 7 7 9
CuCl 4 =
771
MoCl6 =
772 - 7 7 4
PDCL4-
775
PdCl 6 =
777 - 7 7 8
PtCl4 =
I
3400
S( I or Mult.)
i
S
I 3200
I 3000
I 2800
I 2600
1 2400
I 2200
I 2000
I 1900
I 1800
Fig. 2.
I 1700
I 1600
1 1500
I
I
1400
1300
I 1200
I 1100
1000
I
I
900
800
Characteristic frequencies and band intensities.
7
1 700
I
I
I
600
500
400
1— 300
SPECTRA
cio2-
779 780-78
3
784-79
4
854-86
7
CIO4"
818-828 68 8
nvSp
ClOj-
(lor 2) S(wif h Olo4 WI0S)
BrOj -
10,-
s( iw t h otoe wtos)
IO4-
68 9
320 0
28 6 28 8 289-29
Sdo r Mult.) S£ . ( I to 4 )
300 0
280 0
260 0
240 0
220 0
200 0
J
L
Mult. (N o App Cor.)
As0 23
AsOj*
295-29
7
HA1O4*
298-30
3
29 4
At2 0 r 1 A1O4Ï
30 4
SbOj"
305
VO5-
307-31 1
VO4·
< I or 2 ) S(Bd )
240 0
220 0
SPECTRA 1 0 0 - I II
T1O5
112-12 1
ZrO j
122 - 129
SnO;
8 2 -8 8
U 2 07 *
3
340 0
S,B d or Mult. SjSp
320 0
300 0
280 0
260 0
δ OH 9 5 0 - 1000 ; ã OH 340 0 δ OH 1100 -1150 ; yOH 320 0
SPECTRA 379 - 38 2
Sn(OH)g
38 3 -38 4
Sb(OH)¿
8 7 1 - 78 7
Mn04=
78 8 - 8
M.Mult.
K . S.B d
B d oW f SpD b
S.B d
0 Fe 2O4'
S.B d
SPECTRA SULFIDE S
395
AS2 S 2
39 6
AS2S 5
39 7
SbzS j
39 8
Bi
_S_ M S W
39 9
TeS 2 nZ S
405 40 6
MoS2 Ag2S
..
S
ed S W S2
w
411
HgS
S
320 0
300 0
280 0
260 0
240 0
220 0
200 0
Fig. 3.
Characteristic frequencies and band intensities.
8
WW
WW
W W
.
S M
407 410
340 0
M MW §
_s_
s
M
MS W
2S 3
40 3
W M W W
M
W
S M
W
M W.S p
CM"1 150 0
31 6
L i2 0
31 7
MgO
31 8
CaO
31 9
AI2O3
32 0
ln2 0 3
32 2
Si0 2
32 5
Ge0 2
130 0
120 0
110 0
100 0
90 0
80 0
70 0
S
Sh
Sn O
32 8
Sb 20 3
32 9
Sb 20 5
33 0
Te0 2
33 1
I2 0
33 2
T i 02
33 3
v204 v205
33 7
MnO
W
S
M
M_$
M
W
S
MS
.W SpW.S
35 4
CdO H f 02
35 7
WO3
35 8
HgO
W
W
W
W
W W
W
W
S
M
M
W
S_
W
W
S
S.
W
W
W
W.S
p
W
£
W.S
W .
p
W W
W
W
W,S W,S
h
S
Sh
Sh
_B d _Pilf_us e
S
Sh
Sh S
W
S
W
W
W
W
MM
Sh
W
W
M M
Sh
W
W
i
WMS
p
W W
W S
p
Sp Sp _S _
M
MSp
W W
W W
S
05
35 5
W
S
_S
W
W W
W
M
_M_
S.
Y2O3
W
W W
p
_S_
Zn O
Ag20
W
MS
2 0 3
MO0 3
W
M
Ni
35 2
W W
M MS
_S_
Co 30 4
35 3
M S
S_ I
34 2
Mo02
W
MS
34 3
Nb
M_S
_S _
Co O
W
W
M
W
W
W
S
WS W
M S
.
S
M
S
w
M
.
M S
M
W
W
M W W
Sh W
Ce0
36 0
Sm 203
36 1
Dy
36 2
Ho203
36 3
E r2 0 3
36 4
Yb
36 5
Th02
36 6
U0 2
2
W
W
203
S M
M
M
M
03
§
S
W
W
p
M
W W
W
W
M
M
W
36 7
U3O8 ( O r t h o r h o m b i c)
36 8
U308
36 9
Sr0 2
37 0
Zn0
Sh
(Hexagonal )
Sh
S
S
Sh S
.W S W
W p
W
W
* W W
S
W
W W
S
W S S
.W S W
W
S
S
W
W
W
W
W
W S
W
S
W
M W .Sp W W
2
150 0
140 0
130 0
J
1200
I
1100
L
1000
80 0
90 0
70 0
CM"1 Fig. 4.
Correlation chart f o r metal oxides.
9
600
50 0
40 0
30 0
p
W W
S S
W .S W
W
S
Sh
W W
S
M
W W
W
M M M
w
W
W
Sh Sh
S $ h S
M
M
W
p
w
W
Sh M.
WS
M W
S
35 9
2
MS
W
34 1
34 9
W
S
S S
S.
2
S
.
Fe 304
35 1
MS
MS S
Fe 203
Cu20
0
S
S M
33 9
34 7
MS
M
34 0
CuO
100
W
M
MS
S
34 6
M
S
M n 02
34 5
20 0
M
W
34 4
30 0
M
W W
5
C r2 0 3
S
40 0
M
Pb 30 4
33 6
50 0
M
32 7
33 5
60 0
W
32 6
33 8
140 0
20 0
100
p
Tin
Zirconium
Titanium
Silicon
Carbon
Aluminum
Boron
Element
Zr03
Ti03
carbonate
co.2-
zirconate
(IV)
(IV)
122-129
112-121
100-111
89-93
titanate
76-86
orthosilicate
75
56-74
53-55
sil icide
thiocarbonate
bicarbonate
HC03""
52
46-51
thiocyanate cyanamide
SCN"
44-45
cyanate
CN22-
OCN~
37-42
36
ferrocyanide
nitroferricyanide
"
Fe ( C N ) 5 NO 2 4
35
ferricyanide
Fe ( C N ) e
Fe(CN)6
26 27-33
carbide
24-25
cyanide
A102"
23
18-22
1-15
Spectra
CN~
tetrahydroaluminate aluminate
tetraborate
boride
Ion
AIH4"
Formula bd
stg,
correlation -395
(SD) stg
420-490 -1935 s t g ,
(OD) -1300,
-1215,
-640,
by
-630
13-33
4 1 0 - 5 0 0 wk separated
5 8 0 - 6 1 0 wk,
-1929 590-630 m
(SM),
cm' 1
stg,
bd,
600-700 s t g
bd,
700-770 ( o w k ) , 2 3 0 - 2 4 0 wk
500-700 s t g
500-600 s t g ,
300-450
stg
8 0 0 - 8 9 0 wk-m.
300-500 stg
(SMAX),
(SMAX)
(OD),
2 0 0 - 4 0 0 bd
470-540
- 5 1 8 wk
360-450,
(SMAX),
-910 stg, 6 0 - 1 1 0 bd 860-1175 s t g
-931
1 3 2 0 - 1 5 3 0 s t g ( O D ) , 1 0 4 0 - 1 1 0 0 wk 6 7 0 - 7 4 5 (owk or WD)
2 0 0 0 - 3 3 0 0 bd (SMAX), 1 8 4 0 - 1 9 3 0 wk b d , 1 6 0 0 - 1 7 0 0 s t g 9 4 0 - 1 0 0 0 m b d , 8 3 0 - 8 4 0 m, 6 9 0 - 7 1 0 m, 6 4 0 - 6 7 0 wk
-2000 s t g ,
2040-2160 s t g ,
2180-2250 s t g ,
2020-2130 s t g
2130-2170 wk-m(m),
- 2 1 4 0 and
2130-2230 s t g
No
ÎOOOwk,
5 1 5 - 5 6 0 wk, 4 5 0 - 4 8 0 wk,
710 m bd
6 2 0 - 6 7 0 wk
- 1 6 4 5 m,
800-920 m bd, 3 7 0 - 3 8 0 wk
V 1785
1340-1480 s t g (SMAX), 1100-1150 wk-bd ( O D ) , 1050 w k - b d ( O D ) , 9 0 0 - 9 5 0 w, - 8 2 5 wk, 5 2 0 - 5 4 5 5 0 0 - 5 0 5 wk, 4 5 0 - 4 7 0 wk
60-100
Characteristic absorption!
Table 1. Characteristic Frequencies for Inorganic Ions
(SMAX),
Arsenic
Phosphorus
Nitrogen
130-141 142-147 149-152 154-191 197-199
n i t r i de
nitrate
hexanitrocerate (IV)
NO3-
Ce(N0 3 ) e
-2700 wk bd, -2400 wk bd, -1700 bd, -1250 bd, -IIOO bd, -900 bd, 530-560, -450 2750-2900 wk bd, 2150-2500 wk bd, 1600-1900 wk bd, 1200-1410 w-m, 1040-1150 stg (OD), 950-1110 wk-m, 830-920 wk-m, 530-570 m (OM), 390-430 wk (OM) 940-1120 stg (OM), 540-650 m (OD) (A1P04 is an exception, see 240) 1100-1220 stg (OM) , 960-1060 wk-m (OD and 0 sp) , 850-980 m, 705-770 w-m, 545-580 m stg (m 500-600) -1050, -945, -500 1010-1080 stg, 1000-1020 m sp, 900-950 wk bd, 700-770 m, 525-540 m stg ~1315 stg, -1150 stg, -800 stg, -500 stg
-840 stg, 720-740 m, -400 770-850 stg (OM or SMAX)
224-225 226-232 234-259 260-277 280 281-283 284 286-288 289-293 294 296-297 298-303
orthophosphate (mono-basic)
orthophosphate (dibasic)
orthophosphate
pyrophosphate
phosphorothioate phosphorofluoridate
phosphorodifluoridate
H 2 PO 4 -
HP0 4 2 ~
P043
P2O7 4 "
PO3 S3 -
P02F2-
pyroarsenate orthoarsenate dibasic
orthoarsenate
As0 4 3 -
orthoarsenite
As2074HAs042"
As0 2 As0 3 2-
metaarsenite
1200-1350 stg, 1040-1150 m-stg, 650-800 wk-stg (M) , 450-600 w-m (M)
214-223
metaphosphate
P03-
PO3F 2 "
2340-2400 m stg, 1070-1120 stg, 1005-1020 wk sp, 970-1000 m, 570-600 wk m, 450-500 wk (D)
211-212
orthophosphite
HP0 3 2-
750-880 stg (M), -540 m, -400 stg
700-840 stg
450-860 (M with no apparent correlations)
2300-2400 m-stg (SMAX 2200-2430), 1950-1975 (owk), 1140-1220 stg (OD), 1075-1102 wk sp (OD), 10351065 wk sp (OD), 800-825 m-stg, 440-510 wk-m
200-203 204-210
H 2 PO 2 "
No correlation
1465-1550 stg, 1275-1300 stg, 1030-1045 m, 800820 m, 740-750 m
1730-1810 wk sp (SM), 1280-1520 stg (OD or M ) , 10201060 (owk) sp, 800-850 (W-M) sp, 715-770 wk-m* (OD)
3150-3400 wk-m (OD), 2025-2150 stg, 620-660 wk-m (OD or M) 1170-1350 stg (OD), 820-850 wk (OD or M)
No correlation
hypophosphite
phosphide
azide nitrite
N3" N02"
Selenium
Sulfur
Oxygen
Vanadium
Element Antimony
- 1 1 7 5 s t g , 1 0 4 0 - 1 0 9 0 m, 9 7 0 - 9 9 0 s t g , 5 6 0 - 5 7 0 m, 5 1 0 - 5 4 0 m, 4 4 0 - 4 5 0 m
990-1090 stg (OM or SMAX), 615-660 m (o SMAX), 470-525 m (OD) -1240 stg, -995 m-stg, -570 m-stg, -520 m -1325 wk, -1100 stg, -920 m, -700 wk, -550 m
422-423 4 24-428 429 430
pyrosulfite su 1f i te
dithionate pyrosulfate sulfate peroxydisulfate fluorosulfonate
S2052-
S032"
S20e2-
S2O7 2 " S042"
s2oe2-
S03F-
700-770 stg (SMAX 700-850), 430-540 m stg (OD) 410 (OD) 840-910 stg (o wk sh 810-850), 390-450 wk m No correlations 522-530 531-538
selenate
Se03 "
Se042~ telluride
Bands below 400
506-516 517-520
selenite
360-
1260-1300 stg, 1070-1080 m sp, -740 m, -580 m, -480 wk
1260-1310 stg, 1050-1070 m sp, 690-740 m, 580-600 wk m sp, -560 m
1040-1210 stg (OM or SMAX), (960-1030, often 1 or 2 wk sp bands), 570-680 m (OD or M)
6 5 0 - 6 6 0 m,
selenide
2
504-505
501-503
431-499
1 0 8 0 - 1 1 5 0 s t g (M or SMAX), 9 9 0 - 1 0 1 0 s t g , 5 4 0 - 5 7 0 wk ( o m)
418-421
S2032-
640-690 m-s,
3400-2000 bd (MAX near 2900; SMAX 2200-2600), 850-900, 605-620, 565-585, 450-480
414-417
HS0 4 "
Bands below 400
395-411
sulfide hydrogen s u l f a t e (bisulfate) thiosulfate
250
850-1020 stg (M, SMAX), 380-470 bd.
393-394
uranyl halide (F and Cl)
U0 2 X 2
480-530 wk, 240-375 stg bd, 70-150 m bd (bands decrease in frequency in the series Cl to I)
388-390
bismuth oxyhalide (Cl, Br, and I)
BiOX
720 and
-3200 stg bd, -1340 wk, 1075-1150 wk bd, -580, stg, -450, 300-350 bd
383-384
hexahydroantimonate (V)
Sb(OH) e ~
3000-3400 stg bd, 2200-2300 wk bd, 950-1150 stg, 650-800 m bd, 500-550 stg, 250-300 stg
hexahydroxostannate( IV)
379-382
Sn(OH) e 2 -
3750-2000 stg (sp, M, or bd)
372-378
hydroxide
316-368
oxides
0H~
700-900 stg (0 SMAX) Strong bands usually in region below 1300 cm-1 ; as a rule of thumb, frequencies decrease progressing down thru each group in the periodic table of the elements.
307-313
orthovanadate
-700, -635, -560, -490
Characteristic absorptiont
antimonate (V)
304
Spectra
Sb0 3 "
Ion
V043"
Formula
Table 1. (continued)
Halogen
Tungsten
Molybdenum
Chromium
tetrathiotung
WS42" PW120403-
hexafluoroferrate pentafluorozirconate hexafluorozirconate chloride hexachlorostannate pentachloroferratei( III)
FeFe3"
ZrF 5 "
ZrFe2_
Cl~
SnCl 6 2 "
FeCl 5 2 "
hexafluorotitanate(IV)
hexafluorophosphate
PF e "
TiFe2~
hexafluorostannate
SnF e 2 " hexafluoroarsenate
trifluorostannate
SnF 3 ~
hexaf luoroantimonatej(V)
hexafluorogermanate
GeF e 2-
SbFe ~
hexafluorosilicate
SiFe2_
AsF e "
hexafluoroaluminate hexafluorogallate
BF4"
GaF e 3 ~
tetrafluoroborate
HF 2 ~
AlF e 3 ~
fluoride hydrogen fluoride
F~
phosphotungst
tungstate
W042"
molybdate (II)
chromate
Cr042"
M004 2 -
dichromate
-620-720 stg, 515-550 m stg
(See
2050-2122 m bd, -1600 stg bd, 1205-1235 m stg
300-325
440-460 m, 340-380 m, 250-300 s t g ,
766-767
714-753 764-765
stg
-300 270-320 m
450-500 s t g , 440-500 s t g ,
703-704 705-708
280-300 m
460-510 š t g ,
700-702
280-300 540-600 s t g ,
688-694
200-350 (two or more)
650-670 s t g ,
390 m
550-565 m, sp 686-687
-695 s t g ,
680-683 684
540-610 s t g , 820-860 s t g ,
672-679
200-280 (1 or more)
450-490, 340-450
590-620 stg, 320-380 m-stg (OD)
700-760 stg, 460-530 wk-m (o M)
-475 m
550-650 stg, 380-410 sp
170-195 m
1000-1100 (MAX near 1050) stg, bd, (owk 760-780), 510-560 wk sp (0 or M)
668-671
665-667
653-664
652
650-651
642-648
text)
(920-970 owk sh) , 750-900 stg (OM), 270-500 wk (OM with higher intensity band 300-400) 465 1080 n - s t g , 975 m - s t g , 890-922 m, 810-820 s t g , 590-600 wk s p , -390 wk, -340 wk, 260-270 wk
750-835 stg (OM or SMAX 740-970), (370-450 owk s p ) , 308-350 wk, (268-315 owk)
850-930 stg (OM or SMAX 800-980)
880-990 stg (om, often 1 or 2 wk, sp bands 880-920), 720-840 stg, (555-580 o wk s p ) , 340-380 wk
641 (see 682)
598-640
594 596-597
578-590
562-575
550-560
540-541 542-549
chromite
Cr2042Cr 2 0,2-
*Band
(SM)
" - 2 H
2
"
-721
(D)
=
tetrachloropalladate
867-868
iodate periodate
io4-
Mn03
results
from
multiple),
stg
but
Nujol.
(SMAX)
always
sp = s h a r p ,
submaxima.
bd = b r o a d ,
not = with
= strong,
o f t e n weak,
uranatej( VI)
U207 2 -
(owk)=
ferrate(III) c o b a l t ite|( I I I )
Co02"
permanganate
Mn04 "
(SD)
690-830 s t g
-570
doublet,
= often
(
(M)
=
2 7 0 - 2 8 0 wk
m sp
multiple,
3 7 0 - 4 0 0 wk
(OD)
wk.
(OD)
100-110
(OD) ,
(OD o r M)
sp
(OD)
o wk 8 3 0 - 8 4 0 ) ,
doublet,
470-480 m - s t g ,
stg
300-420
2 6 0 - 2 7 0 wk-m
Μ),
wk,
475-525
3 9 0 - 4 5 0 wk-m,
6 0 0 - 6 6 0 wk-m
SMAX), 400-450 m
(OD)
880-900 s t g ,
- 6 6 0 m,
550-610 s t g ,
( ο M or
bd 870-950 s t g
-550 stg, (M)
m,
3 1 0 - 3 3 0 m,
( 0 SMAX or
110-130 m
m-stg
255-275
610-630 m sp,
SMAX),
( 0 SMAX),
800-900 s t g
-635
830-860 s t g ,
(D)
(D o r Μ ) ,
7 4 0 - 8 5 0 s t g (OD o r 350-380 m sp
= sometimes
doublet
881-88 2
880
8 77-879
871-876
870
F e 2 0 4 2-
869
manganite manganate
-
Mn04 2 "
2
828-849 853-866
iodide
8 1 8 - 8 27
bromate
B r O* "
IO3
794-815
1050-1150 s t g
784-794
Perchlorate bromide
C10 4 '
Br"
900-1050 s t g
780-783
160-220
190-220 m - s t g ,
800-850 s t g
stg,
(Μ),
chlorate
detected;
stg
315-325
-360
( s e e 780)
776-777
stg
300-350 s t g
~305
5 3 0 - 5 7 0 wk-m ( H 2 0 ?) , 3 1 0 - 3 2 0 m, 9 5 - 1 0 0 wk, 5 8 - 6 5 wk
CIO3-
tetrachloroplatinate
774
770 771-773
hexachloromolybdate hexachloropaliadate (IV)
768-769
tetrachlorocuprate
Characteristic absorptiont
779
"
0
Spectra
chlorite
2
2
Ion
(continued)
cio2-
PtCl4
PdCle2-
PdCl4
= sometimes
at
4 2
MoCl e 3 ~
C U C 1
Formula
m = medium,
= often);
wk = weak,
t(o
Uranium
Cobalt
I ron
Manganese
Element
Table 1.
Phosphorus
Nitrogen
Titanium
Silicon
Carbon
Aluminum
Element
3
ferricyanide
cyanide
tetrahydroaluminate
Ion
2
-
142-147 149-152 154-191 204-210 211-212
224-225 226-232
a z i de nitrite nitrate hypophosphite orthophosphite
orthophosphate monobasic orthophosphate dibasic
"
N 0 3 "
HP032-
H2P04"
HP042"
N O
2
N3"
100-111
titanate(IV)
75
Ti032""
thiocarbonate
89-93
-
56-74
carbonate
orthosilicate
2
52
cyanamide
Si044"*
C S 3
C03 2 ""
2
46-51
thiocyanate
SCN~
N
44-45
C
37-42
cyanate
-
OCN"
4
36
35
27-33
23
Spectra
d
»v
«h
d
4
C3v
S
C3v
C2v
°3h
D2V
D . «h
°h
T
D3h
°3h
D
C00 ν
C
°h
C4v
°h
T
group
Point
e
(fi u
)
)
7
(f
)
3
( f
511 w,
v 2
1460 vw,
) 1740,
( L G )
V\ ( a1' )
V I
2021 and 2033,
i/7 ( ^ u
i u
O f )
(f
(a 1 ) )
i/2(ç)
O
4
(
4
B
'
4
E
)
Q
(fa
u
)
)
387
764
V
v
3
(
3
^
)
u
)
2
(^V
(e )
807-850,
807-818, v
v
3
3
2041
(e )
( b i)
625
706
1310-1405,
1221-1251
i/4(f2>
920,
i/4(e')
5
4
0
A
N
D
4
5
0
537
,
2410, i / 2 ( a t ) 977, 1 / 3 ^ ) 591, i / 4 ( e ) 1110 ( e ) 1021 and 1006, i / e ( e ) 498 and 471 2315, i / 2 ( a 1 ) 979, i/ 3 (a 1 ) 567, y 4 ( e ) 1085, v e ( e ) 465
v
i/2(aa)
^ ( E * )
3
1050,
v
- 4 0 0 bd
i/3(f2)
645,
i/2(fa
9 3 0
( e ) 1432,
G
2066
414m
st.
Resonance,
i/e(fiu) i n Fermi
585s,
2900, i/ 2 (a 1 ) 988, 1 / 3 ^ ) 862, v 4 ( * i > l (a 1 ) v 5 ( e ) 1230, v e ( e ) 1076, y 7 ( e ) 537, v e ( e ) 394
P
c r y s t a l V l («4 ) and 1083, v s soin. v x (at ) v 5 ( e ) 1027, ^
874,
2 1 0 ,
500,
I/2(TRU)
1320-1365,
1344,
-540 be,
800,
Vi ( a / ) 1 0 1 8 - 1 0 5 0 , 1/4 ( e ' ) 6 9 7 - 7 1 6
Vi {73^ )
Vi
vi
Vl
1/ 2 ( a 2 )
i/2(tru)
solid)
4 8 8 - 5 2 0 , t/ 2 (al¿) 325, 475-520 516, 510, 4 2 0 , 325
1087,
8 6 0 ,
v
1/4(f2>
1945, 653, 4 6 8 , 408 a2 e 2 1 4 5 , 663, 4 2 4 , 4 1 7 , 321 1947, 656, 493, 4 7 2 , 4 0 8 , 123 e 2 1 4 4 , 4 2 2 , 4 1 5 , 164, 100
l U
799,
Vi ( Σ + ) 743, i/ 2 (tr> 470, (i/ 2 o f t e n s p l i t s i n the
IR Vi (a 1 t ) i/4(e ' ) Raman
v
y
2163, b22162, 410
2105,
2173, 2157, 2174, 2157,
)
i/2(e)
(2080-2239)
1790,
Vibrations
V i ( Z * ) 1 2 9 2 . 6 and 2 y 2 ( E + ) 1 2 0 5 . 5 v 2 ( n ) 629.4, ι/3(Σ+) 2169.6
i/6 (
IR a l ^ Raman a1 ^
y
^CsN
Vi
Fundamental Vibrations of Inorganic Ions
ferrocyanide
Fe ( C N ) e
Fe(CN)e NO2" n i t r o f e r r i c y a n i d e
Fe(CN)e
CN~
A I H 4 "
Formula
Table 2.
(17)
(16)
(15)
(15)
(14)
(13)
(12)
(11)
(10)
( 9 )
(8)
(7)
(6)
(5)
( 3 )
(4)
(3)
(2)
(1)
Reft
Fluorine
Tungsten
Molybden|um
Chromium
Selenium
Sulfur
Vanadium
Arsenic
Element
0.
D.
653-664
665-667 672-679
hexafluorosilicate
hexafluorogermanate hexafluorostannate
GeFe2~
SnFe 2 "
SiFe2"
"3d
d
8 7
5 , v4(f2)
737, t/4(e)
1105, t/4(f2)
961, i/4(e)
432
374
353, i/3(f2)
179, i/3(f2)
320, y 3 ( f 2 )
220, i/3(f2)
348, iy3(f2)
405
365
368
984(B ), t/4(f2) 1016(B10)
11
v4
3 , v4(f2) 440-465,
8 3
895, i/4(f2)
884, v 4 ( f 2 )
vx ( A l g ) l>4(a2u
) 318 5 7 2 , i/ 3 ( a 2 u 555, i/2(Ee> Pn) E u ) 2 5 6 , i / 5 ( A 2 g o r E „ ) 247 o r
IR v3^i u ) 600, i/4(fiu) Raman Vl (A x ) 6 2 7 , i / 2 ( E ) 4 5 4 , i/5 ( f 2
460,
(27)
(30)
(30)
(29)
524ÍB ) ( 2 8 ) 529(B10 )
11
(18)
(18)
(18)
(26)
(18)
(25)
(18) »
(24) 3
9
(23)
(22)
(22)
(21)
496
1123,
480
IR i/3(flu) 720> V4(iin) 470 Raman V l (A l g ) 656, i/2(Eç) 510, ve (*2g> 402, [ve (f2 u ) 260 from combination tone]
(e) 1/, (a, ) 7 6 9 , i / 2 ( e )
tetrafluoroborate
BF4~
Va
Г.
vx (a T ) 9 4 0 , v 2 ( e )
vx (a a ) 8 4 7 , t / 2 ( e )
642-648
tetrathiotungstate
WS42"
450, f 3 ( f 2 )
(a, ) 8 3 3 , ty2(e) 3 3 5 , v 3 ( f 2 )
|/ г (a, ) 4 8 7 ,
tungstate
W042"
5 , vA{f2)
402
1038,
(а г , а 2 , Ц , b 2 ) 9 2 4 - 9 6 6 , (а г ) 9 0 0 - 9 1 0 , ( Ц ) 8 8 0 - 8 9 2 , ( Ц ) 7 6 0 - 7 8 0 , (a a ) 5 5 0 - 5 7 0 , ( а т , а 2 , Ц , b 2 ) 3 6 5 , ( ^ ) 220
Vl
rd
rd
(a 1 ) 9 8 3 , v 2 ( e )
vx (% ) 8 0 7 , v 2 ( a l ) 4 3 2 , i / 3 ( e )
Vl
8 2
813, i/4(fa>
) 6 6 9 , 1/ 3 (а г ) 4 4 6 , t / 4 ( e ) 335
345, t/3(f2)
342, v 3 ( f 2 )
^300
1^(24) 1010, 1/2(аг) 633, i/3(e)
i/a (a a ) 9 2 8 , v2(e)
578-590
562-575
rd
°2v
(а г ) 8 7 0 , v 2 ( e )
1 ^ ( 2 4 ) 9 9 5 , v2(*\ v5 ( e ) 5 4 1 , i / e ( e )
Vl
Vi (% ) 8 1 3 , i / 2 ( e )
900-920, ^850, ~450,
Vl
(20)
(18)
(a T ) 9 6 0 , i / 2 ( a i ) 6 1 1 , 1/ 3 (а г ) 4 8 0 , i / 4 ( e ) vb ( e ) 5 1 5 , vs ( e ) 3 6 7
(ax ) 935, y 2 (e) 420, v 3 ( f 2 ) Ю 8 0 , t/4(f2) 550
(19)
Vl
RefJ
(a^) 1212, 909, 477, (a2') 1165, 940, 553 (e M ) 999, 573, 432, (e') 1124, 707, 615, 201 Divalent salts have lesser symmetry
Raman
Vibrations
rd
molybdatej(III)
550-560
chromate
Cr042"
Mo042"
542-549
dichromate
522-530
selenate
СггО, 2 "
Se042"
517-520
selenite
3v
3v
~3v
sulfate
S 0 4 2-
aeu 3
u
424-428
sulfite
S03 431-499
u
418-421
"3d
thiosulfate
307-313
298-303
orthoarsenate orthovanadate
294
pyroarsenate
"3v
"3h
Point Group
S0O3 2 "
V043"
As043"
A
phosphorothioate
PO3S 3 '
Ае2СЦ
260-277
pyrophosphate
P2CV
280
234-259
Spectra
orthophosphate
Ion
PO4 3
Formula
Table 2. (continued)
818-827 853-866 867-868
bromate iodate periodate
I O 3 "
I O 4 "
permanganate
871-876
2. 3. 4. 5. 6. 7. 8. 9 .
d
T
d
Td
C3v
C3v
Td
C3v
C2v
D4h
(a2u)
v
x
(^ )
v x
(a1 )
1/3 - 8 4 0
v
Vl
840, V 2 ( e )
791 , i / 2 ( e )
779, 1^2(24)
935, t / 2 ( e )
( f
2
)
960,
i/4(e)
304
1/3(0)
325
330
356
i/4(*2)
493
95)
i>4(f2)
i/4(f2)
y4(e)
i;4(e)
i > 3 ( f 2 ) ~900,
853,
826,
836,
) 1050-1170, 1/3(e)
3
i/3(f2)
v
i/3(e)
111 and 164
840
i;4(B2 i/ 3 (l>i )
340-350,
256,
390,
421,
460,
617,
910, l / 2 ( a 1 )
120,
i/s(f2g)
164,
400,
i/2(Blg)
292,
(Lattice
790, I / 2 ( a i )
335,
(a1 )
)
(a1 )
(at )
(Alg)
334
806, i/ 2 (a 1 )
x
(eu)
317, i/2(Eg)
170,
630
)
^387
or E
290-300,
i/4(A2u
i/3(fa)
158
500,
275-281
(F2g)
or E u )
or E g )
130-150,
229,
i/2(e)
ui (a x )
x
¾
Raman v
í
vs ( A 2 g
311, l / 2 ( E g )
V1 ( a 1 ) 2 7 0 - 3 0 0 , , , 4 ( f 2 ) 110-130
O h Raman Vi ( A l g )
°4h
T
6 0 8 - 613,
V\ ( Α 1 ε ) 5 7 6 - 581, i / 3 ( a 2 u 230, r % ( A 2 g ) o r E g )
νΎ ( A l g )
I R 1/3(^1 u ) 830, i / 4 ( f i u ) 550 Raman Vx ( Α χ κ ) 735, i > 2 ( E g > 563, v 5 ( f 2 g ) 4 6 2 , [ l / e ( * 2 u ) 317' f r o m ^ c o m b i n a t i o n t o n e ]
O^ Raman Vi ( A l g )
°3d
D3d
°h
K. Nakamoto, " I n f r a r e d Spectra of Inorganic and Coordination C o m p o u n d s , " p. 73. Wiley, New Y o r k , 1963. I. Nakagawa and T . Shimanouchi, Spectrochim. Acta 18, 101 (1962). R. K. Khanna, C. W. Brown, and L. H. Jones, fnorg. Chem. 8, 2195 (1969). A . G. Maki and J. C. Decius,y. Chem. Phys. 31, 772 (1959). L. H. Jones, J. Chem. Phys. 25, 1069 (1956). · A. Tramer, C. R. Acad. Sci. 249, 2755 (1959). S. Bhagavantan and T . Venkatarayuda, Proc. Indian Acad. Sci., Sect. A 9, 224 (1939). A. Mueller and M. Stockburger, Z. Naturforsch. Â 20, 1242 (1965); A. Mueller and Β. Krebs, Spectrochim. Acta 22, 1535 (1966); Β. Krebs, A . Mueller, and G. G a t t o w , Z . Â 20, 1017 (1956); Β. Krebs and A . Mueller, Ζ. Naturforsch. A 20, 1664 (1965).
7. L. A. Woodward and H. L. Roberts, Trans. Faraday Soc. 52, 1458 (1956).
t Key t o references:
M 1 1 O 4 "
Mn04 ~
2
870
783-793
chlorate
C I O 4 "
manganate
779-782
chlorate
C I O 3 "
Br03~
778
chlorite
C102"
776-777
tetrachloroplatinate
PtCl42"
PdCle
774
771-773
tetrachloropaliadate
PdCl42~ hexachloropalladate(IV)
768-769
tetrachlorocuprate
CuCl42~
2~
764-765
hexachlorostannate
2~
SnCle
705-708
a~
ZrFe
hexaf1uorozirconate
688-694
hexafluorotitanate
2~
TiFe
(III)
680-683
hexafluorophosphate
PFg
Naturforch.
(42)
(41)
(18)
(40)
(39)
(38)
(37)
(36)
(35)
(34)
(33)
(32)
(31)
(30)
(30)
(29)
M. Tsuboi, J. Amer. Chem. Soc. 79, 1351 (1957).
J. A. A . Ketel aar, A eta Cry st. 7 , 6 9 1 (1954); H. Ratajczak and Z. M i e l k e , / . Mol. Struct. E. E. Berry and C. B. Baddiel, Spectrochim. Acta, Part A 23, 2089 (1967).
K. Nakamoto, " I n f r a r e d Spectra o f Inorganic and Coordination C o m p o u n d s , " p. 107. Wiley, New Y o r k , 1963.
15.
16. 17.
18.
325, 8 (1963).
H. Gerdingand K. Eriks, Ree. Trav. Chim. Pays Bas 69, 659 (1950); H. Siebert, Z. Anorg. AHg. Chem . 277, 225 (1957). J. C. Evans and J. H. Bernstein, Can. J. Chem. 33, 1270 (1955); A . Simon and K. Waldmann, Ζ. Phys. Chem. (Leipzig) 204, 235 (1955).
H. Stammerich, D. Bassi, O. Sala, and Η. Sieben, Spectrochim. Acta 13, 192 (1958). Α . Muller and Β. Krebs, Spectrochim. Acta, Part A 23, 2809 (1967). Κ. Nakamoto, " I n f r a r e d Spectra of Inorganic and Coordination C o m p o u n d s , " p. 106. Wiley, New Y o r k , 1 963. H. F. Shurvell, Can. Spectrosc. 12, 156 (1967). P. A. W. Dean and D. F. Evans, J. Chem. Soc., A, p. 698 (1967). L. A. Woodward and L. E. A n d e r s o n , ; . Chem. Soc., London p. 1284 (1957). J. S. Avery, C. D. Burbridge, and D. M. L. Goodgame, Spectrochim. Acta, Part A 24, 1721 (1968). J. Hiraisha and T . Shimmanouchi, Spectrochim. Acta 22, 1483 (1966). L. A. Woodward and J. A . Creighton, Spectrochim. Acta 17, 594 (1961 ). H. Stammerich and F. F o r n e r i s , S p e c t r o c h i m . Acta 16, 363 (1960). J. P. Mathieu, C. R. Acad. Sci. 234, 2272 (1952). J. L. Hollenberg and D. A . Dows, Spectrochim. Acta 16, 1155 (1960). H. Colm, / . Chem. Soc., London p. 4282 (1952). M. Rolla, Gazz. Chim. Itai. 69, 779 (1939); C. Rocchiccioli, C. R. Acad. Sci. 249, 236 (1959). Κ. Nakamoto, " I n f r a r e d Spectra of Inorganic and Coordination C o m p o u n d s , " p. 87. Wiley, New Y o r k , 1963.
C. Rocchiccioli, C. R.Acad. Sci. 256, 1707 (1963). Acta, Part A 24, 125 (1967). P. J. Η end ra, Spectrochim.
26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.
41. 42.
25. K. Nakamoto, " I n f r a r e d Spectra o f Inorganic and Coordination C o m p o u n d s , " p. 92. Wiley, New Y o r k , 1963.
23. 24.
19. A . Hazel and S. D. Ross, Spectrochim. Acta, Part A 23, 1583 (1967); 24, 1 31 (1968). 20. E. Steger and K. Martin, Z. Anorg. AH. Chem. 308, 330,(1960). 21. R. Hubin and P. Tarte, Spectrochim. Acta, Part A 23, 1815 (1967); W. Bues, Κ. Buhler, and P. K u h n l e , Z . Anorg. Al/g. Chem. 22. H. Siebert, Z. Anorg. AHg. Chem. 215, 225 (1954).
1 , 3 9 7 (1967-1968).
R. E. Weston and T . F. B r o d a s k y , ; . Chem. Phys. 27, 683 (1957).
K. Nakamoto, " I n f r a r e d Spectra o f Inorganic and Coordination C o m p o u n d s , " p. 92. Wiley, New Y o r k , 1963.
14.
2, 264 (1956).
13.
Chem.
D. Fortum and j . O. E d w a r d s , ; . Inorg. Nucí.
J. T . Last, Phys. Rev. 105, 1740 (1957); A. F. Yatsenko, !zv. Akad. Nauk SSSR, Ser. Fiz. 22, 1456 (1958). K. Nakamoto, " I n f r a r e d Spectra of Inorganic and Coordination C o m p o u n d s , " p. 77. Wiley, New Y o r k , 1963.
10.
11. 12.