INFRARED SPECTRA OF INORGANIC COMPOUNDS

INFRARED SPECTRA OF INORGANIC COMPOUNDS

INFRARED SPECTRA OF INORGANIC C O M P O U N D S INTRODUCTIO N The utility of infrared spectroscopy to the organic chemist is perhaps unsurpassed wi...

6MB Sizes 663 Downloads 3113 Views

INFRARED SPECTRA OF INORGANIC C O M P O U N D S

INTRODUCTIO

N

The utility of infrared spectroscopy to the organic chemist is perhaps unsurpassed within the framework of most modern laboratories. Experimental, theoretical, and empirical correlations between functional organic groups and the infrared spectrum have been thoroughly studied and reported. The vast body of literature devoted to the results of these studies provides a rather solid base for use by the analytical spectroscopist. Through the efforts of several authors this accumulated literature has been summarized and reviewed in several excellent books (7-7). The application of infrared spectroscopy to the identification of inorganic compounds has been somewhat less successful. Many simple inorganic compounds such as the borides, silicides, nitrides, and oxides, do not absorb radiation in the region between 4000 and 600 cm-1 which, for many years, was the extent of the infrared region covered by most commercial spectrometers. Only within the last 10 years have instruments become available which include the region below 600 cm"1, and it has been even more recent that instrumentation has been developed to cover the far-infrared region between 200 and 10 cm-1. These are the regions in which most inorganic compounds absorb infrared radiation. The region 4000-600 cm"1 has proved to be very useful for the identification of polyatomic anions of the type C032", S042", N03~, etc. When standard spectra are available, a compound such as KN0 3 can easily be distinguished from NaN0 3 or Ca(N0 3 ) 2 , but in the absence of standard spectra, specific identification of a cation—anion pair is usually not possible by infrared spectroscopy. The differences between the spectra of KN0 3 and Ca(N0 3 ) 2 , for example, are largely due to two effects: (1) the extent to which the cation perturbs the internal vibrations of the anion and (2) changes in the crystal structure of the system. The latter is more pronounced in the far-infrared region than in the region 4000-600 cm"1. These effects are usually not predictable. In obtaining infrared spectra of inorganic solids, an experimental complication arises from possible chemical reaction (cation exchange) between the inorganic compound and the infrared window material or support medium. The literature contains many examples of standard spectra of inorganic compounds in which this type of chemical reaction has obviously taken place. Care has been exercised in the preparation of samples here so as to avoid this difficulty. In the present compendium, spectra of inorganic compounds in the solid phase are presented. The majority of these compounds are (powdered) crystalline solids in which the crystallographic unit cell may contain several polyatomic ions or molecules. The internal modes of vibration of the polyatomic group generally occur in the region 4000-400 cm"1; many of these have been extensively documented in the literature. Other optical

1

INFRARED SPECTRA

modes called lattice modes of vibration result from the motion of one polyatomic group relative to another within the unit cell. Lattice modes generally occur in the region 400-10 cm -1 and are characteristic of a specific crystal geometry. They can be used as fingerprints for an inorganic compound in much the same way as the internal modes of vibration of organic compounds are used in the region 4000-400 cm"1. The purpose of this work is to present reference spectra and empirical spectra—structure correlations. We do not intend to cover the theoretical aspects of the solid state. For this the reader is referred to several excellent review articles and books (8~13).

EX P ERIMEN T A

L

The mid-infrared spectra were scanned using a Beckman Model IR-9 and two HerscherDow prism grating spectrometers in the region 3800-400 cm -1 and a Perkin-Elmer Model 225 in the region 3800-200 cm"1. Far-infrared spectra were scanned on a Beckman Model IR-11 in the region 600-45 cm"1. Extensive descriptive material about the instrumentation is given in several books (14~16). The samples were prepared as mulls, using as mulling agents Fluorolube for the region between 3800-1333 cm"1 and Nujol for the region between 1333-400 and 600-45 cm"1, the technique hereinafter being referred to as a "split mull." In the mulling technique, finely ground particles are suspended in the mulling agent and the slurry is supported between two infrared transmitting windows. Samples were not subjected to prolonged grinding, but were treated in a routine manner, the grinding time seldom exceeding 10 minutes. Mechanical grinding devices were not employed. BaF2 windows were used in the region 3800-1333 cm"1, AgCI in the region 1333-400 cm"1, and polyethylene in the region 600-45 cm"1. These window materials are inert to reaction with respect to most inorganic compounds. Standard window materials such as potassium bromide, sodium chloride, cesium bromide, and cesium iodide were found to be highly prone to ion exchange with a number of inorganic compounds, and for this reason their use was avoided. To illustrate the extent of ion exchange effects, pure samples of Pb(N0 3 ) 2 (verified by X-ray diffraction) were prepared as split mulls on sodium chloride, potassium bromide, cesium iodide, barium fluoride, and silver chloride plates. Spectra A and D in Fig. 1 are of pure Pb(N0 3 ) 2 and NaN0 3 , respectively, scanned as split mulls between BaF2 (3800-1333 cm"1) and AgCI (1333-400 cm"1) plates. Spectrum Β is a freshly prepared Pb(N0 3 ) 2 split mull between NaCI plates, and spectrum C is the Nujol portion of that mull 2 hours after preparation, having been in intimate contact with the NaCI plates. The out-of-plane N03~ deformation of NaN0 3 which occurs at 838 cm -1 is clearly present in spectra Β and C. The band intensity increases with contact time (spectra Β to C), indicating the continuing formation of NaN0 3 by ion exchange between Pb(N0 3 ) 2 and the NaCI plate. Similar reactions were observed between Pb(N0 3 ) 2 and KBr and Csl. The potassium bromide pellet technique for preparing samples was strictly avoided. Anomalies in the infrared spectra of inorganic compounds prepared by this technique have been extensively studied. In addition to a possible cation exchange reaction with KBr, the material under investigation may also undergo changes in crystalline form as a result of the high mechanical pressures (10,000 psi) used in the pelleting process. Extreme caution should be exercised when applying the potassium bromide pellet technique to obtain infrared spectra of inorganic compounds. ARRAN G EMEN

T OF SPECTR A

The,spectra are arranged to bring together compounds containing similar anions, in order to facilitate recognition of characteristic group frequencies. The arrangement is

2

SPECTRA-STRUCTURE CORRELATIONS

based on the position in the periodic table of the central atom in the anion. Where there is no central atom (e.g., CN~) the anions are arranged by lowest group; thus CN" falls under C. In grouping the anions by their central atom, these have been arranged in order of, first, increasing group number, then increasing atomic number within a group: B, Al, C, Si, N, P, O, S, F, CI, Br. In subarrangement under a given central atom, for example, N, the anions are given in order of increasing number of Ν atoms in the anion: N3~, N24~, N3~, etc. The polyatomic anions are arranged in orders of decreasing ratio of Ν atoms to other atoms in the anion, such as N 2 0 2 2 ~, N0 2 , N0 3 . Under a specific anion, individual compounds appear in the order of increasing atomic number of the cation within a given group. For the nitrates (N0 3 ") the order is NH 4 N0 3 ; (Group I) NaN0 3 , K N 0 3 · · · CsN0 3 ; (Group II) Ca(N0 3 ) 2 · · · Ba(N0 3 ) 2 ; (Group III) AI(N0 3 ) 2 ; (Group IV) Ga(N0 3 ) 3 ; etc. Compounds containing the ammonium ion have been placed at the beginning of each such grouping. Two indices are provided. The first of these contains compounds as they appear in the book in numerical sequence. The second index is arranged alphabetically by anion.

SPECTRA-STRUCTURE CORRELATIONS Characteristic infrared frequencies and band intensities of the different anions are summarized in Table 1 and Figs. 2 and 3. Frequency assignments for the fundamental vibrations of complex anions taken from the literature are summarized in Table 2. The assignment of the anion fundamental vibration is based on point group symmetry; the anion usually belongs to the same point group in the solid phase, regardless of the space group of the unit cell. In Table 2, the notation and numbering system of the fundamental vibrations are taken from Herzberg (7). For a detailed discussion of group theory the reader is referred to any one of several excellent texts (18-21). A, correlation chart for metal oxides is given in Fig. 4. The following paragraphs are devoted to a general résumé of the more common or important structural information contained in Table 1 and a brief discussion of lattice vibrations. For detailed information on individual groups reference should be made to the publications listed in the bibliography. Strong bands associated with OH stretching vibrations of water and hydroxyl groups occur between 3200 and 3700 cm -1 . The hydroxyl group is characterized by a strong sharp absorption band in the region 3650-3700 cm-1. Water of hydration usually exhibits one strong sharp band near 3600 cm -1 and one or more strong sharp bands near 3400 cm-1. Water of hydration is easily distinguished from hydroxyl groups by the presence of the H - O - H bending motion which produces a medium band (often multicomponent) in the region 1600-1650 cm"1. Free water has a strong broad absorption band centered in the region 3200-3400 cm"1; the H - O - H bending motion generally occurs near 1650 cm"1. The OHH stretching vibration of HAs0 4 , HC03~, HS04", HP042~, etc., characteristically exhibits a strong to medium-strong broad mültipeaked band often extending from 2000 to 3400 cm"1. This type of absorption is a distinguishing feature of the very acidic protons of the salts and corresponding acids. The NH 4 + group is characterized by a strong broad absorption centered near 3250 cm -1 resulting from NH 4 + antisymmetric stretching vibrations and a strong absorption band near 1400 cm -1 resulting from an NH 4 + bending vibration. Multiple bond stretching and metal-hydrogen stretching vibrations usually occur in the region 1500-2500 cm -1 . The groups CN~, SCN", and OCN" exhibit a strong absorption in the region 2000-2300 cm-1. The CN" group is characterized by one or more strong very sharp absorption bands in the region 2000-2200 cm -1 . A strong sharp band in the region 2050-2200 cm"1 is characteristic of the SCN" group. The absorption band characteristic

3

INFRARED SPECTRA

of the OCN" group is strong but somewhat broader than the CN" or SCN" bands and occurs near or above 2200 cm-1. The NO stretching vibration of the NO" group gives rise to a strong band at 1940 cm"1. Inorganic compounds containing the HP0 3 2 " and H2P02~ groups are readily characterized by medium to strong bands in the region 2300-2400 cm"1 often showing submaxima; these bands arise from the P-H stretching vibrations. Polyatomic anions of inorganic compounds show characteristic absorption bands in the region 1500 300 cm -1 which result from stretching and bending vibrations. These characteristic bands are summarized in Table 1 and Fig. 1. Table 2 gives the frequency assignments of the fundamentals for many different anions, as summarized from the literature. For a detailed discussion of the anion (point group) symmetry the reader is referred to Nakamoto (22). In certain cases where there is high point group symmetry, T d , for example, vibrations normally infrared inactive will often appear as a weak band; also doubly and triply degenerate vibrations split into two and three components, respectively. These effects result either from lowering of the point group symmetry or from factor group splitting as a result of different crystalline environments. Lattice vibrations can occur as high as 600 cm-1, but usually occur in the region below 300 cm"1. These vibrations are unique for a specific crystalline compound, and are useful fingerprints for identification. Many inorganic compounds absorb only in this region of the spectrum, particularly ionic metal halides, nitrides, silicides, tellurides, and heavy metal oxides. Lattice frequencies can be correlated with crystal structure in an isomorphous series. For example, the lattice modes in the alkali halides which are cubic show a decrease in frequency with increasing mass or atomic radius of the cation or anion. Compare spectra* of the series of compounds: NaF (599), NaCI (717), and NaBr (796) KCl (718), KBr (797), and Kl (831) RbCI (719), RbBr (798), and Rbl (832) AgCI (741) and AgBr (811) NaCI (717), KCl (718), and RbCI (719) NaBr (796), KBr (797), and RbBr (798) Different crystalline forms of the same compound also show different lattice vibrations as well as spectral differences at higher frequency in the region where the fundamental vibrations occur in the spectrum. For example, SrP 2 0 7 exists in two crystal forms, the α-form which is orthorhombic and the ß-form which is tetragonal (compare spectra 265 and 266). Other such cases appear in this compilation of infrared spectra. The infrared spectra of crystalline polyatomic inorganic compounds usually show more bands than can be assigned to fundamental vibrations and sum or difference tones of the internal vibrations of the polyatomic ion. These other bands result from sum or difference tones of the lattice modes with the internal fundamental vibrations of the polyatomic ion.

REFERENCES 7. 2. 3.

G. Herzberg, "Molecular Spectra and Molecular Structure." Part II. Van Nostrand-Reinhold, Princeton, New Jersey, 1945. R. N. Jones and C. Sandorfy, in "Chemical Applications of Spectroscopy" (W. West, ed.), Vol. I X , Chapter IV. Wiley (Interscience), New Y o r k , 1956. A. B. F. Duncan, in "Chemical Applications of Spectroscopy" (W. West, ed.), Vol. I X , Chapter III. Wiley (Interscience), New Y o r k , 1956.

*Spectrum number given in parentheses.

4

REFERENCES

4.

L. J. Bellamy, " T h e Infrared Spectra o f Complex Molecules." Wiley, New Y o r k , 1958.

5.

C. N. R. Rao, "Chemical Applications o f Infrared Spectroscopy." Academic Press, New Y o r k , 1964. N. B. C o l t h u p , L . H. Daly, and S. E. Wiberley, " I n t r o d u c t i o n t o Infrared and Raman Spectros c o p y . " Academic Press, New Y o r k , 1964. L. J. Bellamy, "Advances in Infrared Group Frequencies." Methuen, L o n d o n , 1968. R. S. Haiford J . Chem. Phys. 14, 8 ( 1 9 4 6 ) . W. Vedder and D. F. Horning, in "Advances in Spectroscopy" (H. W. T h o m p s o n , ed.), V o l . I I , p. 189. Wiley (Interscience), New Y o r k , 1961. H. Jones, " T h e o r y o f Brillouin Zones and Electronic States in Crystals." N o r t h - H o l l a n d Pubi., Amsterdam, 1962. S. S. M i t r a , Solid State Phys. 13, 1-80 (1962). Born and Huang, " D y n a m i c a l T h e o r y o f Crystal Lattices." O x f o r d Univ. Press, L o n d o n and New Y o r k , 1966.

6. 7. .8 9. 10. 11. 12. 13.

L. M. Falicov, " G r o u p Theory and its Physical A p p l i c a t i o n s . " Univ. o f Chicago Press, Chicago, 1966.

14.

G. R. Harrison, R. C. L o r d , and J. R. L o r f b o u r o w , "Practical Spectroscopy." Prentice-Hall, Englewood Cliffs, New Jersey, 1948. W. Brugel, " I n f r a r e d Spectroscopy." Methuen, L o n d o n , 1962.

15. 16. 17.

W. J. Potts, "Chemical Infrared Spectroscopy." Wiley, New Y o r k , 1963. K. E. Lawson, " I n f r a r e d A b s o r p t i o n o f Inorganic Substances." Van Nostrand-Reinhold, Princeton, New Jersey, 1961.

18.

G. Herzberg, "Molecular Spectra and Molecular S t r u c t u r e , " Princeton, New Jersey, 1940.

19.

E. B. Wilson, J. C. Decius, and P. C. Cross, "Molecular V i b r a t i o n s . " McGraw-Hill, New Y o r k , 1955.

20.

J. Lecomte, in " H a n d b u c h der Physik " (S. Flügge, ed.), V o l . 2 6 , p. 244. Springer-Verlag, Berlin and New Y o r k , 1958.

21. 22.

E. P. Wigner, " G r o u p T h e o r y . " Academic Press, New Y o r k , 1959. K. N a k a m o t o , " I n f r a r e d Spectra o f Inorganic and Coordination C o m p o u n d s . " Wiley, New Y o r k , 1963.

5

Part I. Van

Nostrand-Reinhold,

Fig. 1. Spectrum A : ( P b f N C ^ ^ . Spectrum D: NaNC>3. A and D are scanned as split mulls between BaF 2 (3800-1333 cm 1 ) and AgCI (1333-400 cm - 1 ) plates. Spectrum B: P b ( N 0 3 ) 2 scanned as split mull between NaCI plates. Spectrum C: Nujol portion of Β 2 hours after preparation, having been in contact with NaCI plates.

SPECTRA

OXIDES BORON

16

BORIC ACID

17

BO3

18· 22

B407 = ALUMINUM

23

AIH 4 "

24- 25

AI02" CARBON

27- 32

CN"

35

Fe ( CN )g -

36

Fe(CN) 5 NO

37--42

FelCNlgi

44.-45

OCN"

46 -51

SCN"

52

CN2 =

53- 55

HCO3-

56- 74

C0 3 =

75

cs 3 =

S with Sub Mo»

--

W-M Sp. Sub Max of Ρ

W(Q.lor2)

SILICON Si0 4 = NITROGEN

2600

2400

2200

2000

SPECTRA 149-152

N0¿ CO(N02)6Î

W,Sp.(Oor I)

NO3Ce(N0j) = Ce(

NO3) =

PHOSPHORUS 204-210

211-212 214-223

224-225 226-232 234-259 260-277

28 0

MS(WSubMox)

H2P0 I

W ^Oor I )

S (of S/MDb)

WtoM

S(lor2) WM

W,SpJ4_

HPD 3 -

PO3-

W.Db

Mult. WtoM Bd

H2PO4

HPO4Ï

S (of Db.)

M(of Mult.)

WtoM

P04=

S(of Mult.)

P2071

PO3S =

WtoM ( o f Db) MtoS S

P03F =

W(of Mult.)

M (of Db.)

S(of Mult.)

M.Sp

W, Bd

PO2F2-

I

I

3400

SPECTRA

HSO4~ -

418-421

S203=

422-423

429

2800

2600

2400

COMPLEX SULFUR

414-417

424-428

3200

-Bd-

s2o5= SO3*

S2O6'

430

S207-

431-500

S0 4 =

501-503

S208"

504-505

S03F-

517-520

SeOj=

522-530

Se0 4 =

540-541

Cr204 =

542-549

Cr207-

COMPLEX

SELENIUM S(S.Max. 700-850)

MSiof Db)

MS(of Db)

S(of S.Mox. 810 "850)

CHROMIUM

550-560

Cr0 4 -

562-575

M0O4·

578-590

W04= WS4

596-597

PW, 2 0 4 0 =

I

3400

SPECTRA

W(of Db.jof Sp) W.Sp(Oorl)

S(of Mult. W to S S.Max. 740-970) W,Sp(Oor I )

I

3200

1

3000

COMPLEX HALOGEN

w(lt031

HF2-

6 4 2 · - 648 BF 4 649 - 6 5 1

AIF65

652

Go FÇ =

635 - 6 6 4

SiF6 =

665 - 6 6 7

Ge Fe*

668 - 6 7 2

Sn F 3 "

673 - 6 8 0

SnF6=

681 - 6 8 4

PFE"

685

AsFg

687 - 6 8 8

( I or 2) ( I or Mult.)

SbF6-

689 - 6 9 5

TiF6--

701 - 7 0 2

FeF6ï

706 - 7 0 9

ZRF 6 =

767 - 7 6 8

W W(Oorl)

W( I to 4 270-500)

S ( I to 3)

=

594-

641 S i 683

W,S£(Oorl) S(of Mult. W to S 800-980)

FECL 5 =

769 - 7 7 9

CuCl 4 =

771

MoCl6 =

772 - 7 7 4

PDCL4-

775

PdCl 6 =

777 - 7 7 8

PtCl4 =

I

3400

S( I or Mult.)

i

S

I 3200

I 3000

I 2800

I 2600

1 2400

I 2200

I 2000

I 1900

I 1800

Fig. 2.

I 1700

I 1600

1 1500

I

I

1400

1300

I 1200

I 1100

1000

I

I

900

800

Characteristic frequencies and band intensities.

7

1 700

I

I

I

600

500

400

1— 300

SPECTRA

cio2-

779 780-78

3

784-79

4

854-86

7

CIO4"

818-828 68 8

nvSp

ClOj-

(lor 2) S(wif h Olo4 WI0S)

BrOj -

10,-

s( iw t h otoe wtos)

IO4-

68 9

320 0

28 6 28 8 289-29

Sdo r Mult.) S£ . ( I to 4 )

300 0

280 0

260 0

240 0

220 0

200 0

J

L

Mult. (N o App Cor.)

As0 23

AsOj*

295-29

7

HA1O4*

298-30

3

29 4

At2 0 r 1 A1O4Ï

30 4

SbOj"

305

VO5-

307-31 1

VO4·

< I or 2 ) S(Bd )

240 0

220 0

SPECTRA 1 0 0 - I II

T1O5

112-12 1

ZrO j

122 - 129

SnO;

8 2 -8 8

U 2 07 *

3

340 0

S,B d or Mult. SjSp

320 0

300 0

280 0

260 0

δ OH 9 5 0 - 1000 ; ã OH 340 0 δ OH 1100 -1150 ; yOH 320 0

SPECTRA 379 - 38 2

Sn(OH)g

38 3 -38 4

Sb(OH)¿

8 7 1 - 78 7

Mn04=

78 8 - 8

M.Mult.

K . S.B d

B d oW f SpD b

S.B d

0 Fe 2O4'

S.B d

SPECTRA SULFIDE S

395

AS2 S 2

39 6

AS2S 5

39 7

SbzS j

39 8

Bi

_S_ M S W

39 9

TeS 2 nZ S

405 40 6

MoS2 Ag2S

..

S

ed S W S2

w

411

HgS

S

320 0

300 0

280 0

260 0

240 0

220 0

200 0

Fig. 3.

Characteristic frequencies and band intensities.

8

WW

WW

W W

.

S M

407 410

340 0

M MW §

_s_

s

M

MS W

2S 3

40 3

W M W W

M

W

S M

W

M W.S p

CM"1 150 0

31 6

L i2 0

31 7

MgO

31 8

CaO

31 9

AI2O3

32 0

ln2 0 3

32 2

Si0 2

32 5

Ge0 2

130 0

120 0

110 0

100 0

90 0

80 0

70 0

S

Sh

Sn O

32 8

Sb 20 3

32 9

Sb 20 5

33 0

Te0 2

33 1

I2 0

33 2

T i 02

33 3

v204 v205

33 7

MnO

W

S

M

M_$

M

W

S

MS

.W SpW.S

35 4

CdO H f 02

35 7

WO3

35 8

HgO

W

W

W

W

W W

W

W

S

M

M

W

S_

W

W

S

S.

W

W

W

W.S

p

W

£

W.S

W .

p

W W

W

W

W,S W,S

h

S

Sh

Sh

_B d _Pilf_us e

S

Sh

Sh S

W

S

W

W

W

W

MM

Sh

W

W

M M

Sh

W

W

i

WMS

p

W W

W S

p

Sp Sp _S _

M

MSp

W W

W W

S

05

35 5

W

S

_S

W

W W

W

M

_M_

S.

Y2O3

W

W W

p

_S_

Zn O

Ag20

W

MS

2 0 3

MO0 3

W

M

Ni

35 2

W W

M MS

_S_

Co 30 4

35 3

M S

S_ I

34 2

Mo02

W

MS

34 3

Nb

M_S

_S _

Co O

W

W

M

W

W

W

S

WS W

M S

.

S

M

S

w

M

.

M S

M

W

W

M W W

Sh W

Ce0

36 0

Sm 203

36 1

Dy

36 2

Ho203

36 3

E r2 0 3

36 4

Yb

36 5

Th02

36 6

U0 2

2

W

W

203

S M

M

M

M

03

§

S

W

W

p

M

W W

W

W

M

M

W

36 7

U3O8 ( O r t h o r h o m b i c)

36 8

U308

36 9

Sr0 2

37 0

Zn0

Sh

(Hexagonal )

Sh

S

S

Sh S

.W S W

W p

W

W

* W W

S

W

W W

S

W S S

.W S W

W

S

S

W

W

W

W

W

W S

W

S

W

M W .Sp W W

2

150 0

140 0

130 0

J

1200

I

1100

L

1000

80 0

90 0

70 0

CM"1 Fig. 4.

Correlation chart f o r metal oxides.

9

600

50 0

40 0

30 0

p

W W

S S

W .S W

W

S

Sh

W W

S

M

W W

W

M M M

w

W

W

Sh Sh

S $ h S

M

M

W

p

w

W

Sh M.

WS

M W

S

35 9

2

MS

W

34 1

34 9

W

S

S S

S.

2

S

.

Fe 304

35 1

MS

MS S

Fe 203

Cu20

0

S

S M

33 9

34 7

MS

M

34 0

CuO

100

W

M

MS

S

34 6

M

S

M n 02

34 5

20 0

M

W

34 4

30 0

M

W W

5

C r2 0 3

S

40 0

M

Pb 30 4

33 6

50 0

M

32 7

33 5

60 0

W

32 6

33 8

140 0

20 0

100

p

Tin

Zirconium

Titanium

Silicon

Carbon

Aluminum

Boron

Element

Zr03

Ti03

carbonate

co.2-

zirconate

(IV)

(IV)

122-129

112-121

100-111

89-93

titanate

76-86

orthosilicate

75

56-74

53-55

sil icide

thiocarbonate

bicarbonate

HC03""

52

46-51

thiocyanate cyanamide

SCN"

44-45

cyanate

CN22-

OCN~

37-42

36

ferrocyanide

nitroferricyanide

"

Fe ( C N ) 5 NO 2 4

35

ferricyanide

Fe ( C N ) e

Fe(CN)6

26 27-33

carbide

24-25

cyanide

A102"

23

18-22

1-15

Spectra

CN~

tetrahydroaluminate aluminate

tetraborate

boride

Ion

AIH4"

Formula bd

stg,

correlation -395

(SD) stg

420-490 -1935 s t g ,

(OD) -1300,

-1215,

-640,

by

-630

13-33

4 1 0 - 5 0 0 wk separated

5 8 0 - 6 1 0 wk,

-1929 590-630 m

(SM),

cm' 1

stg,

bd,

600-700 s t g

bd,

700-770 ( o w k ) , 2 3 0 - 2 4 0 wk

500-700 s t g

500-600 s t g ,

300-450

stg

8 0 0 - 8 9 0 wk-m.

300-500 stg

(SMAX),

(SMAX)

(OD),

2 0 0 - 4 0 0 bd

470-540

- 5 1 8 wk

360-450,

(SMAX),

-910 stg, 6 0 - 1 1 0 bd 860-1175 s t g

-931

1 3 2 0 - 1 5 3 0 s t g ( O D ) , 1 0 4 0 - 1 1 0 0 wk 6 7 0 - 7 4 5 (owk or WD)

2 0 0 0 - 3 3 0 0 bd (SMAX), 1 8 4 0 - 1 9 3 0 wk b d , 1 6 0 0 - 1 7 0 0 s t g 9 4 0 - 1 0 0 0 m b d , 8 3 0 - 8 4 0 m, 6 9 0 - 7 1 0 m, 6 4 0 - 6 7 0 wk

-2000 s t g ,

2040-2160 s t g ,

2180-2250 s t g ,

2020-2130 s t g

2130-2170 wk-m(m),

- 2 1 4 0 and

2130-2230 s t g

No

ÎOOOwk,

5 1 5 - 5 6 0 wk, 4 5 0 - 4 8 0 wk,

710 m bd

6 2 0 - 6 7 0 wk

- 1 6 4 5 m,

800-920 m bd, 3 7 0 - 3 8 0 wk

V 1785

1340-1480 s t g (SMAX), 1100-1150 wk-bd ( O D ) , 1050 w k - b d ( O D ) , 9 0 0 - 9 5 0 w, - 8 2 5 wk, 5 2 0 - 5 4 5 5 0 0 - 5 0 5 wk, 4 5 0 - 4 7 0 wk

60-100

Characteristic absorption!

Table 1. Characteristic Frequencies for Inorganic Ions

(SMAX),

Arsenic

Phosphorus

Nitrogen

130-141 142-147 149-152 154-191 197-199

n i t r i de

nitrate

hexanitrocerate (IV)

NO3-

Ce(N0 3 ) e

-2700 wk bd, -2400 wk bd, -1700 bd, -1250 bd, -IIOO bd, -900 bd, 530-560, -450 2750-2900 wk bd, 2150-2500 wk bd, 1600-1900 wk bd, 1200-1410 w-m, 1040-1150 stg (OD), 950-1110 wk-m, 830-920 wk-m, 530-570 m (OM), 390-430 wk (OM) 940-1120 stg (OM), 540-650 m (OD) (A1P04 is an exception, see 240) 1100-1220 stg (OM) , 960-1060 wk-m (OD and 0 sp) , 850-980 m, 705-770 w-m, 545-580 m stg (m 500-600) -1050, -945, -500 1010-1080 stg, 1000-1020 m sp, 900-950 wk bd, 700-770 m, 525-540 m stg ~1315 stg, -1150 stg, -800 stg, -500 stg

-840 stg, 720-740 m, -400 770-850 stg (OM or SMAX)

224-225 226-232 234-259 260-277 280 281-283 284 286-288 289-293 294 296-297 298-303

orthophosphate (mono-basic)

orthophosphate (dibasic)

orthophosphate

pyrophosphate

phosphorothioate phosphorofluoridate

phosphorodifluoridate

H 2 PO 4 -

HP0 4 2 ~

P043

P2O7 4 "

PO3 S3 -

P02F2-

pyroarsenate orthoarsenate dibasic

orthoarsenate

As0 4 3 -

orthoarsenite

As2074HAs042"

As0 2 As0 3 2-

metaarsenite

1200-1350 stg, 1040-1150 m-stg, 650-800 wk-stg (M) , 450-600 w-m (M)

214-223

metaphosphate

P03-

PO3F 2 "

2340-2400 m stg, 1070-1120 stg, 1005-1020 wk sp, 970-1000 m, 570-600 wk m, 450-500 wk (D)

211-212

orthophosphite

HP0 3 2-

750-880 stg (M), -540 m, -400 stg

700-840 stg

450-860 (M with no apparent correlations)

2300-2400 m-stg (SMAX 2200-2430), 1950-1975 (owk), 1140-1220 stg (OD), 1075-1102 wk sp (OD), 10351065 wk sp (OD), 800-825 m-stg, 440-510 wk-m

200-203 204-210

H 2 PO 2 "

No correlation

1465-1550 stg, 1275-1300 stg, 1030-1045 m, 800820 m, 740-750 m

1730-1810 wk sp (SM), 1280-1520 stg (OD or M ) , 10201060 (owk) sp, 800-850 (W-M) sp, 715-770 wk-m* (OD)

3150-3400 wk-m (OD), 2025-2150 stg, 620-660 wk-m (OD or M) 1170-1350 stg (OD), 820-850 wk (OD or M)

No correlation

hypophosphite

phosphide

azide nitrite

N3" N02"

Selenium

Sulfur

Oxygen

Vanadium

Element Antimony

- 1 1 7 5 s t g , 1 0 4 0 - 1 0 9 0 m, 9 7 0 - 9 9 0 s t g , 5 6 0 - 5 7 0 m, 5 1 0 - 5 4 0 m, 4 4 0 - 4 5 0 m

990-1090 stg (OM or SMAX), 615-660 m (o SMAX), 470-525 m (OD) -1240 stg, -995 m-stg, -570 m-stg, -520 m -1325 wk, -1100 stg, -920 m, -700 wk, -550 m

422-423 4 24-428 429 430

pyrosulfite su 1f i te

dithionate pyrosulfate sulfate peroxydisulfate fluorosulfonate

S2052-

S032"

S20e2-

S2O7 2 " S042"

s2oe2-

S03F-

700-770 stg (SMAX 700-850), 430-540 m stg (OD) 410 (OD) 840-910 stg (o wk sh 810-850), 390-450 wk m No correlations 522-530 531-538

selenate

Se03 "

Se042~ telluride

Bands below 400

506-516 517-520

selenite

360-

1260-1300 stg, 1070-1080 m sp, -740 m, -580 m, -480 wk

1260-1310 stg, 1050-1070 m sp, 690-740 m, 580-600 wk m sp, -560 m

1040-1210 stg (OM or SMAX), (960-1030, often 1 or 2 wk sp bands), 570-680 m (OD or M)

6 5 0 - 6 6 0 m,

selenide

2

504-505

501-503

431-499

1 0 8 0 - 1 1 5 0 s t g (M or SMAX), 9 9 0 - 1 0 1 0 s t g , 5 4 0 - 5 7 0 wk ( o m)

418-421

S2032-

640-690 m-s,

3400-2000 bd (MAX near 2900; SMAX 2200-2600), 850-900, 605-620, 565-585, 450-480

414-417

HS0 4 "

Bands below 400

395-411

sulfide hydrogen s u l f a t e (bisulfate) thiosulfate

250

850-1020 stg (M, SMAX), 380-470 bd.

393-394

uranyl halide (F and Cl)

U0 2 X 2

480-530 wk, 240-375 stg bd, 70-150 m bd (bands decrease in frequency in the series Cl to I)

388-390

bismuth oxyhalide (Cl, Br, and I)

BiOX

720 and

-3200 stg bd, -1340 wk, 1075-1150 wk bd, -580, stg, -450, 300-350 bd

383-384

hexahydroantimonate (V)

Sb(OH) e ~

3000-3400 stg bd, 2200-2300 wk bd, 950-1150 stg, 650-800 m bd, 500-550 stg, 250-300 stg

hexahydroxostannate( IV)

379-382

Sn(OH) e 2 -

3750-2000 stg (sp, M, or bd)

372-378

hydroxide

316-368

oxides

0H~

700-900 stg (0 SMAX) Strong bands usually in region below 1300 cm-1 ; as a rule of thumb, frequencies decrease progressing down thru each group in the periodic table of the elements.

307-313

orthovanadate

-700, -635, -560, -490

Characteristic absorptiont

antimonate (V)

304

Spectra

Sb0 3 "

Ion

V043"

Formula

Table 1. (continued)

Halogen

Tungsten

Molybdenum

Chromium

tetrathiotung

WS42" PW120403-

hexafluoroferrate pentafluorozirconate hexafluorozirconate chloride hexachlorostannate pentachloroferratei( III)

FeFe3"

ZrF 5 "

ZrFe2_

Cl~

SnCl 6 2 "

FeCl 5 2 "

hexafluorotitanate(IV)

hexafluorophosphate

PF e "

TiFe2~

hexafluorostannate

SnF e 2 " hexafluoroarsenate

trifluorostannate

SnF 3 ~

hexaf luoroantimonatej(V)

hexafluorogermanate

GeF e 2-

SbFe ~

hexafluorosilicate

SiFe2_

AsF e "

hexafluoroaluminate hexafluorogallate

BF4"

GaF e 3 ~

tetrafluoroborate

HF 2 ~

AlF e 3 ~

fluoride hydrogen fluoride

F~

phosphotungst

tungstate

W042"

molybdate (II)

chromate

Cr042"

M004 2 -

dichromate

-620-720 stg, 515-550 m stg

(See

2050-2122 m bd, -1600 stg bd, 1205-1235 m stg

300-325

440-460 m, 340-380 m, 250-300 s t g ,

766-767

714-753 764-765

stg

-300 270-320 m

450-500 s t g , 440-500 s t g ,

703-704 705-708

280-300 m

460-510 š t g ,

700-702

280-300 540-600 s t g ,

688-694

200-350 (two or more)

650-670 s t g ,

390 m

550-565 m, sp 686-687

-695 s t g ,

680-683 684

540-610 s t g , 820-860 s t g ,

672-679

200-280 (1 or more)

450-490, 340-450

590-620 stg, 320-380 m-stg (OD)

700-760 stg, 460-530 wk-m (o M)

-475 m

550-650 stg, 380-410 sp

170-195 m

1000-1100 (MAX near 1050) stg, bd, (owk 760-780), 510-560 wk sp (0 or M)

668-671

665-667

653-664

652

650-651

642-648

text)

(920-970 owk sh) , 750-900 stg (OM), 270-500 wk (OM with higher intensity band 300-400) 465 1080 n - s t g , 975 m - s t g , 890-922 m, 810-820 s t g , 590-600 wk s p , -390 wk, -340 wk, 260-270 wk

750-835 stg (OM or SMAX 740-970), (370-450 owk s p ) , 308-350 wk, (268-315 owk)

850-930 stg (OM or SMAX 800-980)

880-990 stg (om, often 1 or 2 wk, sp bands 880-920), 720-840 stg, (555-580 o wk s p ) , 340-380 wk

641 (see 682)

598-640

594 596-597

578-590

562-575

550-560

540-541 542-549

chromite

Cr2042Cr 2 0,2-

*Band

(SM)

" - 2 H

2

"

-721

(D)

=

tetrachloropalladate

867-868

iodate periodate

io4-

Mn03

results

from

multiple),

stg

but

Nujol.

(SMAX)

always

sp = s h a r p ,

submaxima.

bd = b r o a d ,

not = with

= strong,

o f t e n weak,

uranatej( VI)

U207 2 -

(owk)=

ferrate(III) c o b a l t ite|( I I I )

Co02"

permanganate

Mn04 "

(SD)

690-830 s t g

-570

doublet,

= often

(

(M)

=

2 7 0 - 2 8 0 wk

m sp

multiple,

3 7 0 - 4 0 0 wk

(OD)

wk.

(OD)

100-110

(OD) ,

(OD o r M)

sp

(OD)

o wk 8 3 0 - 8 4 0 ) ,

doublet,

470-480 m - s t g ,

stg

300-420

2 6 0 - 2 7 0 wk-m

Μ),

wk,

475-525

3 9 0 - 4 5 0 wk-m,

6 0 0 - 6 6 0 wk-m

SMAX), 400-450 m

(OD)

880-900 s t g ,

- 6 6 0 m,

550-610 s t g ,

( ο M or

bd 870-950 s t g

-550 stg, (M)

m,

3 1 0 - 3 3 0 m,

( 0 SMAX or

110-130 m

m-stg

255-275

610-630 m sp,

SMAX),

( 0 SMAX),

800-900 s t g

-635

830-860 s t g ,

(D)

(D o r Μ ) ,

7 4 0 - 8 5 0 s t g (OD o r 350-380 m sp

= sometimes

doublet

881-88 2

880

8 77-879

871-876

870

F e 2 0 4 2-

869

manganite manganate

-

Mn04 2 "

2

828-849 853-866

iodide

8 1 8 - 8 27

bromate

B r O* "

IO3

794-815

1050-1150 s t g

784-794

Perchlorate bromide

C10 4 '

Br"

900-1050 s t g

780-783

160-220

190-220 m - s t g ,

800-850 s t g

stg,

(Μ),

chlorate

detected;

stg

315-325

-360

( s e e 780)

776-777

stg

300-350 s t g

~305

5 3 0 - 5 7 0 wk-m ( H 2 0 ?) , 3 1 0 - 3 2 0 m, 9 5 - 1 0 0 wk, 5 8 - 6 5 wk

CIO3-

tetrachloroplatinate

774

770 771-773

hexachloromolybdate hexachloropaliadate (IV)

768-769

tetrachlorocuprate

Characteristic absorptiont

779

"

0

Spectra

chlorite

2

2

Ion

(continued)

cio2-

PtCl4

PdCle2-

PdCl4

= sometimes

at

4 2

MoCl e 3 ~

C U C 1

Formula

m = medium,

= often);

wk = weak,

t(o

Uranium

Cobalt

I ron

Manganese

Element

Table 1.

Phosphorus

Nitrogen

Titanium

Silicon

Carbon

Aluminum

Element

3

ferricyanide

cyanide

tetrahydroaluminate

Ion

2

-

142-147 149-152 154-191 204-210 211-212

224-225 226-232

a z i de nitrite nitrate hypophosphite orthophosphite

orthophosphate monobasic orthophosphate dibasic

"

N 0 3 "

HP032-

H2P04"

HP042"

N O

2

N3"

100-111

titanate(IV)

75

Ti032""

thiocarbonate

89-93

-

56-74

carbonate

orthosilicate

2

52

cyanamide

Si044"*

C S 3

C03 2 ""

2

46-51

thiocyanate

SCN~

N

44-45

C

37-42

cyanate

-

OCN"

4

36

35

27-33

23

Spectra

d

»v

«h

d

4

C3v

S

C3v

C2v

°3h

D2V

D . «h

°h

T

D3h

°3h

D

C00 ν

C

°h

C4v

°h

T

group

Point

e

(fi u

)

)

7

(f

)

3

( f

511 w,

v 2

1460 vw,

) 1740,

( L G )

V\ ( a1' )

V I

2021 and 2033,

i/7 ( ^ u

i u

O f )

(f

(a 1 ) )

i/2(ç)

O

4

(

4

B

'

4

E

)

Q

(fa

u

)

)

387

764

V

v

3

(

3

^

)

u

)

2

(^V

(e )

807-850,

807-818, v

v

3

3

2041

(e )

( b i)

625

706

1310-1405,

1221-1251

i/4(f2>

920,

i/4(e')

5

4

0

A

N

D

4

5

0

537

,

2410, i / 2 ( a t ) 977, 1 / 3 ^ ) 591, i / 4 ( e ) 1110 ( e ) 1021 and 1006, i / e ( e ) 498 and 471 2315, i / 2 ( a 1 ) 979, i/ 3 (a 1 ) 567, y 4 ( e ) 1085, v e ( e ) 465

v

i/2(aa)

^ ( E * )

3

1050,

v

- 4 0 0 bd

i/3(f2)

645,

i/2(fa

9 3 0

( e ) 1432,

G

2066

414m

st.

Resonance,

i/e(fiu) i n Fermi

585s,

2900, i/ 2 (a 1 ) 988, 1 / 3 ^ ) 862, v 4 ( * i > l (a 1 ) v 5 ( e ) 1230, v e ( e ) 1076, y 7 ( e ) 537, v e ( e ) 394

P

c r y s t a l V l («4 ) and 1083, v s soin. v x (at ) v 5 ( e ) 1027, ^

874,

2 1 0 ,

500,

I/2(TRU)

1320-1365,

1344,

-540 be,

800,

Vi ( a / ) 1 0 1 8 - 1 0 5 0 , 1/4 ( e ' ) 6 9 7 - 7 1 6

Vi {73^ )

Vi

vi

Vl

1/ 2 ( a 2 )

i/2(tru)

solid)

4 8 8 - 5 2 0 , t/ 2 (al¿) 325, 475-520 516, 510, 4 2 0 , 325

1087,

8 6 0 ,

v

1/4(f2>

1945, 653, 4 6 8 , 408 a2 e 2 1 4 5 , 663, 4 2 4 , 4 1 7 , 321 1947, 656, 493, 4 7 2 , 4 0 8 , 123 e 2 1 4 4 , 4 2 2 , 4 1 5 , 164, 100

l U

799,

Vi ( Σ + ) 743, i/ 2 (tr> 470, (i/ 2 o f t e n s p l i t s i n the

IR Vi (a 1 t ) i/4(e ' ) Raman

v

y

2163, b22162, 410

2105,

2173, 2157, 2174, 2157,

)

i/2(e)

(2080-2239)

1790,

Vibrations

V i ( Z * ) 1 2 9 2 . 6 and 2 y 2 ( E + ) 1 2 0 5 . 5 v 2 ( n ) 629.4, ι/3(Σ+) 2169.6

i/6 (

IR a l ^ Raman a1 ^

y

^CsN

Vi

Fundamental Vibrations of Inorganic Ions

ferrocyanide

Fe ( C N ) e

Fe(CN)e NO2" n i t r o f e r r i c y a n i d e

Fe(CN)e

CN~

A I H 4 "

Formula

Table 2.

(17)

(16)

(15)

(15)

(14)

(13)

(12)

(11)

(10)

( 9 )

(8)

(7)

(6)

(5)

( 3 )

(4)

(3)

(2)

(1)

Reft

Fluorine

Tungsten

Molybden|um

Chromium

Selenium

Sulfur

Vanadium

Arsenic

Element

0.

D.

653-664

665-667 672-679

hexafluorosilicate

hexafluorogermanate hexafluorostannate

GeFe2~

SnFe 2 "

SiFe2"

"3d

d

8 7

5 , v4(f2)

737, t/4(e)

1105, t/4(f2)

961, i/4(e)

432

374

353, i/3(f2)

179, i/3(f2)

320, y 3 ( f 2 )

220, i/3(f2)

348, iy3(f2)

405

365

368

984(B ), t/4(f2) 1016(B10)

11

v4

3 , v4(f2) 440-465,

8 3

895, i/4(f2)

884, v 4 ( f 2 )

vx ( A l g ) l>4(a2u

) 318 5 7 2 , i/ 3 ( a 2 u 555, i/2(Ee> Pn) E u ) 2 5 6 , i / 5 ( A 2 g o r E „ ) 247 o r

IR v3^i u ) 600, i/4(fiu) Raman Vl (A x ) 6 2 7 , i / 2 ( E ) 4 5 4 , i/5 ( f 2

460,

(27)

(30)

(30)

(29)

524ÍB ) ( 2 8 ) 529(B10 )

11

(18)

(18)

(18)

(26)

(18)

(25)

(18) »

(24) 3

9

(23)

(22)

(22)

(21)

496

1123,

480

IR i/3(flu) 720> V4(iin) 470 Raman V l (A l g ) 656, i/2(Eç) 510, ve (*2g> 402, [ve (f2 u ) 260 from combination tone]

(e) 1/, (a, ) 7 6 9 , i / 2 ( e )

tetrafluoroborate

BF4~

Va

Г.

vx (a T ) 9 4 0 , v 2 ( e )

vx (a a ) 8 4 7 , t / 2 ( e )

642-648

tetrathiotungstate

WS42"

450, f 3 ( f 2 )

(a, ) 8 3 3 , ty2(e) 3 3 5 , v 3 ( f 2 )

|/ г (a, ) 4 8 7 ,

tungstate

W042"

5 , vA{f2)

402

1038,

(а г , а 2 , Ц , b 2 ) 9 2 4 - 9 6 6 , (а г ) 9 0 0 - 9 1 0 , ( Ц ) 8 8 0 - 8 9 2 , ( Ц ) 7 6 0 - 7 8 0 , (a a ) 5 5 0 - 5 7 0 , ( а т , а 2 , Ц , b 2 ) 3 6 5 , ( ^ ) 220

Vl

rd

rd

(a 1 ) 9 8 3 , v 2 ( e )

vx (% ) 8 0 7 , v 2 ( a l ) 4 3 2 , i / 3 ( e )

Vl

8 2

813, i/4(fa>

) 6 6 9 , 1/ 3 (а г ) 4 4 6 , t / 4 ( e ) 335

345, t/3(f2)

342, v 3 ( f 2 )

^300

1^(24) 1010, 1/2(аг) 633, i/3(e)

i/a (a a ) 9 2 8 , v2(e)

578-590

562-575

rd

°2v

(а г ) 8 7 0 , v 2 ( e )

1 ^ ( 2 4 ) 9 9 5 , v2(*\ v5 ( e ) 5 4 1 , i / e ( e )

Vl

Vi (% ) 8 1 3 , i / 2 ( e )

900-920, ^850, ~450,

Vl

(20)

(18)

(a T ) 9 6 0 , i / 2 ( a i ) 6 1 1 , 1/ 3 (а г ) 4 8 0 , i / 4 ( e ) vb ( e ) 5 1 5 , vs ( e ) 3 6 7

(ax ) 935, y 2 (e) 420, v 3 ( f 2 ) Ю 8 0 , t/4(f2) 550

(19)

Vl

RefJ

(a^) 1212, 909, 477, (a2') 1165, 940, 553 (e M ) 999, 573, 432, (e') 1124, 707, 615, 201 Divalent salts have lesser symmetry

Raman

Vibrations

rd

molybdatej(III)

550-560

chromate

Cr042"

Mo042"

542-549

dichromate

522-530

selenate

СггО, 2 "

Se042"

517-520

selenite

3v

3v

~3v

sulfate

S 0 4 2-

aeu 3

u

424-428

sulfite

S03 431-499

u

418-421

"3d

thiosulfate

307-313

298-303

orthoarsenate orthovanadate

294

pyroarsenate

"3v

"3h

Point Group

S0O3 2 "

V043"

As043"

A

phosphorothioate

PO3S 3 '

Ае2СЦ

260-277

pyrophosphate

P2CV

280

234-259

Spectra

orthophosphate

Ion

PO4 3

Formula

Table 2. (continued)

818-827 853-866 867-868

bromate iodate periodate

I O 3 "

I O 4 "

permanganate

871-876

2. 3. 4. 5. 6. 7. 8. 9 .

d

T

d

Td

C3v

C3v

Td

C3v

C2v

D4h

(a2u)

v

x

(^ )

v x

(a1 )

1/3 - 8 4 0

v

Vl

840, V 2 ( e )

791 , i / 2 ( e )

779, 1^2(24)

935, t / 2 ( e )

( f

2

)

960,

i/4(e)

304

1/3(0)

325

330

356

i/4(*2)

493

95)

i>4(f2)

i/4(f2)

y4(e)

i;4(e)

i > 3 ( f 2 ) ~900,

853,

826,

836,

) 1050-1170, 1/3(e)

3

i/3(f2)

v

i/3(e)

111 and 164

840

i;4(B2 i/ 3 (l>i )

340-350,

256,

390,

421,

460,

617,

910, l / 2 ( a 1 )

120,

i/s(f2g)

164,

400,

i/2(Blg)

292,

(Lattice

790, I / 2 ( a i )

335,

(a1 )

)

(a1 )

(at )

(Alg)

334

806, i/ 2 (a 1 )

x

(eu)

317, i/2(Eg)

170,

630

)

^387

or E

290-300,

i/4(A2u

i/3(fa)

158

500,

275-281

(F2g)

or E u )

or E g )

130-150,

229,

i/2(e)

ui (a x )

x

¾

Raman v

í

vs ( A 2 g

311, l / 2 ( E g )

V1 ( a 1 ) 2 7 0 - 3 0 0 , , , 4 ( f 2 ) 110-130

O h Raman Vi ( A l g )

°4h

T

6 0 8 - 613,

V\ ( Α 1 ε ) 5 7 6 - 581, i / 3 ( a 2 u 230, r % ( A 2 g ) o r E g )

νΎ ( A l g )

I R 1/3(^1 u ) 830, i / 4 ( f i u ) 550 Raman Vx ( Α χ κ ) 735, i > 2 ( E g > 563, v 5 ( f 2 g ) 4 6 2 , [ l / e ( * 2 u ) 317' f r o m ^ c o m b i n a t i o n t o n e ]

O^ Raman Vi ( A l g )

°3d

D3d

°h

K. Nakamoto, " I n f r a r e d Spectra of Inorganic and Coordination C o m p o u n d s , " p. 73. Wiley, New Y o r k , 1963. I. Nakagawa and T . Shimanouchi, Spectrochim. Acta 18, 101 (1962). R. K. Khanna, C. W. Brown, and L. H. Jones, fnorg. Chem. 8, 2195 (1969). A . G. Maki and J. C. Decius,y. Chem. Phys. 31, 772 (1959). L. H. Jones, J. Chem. Phys. 25, 1069 (1956). · A. Tramer, C. R. Acad. Sci. 249, 2755 (1959). S. Bhagavantan and T . Venkatarayuda, Proc. Indian Acad. Sci., Sect. A 9, 224 (1939). A. Mueller and M. Stockburger, Z. Naturforsch. Â 20, 1242 (1965); A. Mueller and Β. Krebs, Spectrochim. Acta 22, 1535 (1966); Β. Krebs, A . Mueller, and G. G a t t o w , Z . Â 20, 1017 (1956); Β. Krebs and A . Mueller, Ζ. Naturforsch. A 20, 1664 (1965).

7. L. A. Woodward and H. L. Roberts, Trans. Faraday Soc. 52, 1458 (1956).

t Key t o references:

M 1 1 O 4 "

Mn04 ~

2

870

783-793

chlorate

C I O 4 "

manganate

779-782

chlorate

C I O 3 "

Br03~

778

chlorite

C102"

776-777

tetrachloroplatinate

PtCl42"

PdCle

774

771-773

tetrachloropaliadate

PdCl42~ hexachloropalladate(IV)

768-769

tetrachlorocuprate

CuCl42~

2~

764-765

hexachlorostannate

2~

SnCle

705-708

a~

ZrFe

hexaf1uorozirconate

688-694

hexafluorotitanate

2~

TiFe

(III)

680-683

hexafluorophosphate

PFg

Naturforch.

(42)

(41)

(18)

(40)

(39)

(38)

(37)

(36)

(35)

(34)

(33)

(32)

(31)

(30)

(30)

(29)

M. Tsuboi, J. Amer. Chem. Soc. 79, 1351 (1957).

J. A. A . Ketel aar, A eta Cry st. 7 , 6 9 1 (1954); H. Ratajczak and Z. M i e l k e , / . Mol. Struct. E. E. Berry and C. B. Baddiel, Spectrochim. Acta, Part A 23, 2089 (1967).

K. Nakamoto, " I n f r a r e d Spectra o f Inorganic and Coordination C o m p o u n d s , " p. 107. Wiley, New Y o r k , 1963.

15.

16. 17.

18.

325, 8 (1963).

H. Gerdingand K. Eriks, Ree. Trav. Chim. Pays Bas 69, 659 (1950); H. Siebert, Z. Anorg. AHg. Chem . 277, 225 (1957). J. C. Evans and J. H. Bernstein, Can. J. Chem. 33, 1270 (1955); A . Simon and K. Waldmann, Ζ. Phys. Chem. (Leipzig) 204, 235 (1955).

H. Stammerich, D. Bassi, O. Sala, and Η. Sieben, Spectrochim. Acta 13, 192 (1958). Α . Muller and Β. Krebs, Spectrochim. Acta, Part A 23, 2809 (1967). Κ. Nakamoto, " I n f r a r e d Spectra of Inorganic and Coordination C o m p o u n d s , " p. 106. Wiley, New Y o r k , 1 963. H. F. Shurvell, Can. Spectrosc. 12, 156 (1967). P. A. W. Dean and D. F. Evans, J. Chem. Soc., A, p. 698 (1967). L. A. Woodward and L. E. A n d e r s o n , ; . Chem. Soc., London p. 1284 (1957). J. S. Avery, C. D. Burbridge, and D. M. L. Goodgame, Spectrochim. Acta, Part A 24, 1721 (1968). J. Hiraisha and T . Shimmanouchi, Spectrochim. Acta 22, 1483 (1966). L. A. Woodward and J. A . Creighton, Spectrochim. Acta 17, 594 (1961 ). H. Stammerich and F. F o r n e r i s , S p e c t r o c h i m . Acta 16, 363 (1960). J. P. Mathieu, C. R. Acad. Sci. 234, 2272 (1952). J. L. Hollenberg and D. A . Dows, Spectrochim. Acta 16, 1155 (1960). H. Colm, / . Chem. Soc., London p. 4282 (1952). M. Rolla, Gazz. Chim. Itai. 69, 779 (1939); C. Rocchiccioli, C. R. Acad. Sci. 249, 236 (1959). Κ. Nakamoto, " I n f r a r e d Spectra of Inorganic and Coordination C o m p o u n d s , " p. 87. Wiley, New Y o r k , 1963.

C. Rocchiccioli, C. R.Acad. Sci. 256, 1707 (1963). Acta, Part A 24, 125 (1967). P. J. Η end ra, Spectrochim.

26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.

41. 42.

25. K. Nakamoto, " I n f r a r e d Spectra o f Inorganic and Coordination C o m p o u n d s , " p. 92. Wiley, New Y o r k , 1963.

23. 24.

19. A . Hazel and S. D. Ross, Spectrochim. Acta, Part A 23, 1583 (1967); 24, 1 31 (1968). 20. E. Steger and K. Martin, Z. Anorg. AH. Chem. 308, 330,(1960). 21. R. Hubin and P. Tarte, Spectrochim. Acta, Part A 23, 1815 (1967); W. Bues, Κ. Buhler, and P. K u h n l e , Z . Anorg. Al/g. Chem. 22. H. Siebert, Z. Anorg. AHg. Chem. 215, 225 (1954).

1 , 3 9 7 (1967-1968).

R. E. Weston and T . F. B r o d a s k y , ; . Chem. Phys. 27, 683 (1957).

K. Nakamoto, " I n f r a r e d Spectra o f Inorganic and Coordination C o m p o u n d s , " p. 92. Wiley, New Y o r k , 1963.

14.

2, 264 (1956).

13.

Chem.

D. Fortum and j . O. E d w a r d s , ; . Inorg. Nucí.

J. T . Last, Phys. Rev. 105, 1740 (1957); A. F. Yatsenko, !zv. Akad. Nauk SSSR, Ser. Fiz. 22, 1456 (1958). K. Nakamoto, " I n f r a r e d Spectra of Inorganic and Coordination C o m p o u n d s , " p. 77. Wiley, New Y o r k , 1963.

10.

11. 12.