Inhomogeneous Plane Waves in Incompressible Elastic Materials

Inhomogeneous Plane Waves in Incompressible Elastic Materials

Wave Phenomena: Modern Theory and Applications C. Rogers and T.B. Moodie (eds.) 0 Elsevier Science Publishers B.V. (North-Hollaml), 1984 175 INHOMO...

732KB Sizes 1 Downloads 217 Views

Wave Phenomena: Modern Theory and Applications

C. Rogers and T.B. Moodie (eds.) 0 Elsevier Science Publishers B.V. (North-Hollaml), 1984

175

INHOMOGENEOUS PLANE WAVES I N INCOMPRESSIBLE ELASTIC MATERIALS Michael Hayes Department of Mathematical Physics University College Dub1 i n

Gibbs b i v e c t o r s [l] a r e used t o g i v e a d e s c r i p t i o n of inhomogeneous plane waves i n a n i s o t r o p i c homogeneous

I t i s shown

incompressible l i n e a r e l a s t i c m a t e r i a l s .

t h a t i f t h e slowness b i v e c t o r i s n o t i s o t r o p i c then t h e a c o u s t i c a l t e n s o r has double r o o t s i f a c i r c u l a r l y polari s e d wave propagates, and conversely, i f t h e a c o u s t i c a l t e n s o r has double r o o t s then t h e corresponding wave i s c i r c u l a r l y polarised. INTRODUCTION

1.

This i s a sequel t o a previous paper

121 where t h e corresponding problem

of inhomogeneous plane waves i n compressible a n i s o t r o p i c e l a s t i c and compressi b l e i s o t r o p i c v i s c o e l a s t i c m a t e r i a l s was considered. t h a t instead of specifying a d i r e c t i o n

a s i n d e a l i n g with homogeneous

p l a n e waves, f o r inhomogeneous plane waves a p a i r

n

where

i s a u n i t v e c t o r and

m

The e s s e n t i a l i d e a i s

@, E)

is perpendicular t o it.

is specified,

Associated with

1. + IIJ. Thus i n s t e a d o f s p e c i f y i n g a d i r e c t i o n 3, a d i r e c t i o n a l e l l i p s e i s s p e c i f i e d . t h i s p a i r i s an e l l i p s e , t h e d i r e c t i o n a l e l l i p s e o f t h e b i v e c t o r

The corresponding slowness b i v e c t o r and

4

I t i s seen t h a t

are real.

is written Te"

S = Te [m

+

11.)where T

i s determined from t h e s e c u l a r

equation and t h e corresponding amplitude b i v e c t o r i s determined as an eigenb i v e c t o r of t h e a c o u s t i c a l t e n s o r . I t i s seen, i n t h e u s u a l way t h a t t h e r e a r e i n general j u s t two waves which may propagate f o r a given choice of t h e d i r e c t i o n a l e l l i p s e of t h e slowness bivector.

The corresponding amplitude b i v e c t o r s

arthogonal:

A.B =

0.

&,

(say) a r e mutually

Hence f o r a given d i r e c t i o n a l e l l i p s e of t h e slowness

b i v e c t o r t h e p a r t i c l e displacements corresponding t o t h e two waves l i e on p l a n e s which may not be orthogonal.

Also t h e e l l i p s e s corresponding t o

e i t h e r displacement when p r o j e c t e d onto t h e p l a n e of t h e d i r e c t i o n a l e l l i p s e

M. Hayes

of t h e slowness b i v e c t o r a r e s i m i l a r and s i m i l a r l y s i t u a t e d with major a x i s perpendicular t o t h e major a x i s of t h e e l l i p s e of t h e slowness b i v e c t o r . On t h e assumption t h a t t h e slowness b i v e c t o r i s not i s o t r o p i c , it i s shown

t h a t t h e a c o u s t i c a l t e n s o r has double r o o t s i f a c i r c u l a r l y p o l a r i s e d wave propagates.

Conversely, i f t h e a c o u s t i c a l t e n s o r has double r o o t s then t h e

corresponding wave i s c i r c u l a r l y p o l a r i s e d .

Thus a s t h e r o o t s coalesce t h e

amplitude b i v e c t o r s merge and t h e o r t h o g o n a l i t y condition A.A- = -

0, so t h a t t h e wave i s c i r c u l a r l y p o l a r i s e d .

A.B

= 0

becomes

The condition t h a t t h e

r o o t s be double leads t o a q u a r t i c with complex c o e f f i c i e n t s .

If t h i s q u a r t i c

has a r e a l r o o t then a c i r c u l a r l y p o l a r i s e d inhomogeneous plane wave may propagate with a p p r o p r i a t e slowness.

The superposition of t h e displacements corresponding t o t h e p a i r of waves with given d i r e c t i o n a l e l l i p s e i s a l s o considered.

For motion p a r a l l e l t o t h e

plane o f t h e amplitude b i v e c t o r of e i t h e r wave it i s seen t h a t f o r e q u i d i s t a n t p o i n t s on c e r t a i n l i n e s t h e t o t a l displacement e l l i p s e s a r e similar and s i m i l a r l y s i t u a t e d with r e s p e c t t o each o t h e r and with r e s p e c t t o t h e p r o j e c t i o n of t h e slowness b i v e c t o r onto t h e plane of t h e amplitude b i v e c t o r .

52. -

EQUATIONS OF MOTION The c o n s t i t u t i v e equations a r e taken t o b e

=

u . .

1,1

where

djik,t

Here t h e s t r e s s e s a r e denoted by u.

(2.11

'

0 ,

dijk9. =

displacements by

' d i j k e Uk,,t

-p 6 . ij

t.. = 11

dk,tij

=

=

dij,tk

*

t i j , t h e e l a s t i c c o n s t a n t s by

and t h e comma denotes d i f f e r e n t i a t i o n : u

The summation convention i s used throughout.

Also

p

dijka.

,

the

~ E, auk/axk ~

.

is a scalar, the

h y d r o s t a t i c p r e s s u r e which i s t o be determined from t h e equations of motion and t h e boundary conditions.

Equation ( 2 . 2 ) expresses t h e f a c t t h a t a l l deformations

i n t h e body a r e i s o c h o r i c .

The equations of motion a r e given by 2 a u

at.. *

=

I

P

y

i

at

i n t h e absence o f body f o r c e s , where

(2.41

>

p

is t h e material density.

Inserting

177

lnhomogeneous Plane Waves

(2.1) i n t o ( 2 . 4 ) g i v e s dijki

13. -

a 2u i / a t

P

k , a j - P , ~=

.

2

ISHOMOGEiiEOUS I'LAiiE WAVES

Now i t i s assumed t h a t t h e displacements

a r i s e due t o t h e propagation ui of an i n f i n i t e t r a i n of inhomogeneous p l a n e waves i n t h e body. Thus

Here

A i s a bivector:

&

z-.~

&+ +

=

The planes of constant phase a r e amplitude a r e = constant.

I&-

2,

and so i s

s+.x=

t h e slowness b i v e c t o r .

c o n s t a n t , and t h e planes of constant

The period of t h e wave is

Equation

27r/w.

(3.1) d e s c r i b e s an i n f i n i t e t r a i n of e l l i p t i c a l l y p o l a r i s e d inhomogeneous

plane waves.

For f i x e d

x(= x*

say) t h e displacement v e c t o r

’1

A+ exp(- w

A-expc-

uZ-.f).

&,

z-.~*) and

e l l i p s e which i s s i m i l a r and s i m i l a r l y s i t u a t e d t o t h e e l l i p s e of t h e e l l i p s e whose conjugate semi-diameters a r e

l i e s on an namely

A t any given time t h e displacement v e c t o r i s along one semi-

diameter of t h e e l l i p s e and t h e p a r t i c l e v e l o c i t y i s p a r a l l e l t o i t s conjugate semi-diameter.

t

As

t h e e l l i p s e i s from

i n c r e a s e s t h e sense i n which t h e p a r t i c l e moves along

&+ t o

A-.

The p l a n e of p o l a r i s a t i o n i s determined by

t h e plane of t h e e l l i p s e of t h e amplitude b i v e c t o r Circularly polarised i f Linearly p o l a r i s e d i f

Te"

S = where

5

The slowness b i v e c t o r

T

vector.

g

angles t o problem.

and

$

(5+,):I

are real.

and t a k i n g

m.:

.

The wave i s

-A.A _

=

0 ;

(3.2)

&A&

=

0.

(3.33

When equation ( 3 . 2 ) is s a t i s f i e d t h e b i v e c t o r "nullt'.

A -

A -

i s s a i d t o be " i s o t r o p i c "

or

may be w r i t t e n

__

= 0, n.n = 1

,

(3.4)

By f i x i n g on a p a r t i c u l a r choice of t h e u n i t

5 t o be o f a r b i t r a r y [chosen) magnitude and a t r i g h t

1 , i t will be seen t h a t T and 4 a r e determined by an eigenvalue 5 and may be regarded a s t h e p r i n c i p a l axes of an e l l i p s e .

I 78

M. Hayes

Then

S/T

(z+,g-) i s

and

13i s

el$@ +

=

a p a i r of conjugate semi-diameters of t h i s e l l i p s e

t h u s a p a i r of conjugate semi-diameters of a similar and s i m i l a r l y

s i t u a t e d e l l i p s e whose major and minor axes a r e

(m .+):1

axes of t h e e l l i p s e of

times t h e major and minor

Also

S+

= T(cos$m

-

sin$n-),

S-

= T(sin@

+

cos@),

The angle

T

2 3 ; = T(cos2$m2 + s i n $)

12-1 =

,

z f .

T(sin2$m2 + cos $)

(3.5)

between t h e planes o f constant phase and t h e planes of

8

constant amplitude i s given by tan 8

=

[Z]

m

(3.6)

(m 2 - l ) c o s $ s i n $

The condition (2.2) gives

A.

2

=

0.

(3.7)

This means i n general t h a t t h e e l l i p s e of t h e amplitude b i v e c t o r

2

e l l i p s e o f t h e slowness b i v e c t o r l a r t o each o t h e r .

S

A

and t h e

may not l i e on p l a n e s which a r e perpendicu-

Also, t h e p r o j e c t i o n of e i t h e r

(5 say)

upon t h e plane o f

i s an e l l i p s e whose aspect r a t i o ( r a t i o of major t o minor a x i s ) i s equal t o

t h e aspect r a t i o of t h e e l l i p s e of

2.

t h e minor a x i s o f t h e e l l i p s e of

5

and whose major a x i s i s perpendicular t o

A A. A =

Exceptionally it may happen that

i s a s c a l a r and a l s o t h a t polarised.

84. -

I t i s seen i n

2. 55

=

0

i s p a r a l l e l t o 2: A = as, where so t h a t t h e wave i s c i r c u l a r l y

a

that t h i s i s a p o s s i b i l i t y f o r i s o t r o p i c bodies.

THE PROPAGATION CONDITION

Here it i s assumed t h a t t h e d i r e c t i o n a l e l l i p s e of eigenvalue equation f o r t h e determination of that t h e r e a r e j u s t two non-zero eigenvalues.

Te"

5

i s given.

i s obtained.

The

I t i s seen

I f t h e s e a r e n o t equal it i s

shown t h a t t h e corresponding eigenbivectors a r e orthogonal. Now i f follows t h a t

p

has t h e form (3.1), t h e n from the equations o f motion (2.5) must have a s i m i l a r form.

Thus write

it

179

lnhomogeneous Plane Waves

p

=

P expiw

(5. x

.

-t)

(4.1)

I n s e r t i n g t h e expressions (3.1) and (4.1) i n t o t h e equations of motion and P

using c3.5) t o e l i m i n a t e

2. 2 SO,

and assuming

leads t o

Using (3.4) t h i s may be w r i t t e n (4.3) where

Q.

lk

*

m,

1 ~ k R ks j

%i

=

'

=m+ip,m .n = O , n .n = l .

S Thus, i f

* *

= d..

(4.41

a r e given, equation (4.3) i s an eigenvalue problem f o r t h e

determination of

and t h e corresponding eigenbivector

T, $

A.

The propagation condition (4.3) l e a d s t o t h e s e c u l a r equation d e t (pT-' f o r the determination o f det(Q)=0

zero.

e-21'

-

6ik

[Te'$)

= 0,

f o r given

*

*

s .s - * *

since det

6.i k)

<.

) = 0,

rns m

eigenbivectors be

T-2e-21' and

T 2 e210

be denoted by Alp-', respectively.

I t i s c l e a r from (4.4)

and hence one r o o t of (4.5)

Thus equation (4.5) i s a q u a d r a t i c i n Let t h e r o o t s

(4.5)

Then

that

is

.

h2p

-1

.

Let the corresponding

(4.6) (4.7) I t i s now shown t h a t if h l

11.B

=

A2

0.

,

then (4.8)

180

M. Hayes

Now s i n c e

A. S* = B. BiQikAk

4

since

*

-

i s symmetric.

= 0, i t follows from equation (4.4) t h a t

A.Q. 1 ik Bk

X1 f

e l l i p s e of

B

A. g

(4.9)

(4.10)

= 0.

A,

and

The e l l i p s e s of

A

S

a r e on planes no two of which may be

S

and o f

when p r o j e c t e d on t h e plane of t h e

a r e s i m i l a r and s i m i l a r l y s i t u a t e d .

r o t a t e d through a quadrant. t i o n s of t h e e l l i p s e s o f t i o n s of t h e e l l i p s e s o f

B &

Examples o f such t r i a d s [3],

The p r o j e c t i o n s a r e s i m i l a r

i n t h e p l a n e of

and s i m i l a r l y s i t u a t e d t o t h e e l l i p s e of

For example

,

X2,

Hence t h e e l l i p s e s of orthogonal.

= 0

Hence from (4.6) and (4.7)

(A1, - X2) Thus, f o r

- AiQikBk

BiQikAk

3

when they a r e

A similar statement may be made about t h e projec-

and

5

and

upon t h e plane o f upon t h e plane of

A, B,

A

and about t h e projec-

2.

s a t i s f y i n g (4.11) a r e e a s i l y constructed.

take

c4.12) a, 6, 6

where

are scalars, satisfying

ci

2

-

B2

=

Returning t o equation (4.3) i t i s seen t h a t i f eigenbivector f o r given of

Te'+

i s known t o be an

and i s not i s o t r o p i c , then t h e corresponding value

i s given by p ~ - 2 e-21'

since

*

1.

A.5=

0.

If

&

A1 . A .1 = Q i k ~ i ~ =k Qi kA iA k '

i s i s o t r o p i c , then it w i l l be shown i n

corresponding eigenvalues a r e double and hence t h e v a l u e of half t he t race of

(4.13)

Te"

86

that the

i s given by

Q/p:

2pT

-2 -214

e

=

A

Qii*

(4.14)

181

Inhomogeneous Plane Waves

55. -

ISOTROPIC MATERIALS

In t h i s s e c t i o n t h e propagation of inhomogeneous plane waves i n i s o t r o p i c homogeneous incompressible e l a s t i c bodies i s considered. o f waves.

There a r e two c l a s s e s

In t h e f i r s t t h e slowness b i v e c t o r i s i s o t r o p i c , t h e waves a r e

c i r c u l a r l y p o l a r i s e d and t h e s o l u t i o n i s u n i v e r s a l i n t h e sense t h a t t h e slowness does not depend upon t h e shear modulus which d e s c r i b e s t h e e l a s t i c response of

In t h e second c l a s s , t h e p r e s s u r e term i s zero, t h e waves a r e

the material.

t r a n s v e r s e , and t h e amplitude b i v e c t o r may be chosen so t h a t t h e wave is c i r c u l a r l y polarised. The c o n s t i t u t i v e equation (2.1) now reads t.

=

Ij

p

where

i s a constant.

-

p6ij

+

p(ui,j

,

+ uj,i)

(5.1)

Using t h i s and equation (4.1) i n equation (2.4)

leads

to

Now

AiSi

=

0

and hence

either

ci) (5.3)

where

a

is a scalar

Cii) =

P

In

c a s e Ci),

usj sj

0 ,

p

s.s-

=

aSi expiw@. 5 - t )

=

-

=

0

ipwaexpwC2.

,

a

This i s a c i r c u l a r l y p o l a r i s e d wave. p l a n e s of constant amplitude:

5'. 5-

r e s t r i c t i o n on t h e magnitude of case ( i i ) ,

.

(5.4)

we have t h e s o l u t i o n ui

In

= p

the solution is

2.

,

-t) , arbitrary.

Planes of constant phase a r e orthogonal t o = 0.

Also

Is+( =

15-1

.

There i s no

I t i s independent of t h e shear modulus P

.

M. Hayes

182

A

where

where

From (5.6)2

0.

m2 < 1 ,

Thus, i f

and i f

A. 5 =

i s any b i v e c t o r s a t i s f y i n g

m2 > 1

y, y'

,

a r e a r b i t r a r y and 2.2 = 1,

1.11=

r.fl= 0 .

I n both c a s e s t h e

planes o f constant phase a r e orthogonal t o t h e planes of constant amplitude.

m

5

c Cp/p) homogeneous t r a n s v e r s e wave i s recovered. As

-+

a,

then from ( 5 . 9 ) ,

For given " +

15,and m

-+

a, m, A

s a t i s f y i n g (S.?),

the waves are c i r c u l a r l y p o l a r i s e d .

-f

y

12 + or

and t h e usual

y'f,

y'

may be chosen s o t h a t

Thus, from equation (5.8),

take

y

given

bY (5.10)

Then (5.11) The displacement v e c t o r lies on a

corresponds t o a c i r c u l a r l y p o l a r i s e d wave. c i r c l e i n t h e p l a n e spanned by

m

2

> 1,

take

yt

given by

m

and ;{

+- (-2-1) 1 4E} m

.

Similarly, f o r

(5.12)

Then (5.13)

183

Inhomogeneous Plane Waves

corresponds t o a c i r c u l a r l y p o l a r i s e d wave, t h e c i r c l e of p o l a r i s a t i o n l y i n g i n a plane spanned by

86.

m m-m

1 and

1 4 IS}

{ -i (1 - -2)

m

STRUCTURE OF THE ACOUSTICAL TENSOR.

.

CIRCULARLY POLARISED WAVES.

Here t h e s t r u c t u r e o f t h e a c o u s t i c a l t e n s o r i s considered more f u l l y .

In

i s not i s o t r o p i c , it i s shown t h a t i f t h e s e c u l a r

particular,assuming t h a t

equation has a double r o o t then a c i r c u l a r l y p o l a r i s e d wave may propagate i n t h e material.

Also, it i s shown, assuming

S

.S 9

0, t h a t i f a c i r c u l a r l y p o l a r i s e d

wave propagates then t h e s e c u l a r equation has a double r o o t .

i s n o t i s o t r o p i c i s made, f o r , i n g e n e r a l , i n

The assumption t h a t

d e r i v i n g t h e form of t h e a c o u s t i c a l t e n s o r expressions o f t h e form enter.

I t was seen i n

o b t a i n a s o l u t i o n with

35

[s@SJ/(s.s)

f o r an i s o t r o p i c m a t e r i a l t h a t i t i s p o s s i b l e t o

5.2 =

0.

However, i n g e n e r a l , i f t h e d e t a i l a d s t r u c t u r e

of t h e e l a s t i c c o e f f i c i e n t s i s n o t given then it is e s s e n t i a l t o assume t h a t

S

i s not i s o t r o p i c . Now s i n c e any b i v e c t o r

where

a

may be w r i t t e n [l]

5

=

+

ib), a.b =

0,

i s a s c a l a r , i n general complex, we may, without l o s s of g e n e r a l i t y ,

write

where

T,

0,

respectively.

m

a r e r e a l and Then, assuming,

defined by equation (4.4),

i,

2.S

a r e u n i t v e c t o r s along t h e x and y axes 2 0 so that m $: 1, it i s seen t h a t Q,

may b e w r i t t e n * *

and has components given by

184

M. Hayes

Thus t h e matrix

4

has t h e form

where

One eigenvalue of

X1, AZ,

(0)

191

i s zero s i n c e

and t h e o t h e r two, denoted by

a r e given by

A,

t h e corresponding e i g e n b i v e c t o r s being

where

= 0

given by

tl, t2 a r e given by

Now tl t2 =

and hence

m2

-

1

,

(6.9)

185

Inhomogeneous Plane Waves

=

A . B-

(6.10)

0.

A1so

A.2 -

B.5

0,

=

=

(6.11)

0.

In t h e s p e c i a l case when (6.12) it follows from equation (6.4) t h a t

(:i ; Q3i) 6

Cii)

=

and t h e non-zero eigenvalues a r e bivectors

CO,

0, y)

Q,,

(1, m, 0)

and

and

(6.13)

,

a + imB

where

w i t h corresponding eigen-

is arbitrary.

y

The f i r s t of

t h e s e corresponds t o a l i n e a r l y p o l a r i s e d wave, t h e second t o an e l l i p t i c a l l y p o l a r i s e d wave.

(Recall

m

2

9 1).

CIRCULARLY POLARISED WAVES

F i n a l l y , the p o s s i b i l i t y of equa

eigenva ies i s considered.

The eigenvalues a r e equal provided L

a

(6.14)

so that (6.15) Then A1

=

From equation (6.4),

A2

=

(a + imB + Q3,)/2

(Q) i s now given by

.

(6.16)

186

M. Hayes

where the upper and lower s i g n s correspond t o t h e upper and lower s i g n s i n (6.15).

C(say) i s given by

The corresponding eigenbivector

(6.18) It is clear that

5.C =

0,

and thus the wave corresponding t o t h e double r o o t

is c i r c u l a r l y polarised. I t may be noted t h a t t h e c i r c l e s of p o l a r i s a t i o n corresponding t o t h e d i f f e r e n t s i g n s i n equation (6.15) and t h e r e f o r e a l s o i n (6.18), a r e g r e a t c i r c l e s i n t h e u n i t sphere.

They a r e described i n opposite senses.

most e a s i l y seen i n t h e s p e c i a l c a s e

_C = _i r i-k

are unit circles i n the

-

xz

if it i s p o s s i b l e

-

when m = 0.

This i s Then

plane, described i n opposite senses.

Also, r e t u r n i n g t o equation (.6.14), which i s t h e condition f o r double r o o t s ,

this condition may be w r i t t e n , using equation (6.5),

CQ,,

+

2 1 m Q12

-

m

2

Q2,

-

-

(1

2

as 2

m 1 Q33}

(6.19) This is a q u a r t i c i n real root for

m

m

with complex c o e f f i c i e n t s .

I f t h i s equation has a

then t h e r e a r e two corresponding c i r c u l a r l y p o l a r i s e d waves.

In general it w i l l not possess r e a l r o o t s f o r

m.

Assuming t h a t 5 i s not i s o t r o p i c it has been shown t h a t i f t h e a c o u s t i c a l tensor Q) has double r o o t s then t h e corresponding eigenbivector i s i s o t r o p i c and accordingly a c i r c u l a r l y p o l a r i s e d inhomogeneous wave may propagate. shown, assuming t h a t possesses an

Now, it i s

S

i s not i s o t r o p i c , t h a t i f t h e a c o u s t i c a l t e n s o r (Q) i s o t r o p i c eigenbivector then 9 has a double eigenvalue.

Now from (4.4) t h e a c o u s t i c a l t e n s o r

9 n

has t h e form (6.20)

cij

=

6ij

-

SiSj

‘mSm

(6.21)

187

Inhomogeneous Plane Waves

and (6.22)

0

Without l o s s of g e n e r a l i t y , l e t

be given by

(6.23)

i s t o be an i s o t r o p i c eigenbivector of

Now

@)

so t h a t it s a t i s f i e s (6.24)

C6.25)

(6.26)

without l o s s of g e n e r a l i t y .

_A.S_

5

= 0,

I t i s assumed that

2.5

0

and since

may be assumed t o have t h e form (6.27)

where

i s some s c a l a r .

6

6

2.2

Now

i’ 6 -1

2

=

-1

-6

and

=

(

(6 -1)a - t b -6c ( 6 * + l ) b -la -16c

-:(a

62,

=

and

&:)

-1

62+1 -16

0

2 (6 -1)b -if -6g

- t b +(6’

+tb)

,

(6.28)

2

(6 - 1 ) ~- t g -6h

+ l ) f -16g

-6(b + t f )

-6(c

+tg)

(6.29)

Then from (6.24) it follows t h a t

,

2tb

=

f - a

61

=

6(a + tb) - cc + 18)

,

(6.301

188

M. Hayes

and (6

-1)a - t b -6c

(S2 + l ) b - i a -16c

62G =

[-&:a On expanding r o o t Csince

17. -

+

-1

a -6g

2 6 (a+2tb)+Ca+ib)-t6g

= 0,

(6

2

-1)c-Ig-dh

-tc+(6

-

-t6Ca + ib)

tb)

IQ - e r l

191

( ~ 5+ l~) b

2

6(c + 1g)

i t i s seen t h a t t h e s e c u l a r equation has a zero

X

= 0 ) , and a double r o o t

given by ( 6 . 3 0 ) 2 .

SUPERPOSITION OF WAVE TRAINS WITH COMMON DIRECTIONAL ELLIPSE

In t h i s s e c t i o n t h e s u p e r p o s i t i o n of two wave t r a i n s with common d i r e c t i o n a1 e l l i p s e i s considered.

S

For given f i x e d

p a r a l l e l t o t h e plane of t h e e l l i p s e of

*

t h e motion i n any plane

is examined.

The displacement o f

a p a r t i c l e a r i s e s a s a l i n e a r combination of t h e two b a s i c displacements and (The sum of two b i v e c t o r s i s

hence, i n general, w i l l a l s o be e l l i p t i c a l . also a bivector.)

The e l l i p s e s f o r d i f f e r e n t p a r t i c l e s w i l l g e n e r a l l y d i f f e r .

However, it i s seen t h a t t h e e l l i p s e s a t c e r t a i n p o i n t s on a c e r t a i n l i n e are i d e n t i c a l both i n o r i e n t a t i o n a n d i n t e r m s of t h e lengths of t h e i r p r i n c i p a l axes. I t i s assumed t h a t

where

a,,

B,

a, b

A.B=

5, A,

a r e given by

I t i s e a s i l y checked that

a r e assumed t o be r e a l .

A.S-1 = B.S-2 = 0. Also Tle 161 , T2e1" of t h e s e c u l a r equation ( 4 . 5 ) f o r given 2 = corresponding eigenbivectors a r e The t o t a l displacement

E* =

A

and

a r e assumed t o be t h e s o l u t i o n s (ol/B)

u_"Csay) in t h e p l a n e of

A expiw C Tle'"(crx

+ iBy]

+ {B - (B.n) - - n) expiu{T2e"2(ax

+

ii,

and t h e

respectively.

-

&

may be w r i t t e n

t 1 + ’By)

-

t)

,

(7.21

189

lnhomogeneous Plane Waves

A

2 is t h e u n i t normal t o t h e p l a n e of

where

given by

- s i n d i + acossk

z =

2 2 2 l ( s i n S+a cos 6)

(7.3)



Now

-

bfisind[ii

=

Bcos6

(1+B c o s S )

IacosSj + sin8k) ]

,

(7.41

and

-s* -

=

(s”.fl)” 5 6

l[lL

-

’c0s6 ~ a c o s +~ si i n & & )I . 2 2 (1+B cos 6)

Notice t h a t t h e e l l i p s e s of t h e p r o j e c t i o n s of

and

5

(7.5)

upon t h e plane of

are s i m i l a r and s i m i l a r l y s i t u a t e d . Now

u*

may be w r i t t e n

+ a-’b@sin6{iL

-

BCOSG

(1+6 cos 6)

(acossi

+

sin6k) 1 exp

IWP]

,

(7.61

where (7.71 I t i s c l e a r t h a t f o r given

x, y,

t h e displacement

%* l i e s on an e l l i p s e .

The axes of t h e e l l i p s e w i l l v a r y from p o i n t t o p o i n t f o r p o i n t t o point. the ellipse a t

However, if exp(iwb) M

has p r i n c i p a l axes along

t h e ellipses at the points axes of t h e e l l i p s e of

5

M

u v a r i e s from

i s purely r e a l a t a point

i

M(say)

and (ctcosdi + sin@).

then

Thus

have p r i n c i p a l axes p a r a l l e l t o t h e p r i n c i p a l

and a l s o of course t o t h e p r i n c i p a l axes of t h e

e l l i p s e of t h e p r o j e c t i o n of

2.

Of course t h e s e e l l i p s e s a t t h e p o i n t s

M

will not be i d e n t i c a l but they do have t h a t one f e a t u r e i n common, t h a t t h e i r p r i n c i p a l axes a r e p a r a l l e l .

The p o i n t s

M

a r e any p o i n t s o n t h e e q u i d i s t a n t

190

M. Hayes

d

parallel lines

2

:

where

k,

:

wk[a[cos$)x $

-

p(sin$)y]

qs,

=

q

0,

...

+1, f 2 ,

(7.8)

a r e given by T e 2

‘42

- Tle

Consider t h e p o i n t s o f i n t e r s e c t i o h

32 with t h e l i n e s

:

.

(7.9) M*(say)

(asin+)x + ( ~ c o s $ ] y = The term

exp(iwu)

p o i n t s and has t h e same value a t each.

of a l i n e

7

constant

(7.10)

i s p u r e l y r e a l a t each of t h e s e

Thus f o r t h e s e p o i n t s

M

*

the

displacement e l l i p s e s a r e a l l i d e n t i c a l and are s i m i l a r and s i m i l a r l y s i t u a t e d t o t h e e l l i p s e of t h e p r o j e c t i o n of

ACKNOWLEDGMENT.

5

upon t h e p l a n e of

A.

This work was supported by t h e National Board f o r Science

6 Technology under Grant 19/79.

191

Inhomogeneous Plane Waves

REFERENCES [l]

Gibbs, J.W. Elements of Yector Analysis, 1881, 1884 ( p r i v a t e l y p r i n t e d ) E pp 17 - 90, Vol. 2 , p a r t 2 , S c i e n t i f i c Papers, Dover Publications, New York, 1961.

[Z]

Hayes, M. Inhomogeneous Plane Waves. appear)

[3]

Synge, J . L . The Petrov C l a s s i f i c a t i o n of G r a v i t a t i o n a l F i e l d s . Dublin I n s t . f o r Adv. S t u d i e s , No. 15, Dublin, 1964.

Arch. R a t ' l Mech. Anal. 1984 ( t o

A,

Corn.